Articles | Volume 9, issue 3
https://doi.org/10.5194/tc-9-1303-2015
https://doi.org/10.5194/tc-9-1303-2015
Research article
 | Highlight paper
 | 
23 Jun 2015
Research article | Highlight paper |  | 23 Jun 2015

A ground temperature map of the North Atlantic permafrost region based on remote sensing and reanalysis data

S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller

Related authors

The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Rapid warming and degradation of mountain permafrost in Norway and Iceland
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023,https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Spatio-temporal information propagation using sparse observations in hyper-resolution ensemble-based snow data assimilation
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023,https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Development of multiple taliks near settlements on Svalbard – a new source of drinking water for the High Arctic?
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2950,https://doi.org/10.5194/egusphere-2023-2950, 2023
Short summary
Recent ground thermo-hydrological changes in a southern Tibetan endorheic catchment and implications for lake level changes
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023,https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary

Related subject area

Frozen Ground
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost degradation of peatlands in northern Sweden
Samuel Valman, Matthias Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabe de la Barreda-Bautista, Andrew Sowter, and Sofie Sjogersten
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-138,https://doi.org/10.5194/tc-2023-138, 2023
Preprint under review for TC
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Post-Little Ice Age rock wall permafrost evolution in Norway
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023,https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary

Cited articles

Aas, K. S., Berntsen, T. K., Boike, J., Etzelmüller, B., Kristjánsson, J. E., Maturilli, M., Schuler, T. V., Stordal, F., and Westermann, S.: A comparison between simulated and observed surface energy balance at the Svalbard archipelago, J. Appl. Meteorol. Climatol., 54, 1102–1119, https://doi.org/10.1175/JAMC-D-14-0080.1, 2015.
Baranov, I. Y.: Geographical distribution of seasonally frozen ground and permafrost, in: General Geocryology, 193–219, Part I, Chap. 7, V. A. Obruchev Institute of Permafrost Studies, USSR Academy of Sciences, Moscow, 1959.
Brown, J., Ferrians Jr., O., Heginbottom, J., and Melnikov, E.: Circum-Arctic map of permafrost and ground-ice conditions, US Geological Survey Circum-Pacific Map, US Geological Survey, Washington, D.C., USA, 1997.
Daanen, R. P., Ingeman-Nielsen, T., Marchenko, S. S., Romanovsky, V. E., Foged, N., Stendel, M., Christensen, J. H., and Hornbech Svendsen, K.: Permafrost degradation risk zone assessment using simulation models, The Cryosphere, 5, 1043–1056, https://doi.org/10.5194/tc-5-1043-2011, 2011.
Download
Short summary
We use remotely sensed land surface temperature and land cover in conjunction with air temperature and snowfall from a reanalysis product as input for a simple permafrost model. The scheme is applied to the permafrost regions bordering the North Atlantic. A comparison with ground temperatures in boreholes suggests a modeling accuracy of 2 to 2.5 °C.