Articles | Volume 9, issue 3
https://doi.org/10.5194/tc-9-1129-2015
https://doi.org/10.5194/tc-9-1129-2015
Research article
 | 
27 May 2015
Research article |  | 27 May 2015

Air temperature variability over three glaciers in the Ortles–Cevedale (Italian Alps): effects of glacier fragmentation, comparison of calculation methods, and impacts on mass balance modeling

L. Carturan, F. Cazorzi, F. De Blasi, and G. Dalla Fontana

Related authors

Spring-water temperature suggests widespread occurrence of Alpine permafrost in pseudo-relict rock glaciers
Luca Carturan, Giulia Zuecco, Angela Andreotti, Jacopo Boaga, Costanza Morino, Mirko Pavoni, Roberto Seppi, Monica Tolotti, Thomas Zanoner, and Matteo Zumiani
EGUsphere, https://doi.org/10.5194/egusphere-2023-2689,https://doi.org/10.5194/egusphere-2023-2689, 2024
Short summary
Modern air, englacial and permafrost temperatures at high altitude on Mt Ortles (3905 m a.s.l.), in the eastern European Alps
Luca Carturan, Fabrizio De Blasi, Roberto Dinale, Gianfranco Dragà, Paolo Gabrielli, Volkmar Mair, Roberto Seppi, David Tonidandel, Thomas Zanoner, Tiziana Lazzarina Zendrini, and Giancarlo Dalla Fontana
Earth Syst. Sci. Data, 15, 4661–4688, https://doi.org/10.5194/essd-15-4661-2023,https://doi.org/10.5194/essd-15-4661-2023, 2023
Short summary
Brief communication: Mountain permafrost acts as an aquitard during an infiltration experiment monitored with electrical resistivity tomography time-lapse measurements
Mirko Pavoni, Jacopo Boaga, Alberto Carrera, Giulia Zuecco, Luca Carturan, and Matteo Zumiani
The Cryosphere, 17, 1601–1607, https://doi.org/10.5194/tc-17-1601-2023,https://doi.org/10.5194/tc-17-1601-2023, 2023
Short summary
TOPMELT 1.0: a topography-based distribution function approach to snowmelt simulation for hydrological modelling at basin scale
Mattia Zaramella, Marco Borga, Davide Zoccatelli, and Luca Carturan
Geosci. Model Dev., 12, 5251–5265, https://doi.org/10.5194/gmd-12-5251-2019,https://doi.org/10.5194/gmd-12-5251-2019, 2019
Short summary
Linking pollen deposition and snow accumulation on the Alto dell'Ortles glacier (South Tyrol, Italy) for sub-seasonal dating of a firn temperate core
Daniela Festi, Luca Carturan, Werner Kofler, Giancarlo dalla Fontana, Fabrizio de Blasi, Federico Cazorzi, Edith Bucher, Volkmar Mair, Paolo Gabrielli, and Klaus Oeggl
The Cryosphere, 11, 937–948, https://doi.org/10.5194/tc-11-937-2017,https://doi.org/10.5194/tc-11-937-2017, 2017
Short summary

Related subject area

Atmospheric Interactions
Seasonal snow–atmosphere modeling: let's do it
Dylan Reynolds, Louis Quéno, Michael Lehning, Mahdi Jafari, Justine Berg, Tobias Jonas, Michael Haugeneder, and Rebecca Mott
The Cryosphere, 18, 4315–4333, https://doi.org/10.5194/tc-18-4315-2024,https://doi.org/10.5194/tc-18-4315-2024, 2024
Short summary
On the importance to consider the cloud dependence in parameterizing the albedo of snow on sea ice
Lara Foth, Wolfgang Dorn, Annette Rinke, Evelyn Jäkel, and Hannah Niehaus
The Cryosphere, 18, 4053–4064, https://doi.org/10.5194/tc-18-4053-2024,https://doi.org/10.5194/tc-18-4053-2024, 2024
Short summary
Dynamic and thermodynamic processes related to sea-ice surface melt advance in the Laptev Sea and East Siberian Sea
Hongjie Liang and Wen Zhou
The Cryosphere, 18, 3559–3569, https://doi.org/10.5194/tc-18-3559-2024,https://doi.org/10.5194/tc-18-3559-2024, 2024
Short summary
Understanding the drivers of near-surface winds in Adélie Land, East Antarctica
Cécile Davrinche, Anaïs Orsi, Cécile Agosta, Charles Amory, and Christoph Kittel
The Cryosphere, 18, 2239–2256, https://doi.org/10.5194/tc-18-2239-2024,https://doi.org/10.5194/tc-18-2239-2024, 2024
Short summary
Identifying airborne snow metamorphism with stable water isotopes
Sonja Wahl, Benjamin Walter, Franziska Aemisegger, Luca Bianchi, and Michael Lehning
EGUsphere, https://doi.org/10.5194/egusphere-2024-745,https://doi.org/10.5194/egusphere-2024-745, 2024
Short summary

Cited articles

Abbate, S., Avvenuti, M., Carturan, L., and Cesarini, D.: Deploying a communicating automatic weather station on an Alpine Glacier, Procedia Computer Science, 19, 1190–1195, 2013.
Ayala, A., Pellicciotti, F., and Shea, J. M.: Modeling 2 m air temperatures over mountain glaciers: Exploring the influence of katabatic cooling and external warming, J. Geophys. Res. Atmos., 120, https://doi.org/10.1002/2015JD023137, online first, 2015.
Bahr, D. B. and Radić, V.: Significant contribution to total mass from very small glaciers, The Cryosphere, 6, 763–770, https://doi.org/10.5194/tc-6-763-2012, 2012.
Barry, R. G.: The status of research on glaciers and global glacier recession: a review, Prog. Phys. Geog., 30, 285–306, 2006.
Braithwaite, R. J.: Regional modelling of ablation in West Greenland, Grønlands geologiske undersøgelse, 98, 20 pp., 1980.
Download
Short summary
Using a dataset from 12 weather stations collected in 2010 and 2011, we analyzed the air temperature variability and wind regime over three different glaciers in the Ortles-Cevedale. The magnitude of the cooling effect and the occurrence of katabatic boundary layer processes showed remarkable differences among the three ice bodies, suggesting the likely existence of important reinforcing mechanisms during glacier decay and fragmentation, with significant impacts for glacier mass balance modeling.