Articles | Volume 7, issue 6
https://doi.org/10.5194/tc-7-1707-2013
https://doi.org/10.5194/tc-7-1707-2013
Research article
 | 
11 Nov 2013
Research article |  | 11 Nov 2013

An upper-bound estimate for the accuracy of glacier volume–area scaling

D. Farinotti and M. Huss

Related authors

Inter-model differences in 21st century glacier runoff for the world's major river basins
Finn Wimberly, Lizz Ultee, Lilian Schuster, Matthias Huss, David R. Rounce, Fabien Maussion, Sloan Coats, Jonathan Mackay, and Erik Holmgren
The Cryosphere, 19, 1491–1511, https://doi.org/10.5194/tc-19-1491-2025,https://doi.org/10.5194/tc-19-1491-2025, 2025
Short summary
Spectral characteristics of seismic ambient vibrations reveal changes in the subglacial environment of Glacier de la Plaine Morte, Switzerland
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025,https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Machine learning improves seasonal mass balance prediction for unmonitored glaciers
Kamilla Hauknes Sjursen, Jordi Bolibar, Marijn van der Meer, Liss Marie Andreassen, Julian Peter Biesheuvel, Thorben Dunse, Matthias Huss, Fabien Maussion, David R. Rounce, and Brandon Tober
EGUsphere, https://doi.org/10.5194/egusphere-2025-1206,https://doi.org/10.5194/egusphere-2025-1206, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Swiss glacier mass loss during the 2022 drought: persistent streamflow contributions amid declining melt water volumes
Marit van Tiel, Matthias Huss, Massimiliano Zappa, Tobias Jonas, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2025-404,https://doi.org/10.5194/egusphere-2025-404, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
A minimal machine-learning glacier mass balance model
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
The Cryosphere, 19, 805–826, https://doi.org/10.5194/tc-19-805-2025,https://doi.org/10.5194/tc-19-805-2025, 2025
Short summary

Related subject area

Glaciers
Physics-aware machine learning for glacier ice thickness estimation: a case study for Svalbard
Viola Steidl, Jonathan Louis Bamber, and Xiao Xiang Zhu
The Cryosphere, 19, 645–661, https://doi.org/10.5194/tc-19-645-2025,https://doi.org/10.5194/tc-19-645-2025, 2025
Short summary
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
The Cryosphere, 19, 19–35, https://doi.org/10.5194/tc-19-19-2025,https://doi.org/10.5194/tc-19-19-2025, 2025
Short summary
Linking glacier retreat with climate change on the Tibetan Plateau through satellite remote sensing
Fumeng Zhao, Wenping Gong, Silvia Bianchini, and Zhongkang Yang
The Cryosphere, 18, 5595–5612, https://doi.org/10.5194/tc-18-5595-2024,https://doi.org/10.5194/tc-18-5595-2024, 2024
Short summary
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024,https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Fine-scale variability in iceberg velocity fields and implications for an ice-associated pinniped
Lynn M. Kaluzienski, Jason M. Amundson, Jamie N. Womble, Andrew K. Bliss, and Linnea E. Pearson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2950,https://doi.org/10.5194/egusphere-2024-2950, 2024
Short summary

Cited articles

Adhikari, S. and Marshall, S.: Glacier volume-area relation for high-order mechanics and transient glacier states, Geophys. Res. Lett., 39, L16 505, https://doi.org/10.1029/2012GL052712, 2012.
Arendt, A. et al.: Randolph Glacier Inventory – A Dataset of global glacier outlines: Version 2.0, GLIMS Technical Report, National Snow and Ice Data Center, Boulder, USA, digital Media, 2012.
Bahr, D. B.: Estimation of glacier volume and volume change by scaling methods, in: Encyclopedia of snow, ice and glaciers, edited by: Singh, V., Singh, P., and Haritashya, U., Springer, 2011.
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res., 102, 20355–20362, 1997.
Bahr, D. B., Dyurgerov, M., and Meier, M. F.: Sea-level rise from glaciers and ice caps: A lower bound, Geophys. Res. Lett., 36, L03501, https://doi.org/10.1029/2008GL036309, 2009.
Download
Share