Articles | Volume 7, issue 3
https://doi.org/10.5194/tc-7-1007-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-7-1007-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
High sensitivity of tidewater outlet glacier dynamics to shape
E. M. Enderlin
Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, Ohio 43210-1002, USA
School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 South Oval Mall, Columbus, Ohio 43210-1308, USA
I. M. Howat
Byrd Polar Research Center, The Ohio State University, 1090 Carmack Road, Columbus, Ohio 43210-1002, USA
School of Earth Sciences, The Ohio State University, 275 Mendenhall Laboratory, 125 South Oval Mall, Columbus, Ohio 43210-1308, USA
Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
Related authors
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024, https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Short summary
There are sometimes gaps in global glacier velocity records produced using satellite image feature-tracking algorithms during times of rapid glacier acceleration, which hinders the study of glacier flow processes. We present an open-source pipeline for customizing the feature-tracking parameters and for including images from an additional source. We applied it to five glaciers and found that it produced accurate velocity data that supplemented their velocity records during rapid acceleration.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548, https://doi.org/10.5194/egusphere-2024-548, 2024
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. However, current snow detection methods struggle to distinguish seasonal snow from glacier ice. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using satellite imagery and machine learning. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover over broad spatial scales.
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411, https://doi.org/10.5194/essd-2023-411, 2023
Preprint withdrawn
Short summary
Short summary
Marine-terminating glaciers can lose mass through frontal ablation, which comprises submarine and surface melting, and iceberg calving. We estimate frontal ablation for 49 marine-terminating glaciers in Greenland by combining existing, satellite derived data and calculating volume change near the glacier front over time. The dataset offers exciting opportunities to study the influence of climate forcings on marine-terminating glaciers in Greenland over multi-decadal timescales.
Chris Miele, Timothy C. Bartholomaus, and Ellyn M. Enderlin
The Cryosphere, 17, 2701–2704, https://doi.org/10.5194/tc-17-2701-2023, https://doi.org/10.5194/tc-17-2701-2023, 2023
Short summary
Short summary
Vertical shear stress (the stress orientation usually associated with vertical gradients in horizontal velocities) is a key component of the stress balance of ice shelves. However, partly due to historical assumptions, vertical shear is often misspoken of today as
negligiblein ice shelf models. We address this miscommunication, providing conceptual guidance regarding this often misrepresented stress. Fundamentally, vertical shear is required to balance thickness gradients in ice shelves.
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020, https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary
Short summary
Accurate predictions of future changes in glacier flow require the realistic simulation of glacier terminus position change in numerical models. We use crevasse observations for 19 Greenland glaciers to explore whether the two commonly used crevasse depth models match observations. The models cannot reproduce spatial patterns, and we largely attribute discrepancies between modeled and observed depths to the models' inability to account for advection.
William Kochtitzky, Dominic Winski, Erin McConnel, Karl Kreutz, Seth Campbell, Ellyn M. Enderlin, Luke Copland, Scott Williamson, Brittany Main, Christine Dow, and Hester Jiskoot
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-72, https://doi.org/10.5194/tc-2019-72, 2019
Manuscript not accepted for further review
Short summary
Short summary
Donjek Glacier has experienced eight instability events since 1935. Here we use a suite of weather and satellite data to understand the impacts of climate on instability events. We find that while there has been a consistent amount of snow fall between instability events, the relationship between the two is unclear as they are both very consistent on decade timescales. We show that we need further glacier observations to understand why these glaciers become unstable.
Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis
The Cryosphere, 12, 2981–2999, https://doi.org/10.5194/tc-12-2981-2018, https://doi.org/10.5194/tc-12-2981-2018, 2018
Short summary
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
Jessica Scheick, Ellyn M. Enderlin, and Gordon Hamilton
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-73, https://doi.org/10.5194/tc-2018-73, 2018
Preprint withdrawn
Short summary
Short summary
Jakobshavn Isbrae generates a large number of icebergs, which float into Disko Bay, west Greenland, and make coastal navigation difficult. From 2013–2015, Disko Bay was often covered with a much larger number of icebergs compared to 2000–2002, including thousands of small icebergs. This confirms observations made by local fishermen and other ship captains and suggests future changes in iceberg cover may occur with changes in glacier activity.
Ellyn M. Enderlin, Caroline J. Carrigan, William H. Kochtitzky, Alexandra Cuadros, Twila Moon, and Gordon S. Hamilton
The Cryosphere, 12, 565–575, https://doi.org/10.5194/tc-12-565-2018, https://doi.org/10.5194/tc-12-565-2018, 2018
Short summary
Short summary
This paper aims to improve the understanding of variations in ocean conditions around the Greenland Ice Sheet, which have been called upon to explain recent glacier change. Changes in iceberg elevation over time, measured using satellite data, are used to estimate average melt rates. We find that iceberg melt rates generally decrease with latitude and increase with keel depth and can be used to characterize ocean conditions at Greenland's inaccessible marine margins.
Michiel R. van den Broeke, Ellyn M. Enderlin, Ian M. Howat, Peter Kuipers Munneke, Brice P. Y. Noël, Willem Jan van de Berg, Erik van Meijgaard, and Bert Wouters
The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, https://doi.org/10.5194/tc-10-1933-2016, 2016
Short summary
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.
Zheng Xu, Ernst J. O. Schrama, Wouter van der Wal, Michiel van den Broeke, and Ellyn M. Enderlin
The Cryosphere, 10, 895–912, https://doi.org/10.5194/tc-10-895-2016, https://doi.org/10.5194/tc-10-895-2016, 2016
Short summary
Short summary
In this paper, we compare the regional mass changes of the Greenland ice sheet between the solutions based on GRACE data and input/output method. Differences are found in some regions and indicate errors in those solutions. Therefore we improve our GRACE and IOM solutions by applying a simulation. We show the improved regional mass changes approximations are more consistent in regions. The remaining difference in the northwester Greenland is due to the underestimated uncertainty in IOM solution.
E. M. Enderlin, I. M. Howat, and A. Vieli
The Cryosphere, 7, 1579–1590, https://doi.org/10.5194/tc-7-1579-2013, https://doi.org/10.5194/tc-7-1579-2013, 2013
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024, https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Short summary
There are sometimes gaps in global glacier velocity records produced using satellite image feature-tracking algorithms during times of rapid glacier acceleration, which hinders the study of glacier flow processes. We present an open-source pipeline for customizing the feature-tracking parameters and for including images from an additional source. We applied it to five glaciers and found that it produced accurate velocity data that supplemented their velocity records during rapid acceleration.
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-1132, https://doi.org/10.5194/egusphere-2024-1132, 2024
Short summary
Short summary
This study uses high-resolution remote sensing data to show that shrinking of the West Antarctic Thwaites Glacier’s ice shelf (floating extension) is exacerbated by the presence of sub–ice shelf meltwater channels that form as the glacier transitions from full contact with the bed to fully floating. In mapping these channels, the position of the transition zone, and thinning rates of the Thwaites Glacier, this work elucidates important processes driving its rapid contribution to sea level rise.
Rainey Aberle, Ellyn Enderlin, Shad O'Neel, Caitlyn Florentine, Louis Sass, Adam Dickson, Hans-Peter Marshall, and Alejandro Flores
EGUsphere, https://doi.org/10.5194/egusphere-2024-548, https://doi.org/10.5194/egusphere-2024-548, 2024
Short summary
Short summary
Tracking seasonal snow on glaciers is critical for understanding glacier health. However, current snow detection methods struggle to distinguish seasonal snow from glacier ice. To address this, we developed a new automated workflow for tracking seasonal snow on glaciers using satellite imagery and machine learning. Applying this method can help provide insights into glacier health, water resources, and the effects of climate change on snow cover over broad spatial scales.
Dominik Fahrner, Donald Slater, Aman KC, Claudia Cenedese, David A. Sutherland, Ellyn Enderlin, Femke de Jong, Kristian K. Kjeldsen, Michael Wood, Peter Nienow, Sophie Nowicki, and Till Wagner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-411, https://doi.org/10.5194/essd-2023-411, 2023
Preprint withdrawn
Short summary
Short summary
Marine-terminating glaciers can lose mass through frontal ablation, which comprises submarine and surface melting, and iceberg calving. We estimate frontal ablation for 49 marine-terminating glaciers in Greenland by combining existing, satellite derived data and calculating volume change near the glacier front over time. The dataset offers exciting opportunities to study the influence of climate forcings on marine-terminating glaciers in Greenland over multi-decadal timescales.
Chris Miele, Timothy C. Bartholomaus, and Ellyn M. Enderlin
The Cryosphere, 17, 2701–2704, https://doi.org/10.5194/tc-17-2701-2023, https://doi.org/10.5194/tc-17-2701-2023, 2023
Short summary
Short summary
Vertical shear stress (the stress orientation usually associated with vertical gradients in horizontal velocities) is a key component of the stress balance of ice shelves. However, partly due to historical assumptions, vertical shear is often misspoken of today as
negligiblein ice shelf models. We address this miscommunication, providing conceptual guidance regarding this often misrepresented stress. Fundamentally, vertical shear is required to balance thickness gradients in ice shelves.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Qi Liang, Wanxin Xiao, Ian Howat, Xiao Cheng, Fengming Hui, Zhuoqi Chen, Mi Jiang, and Lei Zheng
The Cryosphere, 16, 2671–2681, https://doi.org/10.5194/tc-16-2671-2022, https://doi.org/10.5194/tc-16-2671-2022, 2022
Short summary
Short summary
Using multi-temporal ArcticDEM and ICESat-2 altimetry data, we document changes in surface elevation of a subglacial lake basin from 2012 to 2021. The long-term measurements show that the subglacial lake was recharged by surface meltwater and that a rapid drainage event in late August 2019 induced an abrupt ice velocity change. Multiple factors regulate the episodic filling and drainage of the lake. Our study also reveals ~ 64 % of the surface meltwater successfully descended to the bed.
Adrien Wehrlé, Martin P. Lüthi, Andrea Walter, Guillaume Jouvet, and Andreas Vieli
The Cryosphere, 15, 5659–5674, https://doi.org/10.5194/tc-15-5659-2021, https://doi.org/10.5194/tc-15-5659-2021, 2021
Short summary
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.
Ellyn M. Enderlin and Timothy C. Bartholomaus
The Cryosphere, 14, 4121–4133, https://doi.org/10.5194/tc-14-4121-2020, https://doi.org/10.5194/tc-14-4121-2020, 2020
Short summary
Short summary
Accurate predictions of future changes in glacier flow require the realistic simulation of glacier terminus position change in numerical models. We use crevasse observations for 19 Greenland glaciers to explore whether the two commonly used crevasse depth models match observations. The models cannot reproduce spatial patterns, and we largely attribute discrepancies between modeled and observed depths to the models' inability to account for advection.
Andrea Walter, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 14, 1051–1066, https://doi.org/10.5194/tc-14-1051-2020, https://doi.org/10.5194/tc-14-1051-2020, 2020
Short summary
Short summary
Glacier calving plays a key role in the dynamic mass loss of ocean-terminating glaciers in Greenland. Source areas and volumes of 900 individual calving events were analysed for size and timing related to environmental forcings. We found that calving volume distribution and style vary along the calving front and are controlled by the water depth and front geometry. We suggest that in deep water both oceanic melt and subaquatic calving contribute substantially to the frontal mass loss.
Guillaume Jouvet, Eef van Dongen, Martin P. Lüthi, and Andreas Vieli
Geosci. Instrum. Method. Data Syst., 9, 1–10, https://doi.org/10.5194/gi-9-1-2020, https://doi.org/10.5194/gi-9-1-2020, 2020
Short summary
Short summary
We report the first-ever in situ measurements of ice flow motion using a remotely controlled drone. We used a quadcopter to land on a highly crevassed area of Eqip Sermia Glacier, Greenland. The drone measured 70 cm of ice displacement over more than 4 h thanks to an accurate onboard GPS. Our study demonstrates that drones have great potential for geoscientists, especially to deploy sensors in hostile environments such as glaciers.
Christoph Rohner, David Small, Jan Beutel, Daniel Henke, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 13, 2953–2975, https://doi.org/10.5194/tc-13-2953-2019, https://doi.org/10.5194/tc-13-2953-2019, 2019
Short summary
Short summary
The recent increase in ice flow and calving rates of ocean–terminating glaciers contributes substantially to the mass loss of the Greenland Ice Sheet. Using in situ reference observations, we validate the satellite–based method of iterative offset tracking of Sentinel–1A data for deriving flow speeds. Our investigations highlight the importance of spatial resolution near the fast–flowing calving front, resulting in significantly higher ice velocities compared to large–scale operational products.
Samuel Weber, Jan Beutel, Reto Da Forno, Alain Geiger, Stephan Gruber, Tonio Gsell, Andreas Hasler, Matthias Keller, Roman Lim, Philippe Limpach, Matthias Meyer, Igor Talzi, Lothar Thiele, Christian Tschudin, Andreas Vieli, Daniel Vonder Mühll, and Mustafa Yücel
Earth Syst. Sci. Data, 11, 1203–1237, https://doi.org/10.5194/essd-11-1203-2019, https://doi.org/10.5194/essd-11-1203-2019, 2019
Short summary
Short summary
In this paper, we describe a unique 10-year or more data record obtained from in situ measurements in steep bedrock permafrost in an Alpine environment on the Matterhorn Hörnligrat, Zermatt, Switzerland, at 3500 m a.s.l. By documenting and sharing these data in this form, we contribute to facilitating future research based on them, e.g., in the area of analysis methodology, comparative studies, assessment of change in the environment, natural hazard warning and the development of process models.
Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 19, 1399–1413, https://doi.org/10.5194/nhess-19-1399-2019, https://doi.org/10.5194/nhess-19-1399-2019, 2019
Short summary
Short summary
We developed a new strategy for real-time early warning of
gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Nico Mölg, Tobias Bolch, Andrea Walter, and Andreas Vieli
The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, https://doi.org/10.5194/tc-13-1889-2019, 2019
Short summary
Short summary
Debris can partly protect glaciers from melting. But many debris-covered glaciers change similar to debris-free glaciers. To better understand the debris influence we investigated 150 years of evolution of Zmutt Glacier in Switzerland. We found an increase in debris extent over time and a link to glacier flow velocity changes. We also found an influence of debris on the melt locally, but only a small volume change reduction over the whole glacier, also because of the influence of ice cliffs.
William Kochtitzky, Dominic Winski, Erin McConnel, Karl Kreutz, Seth Campbell, Ellyn M. Enderlin, Luke Copland, Scott Williamson, Brittany Main, Christine Dow, and Hester Jiskoot
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-72, https://doi.org/10.5194/tc-2019-72, 2019
Manuscript not accepted for further review
Short summary
Short summary
Donjek Glacier has experienced eight instability events since 1935. Here we use a suite of weather and satellite data to understand the impacts of climate on instability events. We find that while there has been a consistent amount of snow fall between instability events, the relationship between the two is unclear as they are both very consistent on decade timescales. We show that we need further glacier observations to understand why these glaciers become unstable.
Alessandro Cicoira, Jan Beutel, Jérome Faillettaz, Isabelle Gärtner-Roer, and Andreas Vieli
The Cryosphere, 13, 927–942, https://doi.org/10.5194/tc-13-927-2019, https://doi.org/10.5194/tc-13-927-2019, 2019
Short summary
Short summary
Rock glacier flow varies on multiple timescales. The variations have been linked to climatic forcing, but a quantitative understanding is still missing.
We use a 1-D numerical modelling approach coupling heat conduction to a creep model in order to study the influence of temperature variations on rock glacier flow. Our results show that heat conduction alone cannot explain the observed variations. Other processes, likely linked to water, must dominate the short-term velocity signal.
Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin
The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, https://doi.org/10.5194/tc-13-665-2019, 2019
Short summary
Short summary
The Reference Elevation Model of Antarctica (REMA) is the first continental-scale terrain map at less than 10 m resolution, and the first with a time stamp, enabling measurements of elevation change. REMA is constructed from over 300 000 individual stereoscopic elevation models (DEMs) extracted from submeter-resolution satellite imagery. REMA is vertically registered to satellite altimetry, resulting in errors of less than 1 m over most of its area and relative uncertainties of decimeters.
Michalea D. King, Ian M. Howat, Seongsu Jeong, Myoung J. Noh, Bert Wouters, Brice Noël, and Michiel R. van den Broeke
The Cryosphere, 12, 3813–3825, https://doi.org/10.5194/tc-12-3813-2018, https://doi.org/10.5194/tc-12-3813-2018, 2018
Short summary
Short summary
We derive the first continuous record of total ice discharged from all large Greenland outlet glaciers over the 2000–2016 period, resolving a distinct pattern of seasonal variability. We compare these results to glacier retreat and meltwater runoff and find that while runoff has a limited impact on ice discharge in summer, long-term changes in discharge are highly correlated to retreat. These results help to better understand Greenland outlet glacier sensitivity over a range of timescales.
Jiangjun Ran, Miren Vizcaino, Pavel Ditmar, Michiel R. van den Broeke, Twila Moon, Christian R. Steger, Ellyn M. Enderlin, Bert Wouters, Brice Noël, Catharina H. Reijmer, Roland Klees, Min Zhong, Lin Liu, and Xavier Fettweis
The Cryosphere, 12, 2981–2999, https://doi.org/10.5194/tc-12-2981-2018, https://doi.org/10.5194/tc-12-2981-2018, 2018
Short summary
Short summary
To accurately predict future sea level rise, the mechanisms driving the observed mass loss must be better understood. Here, we combine data from the satellite gravimetry, surface mass balance, and ice discharge to analyze the mass budget of Greenland at various temporal scales. This study, for the first time, suggests the existence of a substantial meltwater storage during summer, with a peak value of 80–120 Gt in July. We highlight its importance for understanding ice sheet mass variability
Ian M. Howat, Santiago de la Peña, Darin Desilets, and Gary Womack
The Cryosphere, 12, 2099–2108, https://doi.org/10.5194/tc-12-2099-2018, https://doi.org/10.5194/tc-12-2099-2018, 2018
Short summary
Short summary
In this paper we present the first application of cosmic ray neutron sensing for continuously measuring in situ accumulation on an ice sheet. We validate these results with manual snow coring and snow stake measurements, showing that the cosmic ray observations are of similar if not better accuracy. We also present our observations of variability in accumulation over 24 months at Summit Camp, Greenland. We conclude that cosmic ray sensing has a high potential for measuring surface mass balance.
Jessica Scheick, Ellyn M. Enderlin, and Gordon Hamilton
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-73, https://doi.org/10.5194/tc-2018-73, 2018
Preprint withdrawn
Short summary
Short summary
Jakobshavn Isbrae generates a large number of icebergs, which float into Disko Bay, west Greenland, and make coastal navigation difficult. From 2013–2015, Disko Bay was often covered with a much larger number of icebergs compared to 2000–2002, including thousands of small icebergs. This confirms observations made by local fishermen and other ship captains and suggests future changes in iceberg cover may occur with changes in glacier activity.
Rémy Mercenier, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 12, 721–739, https://doi.org/10.5194/tc-12-721-2018, https://doi.org/10.5194/tc-12-721-2018, 2018
Short summary
Short summary
This study investigates the effect of geometrical properties on the stress state and flow regime in the vicinity of the calving front of grounded tidewater glaciers. Our analysis shows that the stress state for simple geometries can be determined solely by the water depth relative to ice thickness. This scaled relationship allows for a simple parametrization to predict calving rates of grounded tidewater glaciers that is simple, physics-based and in good agreement with observations.
Ellyn M. Enderlin, Caroline J. Carrigan, William H. Kochtitzky, Alexandra Cuadros, Twila Moon, and Gordon S. Hamilton
The Cryosphere, 12, 565–575, https://doi.org/10.5194/tc-12-565-2018, https://doi.org/10.5194/tc-12-565-2018, 2018
Short summary
Short summary
This paper aims to improve the understanding of variations in ocean conditions around the Greenland Ice Sheet, which have been called upon to explain recent glacier change. Changes in iceberg elevation over time, measured using satellite data, are used to estimate average melt rates. We find that iceberg melt rates generally decrease with latitude and increase with keel depth and can be used to characterize ocean conditions at Greenland's inaccessible marine margins.
Joaquín M. C. Belart, Etienne Berthier, Eyjólfur Magnússon, Leif S. Anderson, Finnur Pálsson, Thorsteinn Thorsteinsson, Ian M. Howat, Guðfinna Aðalgeirsdóttir, Tómas Jóhannesson, and Alexander H. Jarosch
The Cryosphere, 11, 1501–1517, https://doi.org/10.5194/tc-11-1501-2017, https://doi.org/10.5194/tc-11-1501-2017, 2017
Short summary
Short summary
Sub-meter satellite stereo images (Pléiades and WorldView2) are used to accurately measure snow accumulation and winter mass balance of Drangajökull ice cap. This is done by creating and comparing accurate digital elevation models. A glacier-wide geodetic mass balance of 3.33 ± 0.23 m w.e. is derived between October 2014 and May 2015. This method could be easily transposable to remote glaciated areas where seasonal mass balance measurements (especially winter accumulation) are lacking.
Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 17, 801–815, https://doi.org/10.5194/nhess-17-801-2017, https://doi.org/10.5194/nhess-17-801-2017, 2017
Short summary
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Samuel Weber, Jan Beutel, Jérome Faillettaz, Andreas Hasler, Michael Krautblatter, and Andreas Vieli
The Cryosphere, 11, 567–583, https://doi.org/10.5194/tc-11-567-2017, https://doi.org/10.5194/tc-11-567-2017, 2017
Short summary
Short summary
We present a 8-year continuous time series of measured fracture kinematics and thermal conditions on steep permafrost bedrock at Hörnligrat, Matterhorn. Based on this unique dataset and a conceptual model for strong fractured bedrock, we develop a novel quantitative approach that allows to separate reversible from irreversible fracture kinematics and assign the dominant forcing. A new index of irreversibility provides useful indication for the occurrence and timing of irreversible displacements.
Stephen F. Price, Matthew J. Hoffman, Jennifer A. Bonin, Ian M. Howat, Thomas Neumann, Jack Saba, Irina Tezaur, Jeffrey Guerber, Don P. Chambers, Katherine J. Evans, Joseph H. Kennedy, Jan Lenaerts, William H. Lipscomb, Mauro Perego, Andrew G. Salinger, Raymond S. Tuminaro, Michiel R. van den Broeke, and Sophie M. J. Nowicki
Geosci. Model Dev., 10, 255–270, https://doi.org/10.5194/gmd-10-255-2017, https://doi.org/10.5194/gmd-10-255-2017, 2017
Short summary
Short summary
We introduce the Cryospheric Model Comparison Tool (CmCt) and propose qualitative and quantitative metrics for evaluating ice sheet model simulations against observations. Greenland simulations using the Community Ice Sheet Model are compared to gravimetry and altimetry observations from 2003 to 2013. We show that the CmCt can be used to score simulations of increasing complexity relative to observations of dynamic change in Greenland over the past decade.
Johann Müller, Andreas Vieli, and Isabelle Gärtner-Roer
The Cryosphere, 10, 2865–2886, https://doi.org/10.5194/tc-10-2865-2016, https://doi.org/10.5194/tc-10-2865-2016, 2016
Short summary
Short summary
Rock glaciers are landforms indicative of permafrost creep and received considerable attention concerning their dynamical and thermal changes. We use a holistic approach to analyze and model the current and long-term dynamical development of two rock glaciers in the Swiss Alps. The modeling results show the impact of variations in temperature and sediment–ice supply on rock glacier evolution and describe proceeding signs of degradation due to climate warming.
Brice Noël, Willem Jan van de Berg, Horst Machguth, Stef Lhermitte, Ian Howat, Xavier Fettweis, and Michiel R. van den Broeke
The Cryosphere, 10, 2361–2377, https://doi.org/10.5194/tc-10-2361-2016, https://doi.org/10.5194/tc-10-2361-2016, 2016
Short summary
Short summary
We present a 1 km resolution data set (1958–2015) of daily Greenland ice sheet surface mass balance (SMB), statistically downscaled from the data of RACMO2.3 at 11 km using elevation dependence, precipitation and bare ice albedo corrections. The data set resolves Greenland narrow ablation zones and local outlet glaciers, and shows more realistic SMB patterns, owing to enhanced runoff at the ice sheet margins. An evaluation of the product against SMB measurements shows improved agreement.
Michiel R. van den Broeke, Ellyn M. Enderlin, Ian M. Howat, Peter Kuipers Munneke, Brice P. Y. Noël, Willem Jan van de Berg, Erik van Meijgaard, and Bert Wouters
The Cryosphere, 10, 1933–1946, https://doi.org/10.5194/tc-10-1933-2016, https://doi.org/10.5194/tc-10-1933-2016, 2016
Short summary
Short summary
We present recent (1958–2015) mass balance time series for the Greenland ice sheet. We show that recent mass loss is caused by a combination of increased surface meltwater runoff and solid ice discharge. Most meltwater above 2000 m a.s.l. refreezes in the cold firn and does not leave the ice sheet, but this goes at the expense of firn heating and densifying. In spite of a temporary rebound in 2013, it appears that the ice sheet remains in a state of persistent mass loss.
Martin P. Lüthi and Andreas Vieli
The Cryosphere, 10, 995–1002, https://doi.org/10.5194/tc-10-995-2016, https://doi.org/10.5194/tc-10-995-2016, 2016
Short summary
Short summary
Glaciers flowing into the ocean sometimes release huge pieces of ice and
cause violent tsunami waves which, upon landfall, can cause severe
destruction. During an exceptionally well-documented event at Eqip Sermia,
west Greenland, the collapse of a 200 m high ice cliff caused a tsunami wave
of 50 m height, traveling at a speed exceeding 100 km h−1. This tsunami wave
was filmed from a tour boat, and was simultaneously observed with several
instruments, as was the run-up of 15 m on the shore.
Zheng Xu, Ernst J. O. Schrama, Wouter van der Wal, Michiel van den Broeke, and Ellyn M. Enderlin
The Cryosphere, 10, 895–912, https://doi.org/10.5194/tc-10-895-2016, https://doi.org/10.5194/tc-10-895-2016, 2016
Short summary
Short summary
In this paper, we compare the regional mass changes of the Greenland ice sheet between the solutions based on GRACE data and input/output method. Differences are found in some regions and indicate errors in those solutions. Therefore we improve our GRACE and IOM solutions by applying a simulation. We show the improved regional mass changes approximations are more consistent in regions. The remaining difference in the northwester Greenland is due to the underestimated uncertainty in IOM solution.
V. Wirz, S. Gruber, R. S. Purves, J. Beutel, I. Gärtner-Roer, S. Gubler, and A. Vieli
Earth Surf. Dynam., 4, 103–123, https://doi.org/10.5194/esurf-4-103-2016, https://doi.org/10.5194/esurf-4-103-2016, 2016
F. Frank, B. W. McArdell, C. Huggel, and A. Vieli
Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015, https://doi.org/10.5194/nhess-15-2569-2015, 2015
Short summary
Short summary
The sudden onset of large and erosive debris flows has been observed recently in different catchments in Switzerland, implicating the importance of erosion for debris flow modelling. Therefore, an erosion model was established based on field data (relationship between maximum shear stress and erosion depth and rate) of several debris flows measured at the Illgraben. Erosion model tests at the Spreitgraben showed considerable improvements in runout pattern as well as hydrograph propagation.
P. Kuipers Munneke, S. R. M. Ligtenberg, B. P. Y. Noël, I. M. Howat, J. E. Box, E. Mosley-Thompson, J. R. McConnell, K. Steffen, J. T. Harper, S. B. Das, and M. R. van den Broeke
The Cryosphere, 9, 2009–2025, https://doi.org/10.5194/tc-9-2009-2015, https://doi.org/10.5194/tc-9-2009-2015, 2015
Short summary
Short summary
The snow layer on top of the Greenland Ice Sheet is changing: it is thickening in the high and cold interior due to increased snowfall, while it is thinning around the margins. The marginal thinning is caused by compaction, and by more melt.
This knowledge is important: there are satellites that measure volume change of the ice sheet. It can be caused by increased ice discharge, or by compaction of the snow layer. Here, we quantify the latter, so that we can translate volume to mass change.
S. de la Peña, I. M. Howat, P. W. Nienow, M. R. van den Broeke, E. Mosley-Thompson, S. F. Price, D. Mair, B. Noël, and A. J. Sole
The Cryosphere, 9, 1203–1211, https://doi.org/10.5194/tc-9-1203-2015, https://doi.org/10.5194/tc-9-1203-2015, 2015
Short summary
Short summary
This paper presents an assessment of changes in the near-surface structure of the accumulation zone of the Greenland Ice Sheet caused by an increase of melt at higher elevations in the last decade, especially during the unusually warm years of 2010 and 2012. The increase in melt and firn densification complicate the interpretation of changes in the ice volume, and the observed increase in firn ice content may reduce the important meltwater buffering capacity of the Greenland Ice Sheet.
I. M. Howat, C. Porter, M. J. Noh, B. E. Smith, and S. Jeong
The Cryosphere, 9, 103–108, https://doi.org/10.5194/tc-9-103-2015, https://doi.org/10.5194/tc-9-103-2015, 2015
Short summary
Short summary
In the summer of 2011, a large crater appeared in the surface of the Greenland Ice Sheet. It formed when a subglacial lake, equivalent to 10,000 swimming pools, catastrophically drained in less than 14 days. This is the first direct evidence that surface meltwater that drains through cracks to the bed of the ice sheet can build up in subglacial lakes over long periods of time. The sudden drainage may have been due to more surface melting and an increase in meltwater reaching the bed.
I. M. Howat, A. Negrete, and B. E. Smith
The Cryosphere, 8, 1509–1518, https://doi.org/10.5194/tc-8-1509-2014, https://doi.org/10.5194/tc-8-1509-2014, 2014
E. M. Enderlin, I. M. Howat, and A. Vieli
The Cryosphere, 7, 1579–1590, https://doi.org/10.5194/tc-7-1579-2013, https://doi.org/10.5194/tc-7-1579-2013, 2013
J. L. Bamber, J. A. Griggs, R. T. W. L. Hurkmans, J. A. Dowdeswell, S. P. Gogineni, I. Howat, J. Mouginot, J. Paden, S. Palmer, E. Rignot, and D. Steinhage
The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, https://doi.org/10.5194/tc-7-499-2013, 2013
I. M. Howat, S. de la Peña, J. H. van Angelen, J. T. M. Lenaerts, and M. R. van den Broeke
The Cryosphere, 7, 201–204, https://doi.org/10.5194/tc-7-201-2013, https://doi.org/10.5194/tc-7-201-2013, 2013
Related subject area
Glaciers
Brief communication: Rapid acceleration of the Brunt Ice Shelf after calving of iceberg A-81
Modelling the historical and future evolution of six ice masses in the Tien Shan, Central Asia, using a 3D ice-flow model
Thinning and surface mass balance patterns of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau
Everest South Col Glacier did not thin during the period 1984–2017
Meltwater runoff and glacier mass balance in the high Arctic: 1991–2022 simulations for Svalbard
Impact of tides on calving patterns at Kronebreen, Svalbard – insights from three-dimensional ice dynamical modelling
Brief communication: Glacier mapping and change estimation using very high-resolution declassified Hexagon KH-9 panoramic stereo imagery (1971–1984)
Brief communication: Estimating the ice thickness of the Müller Ice Cap to support selection of a drill site
Glacier geometry and flow speed determine how Arctic marine-terminating glaciers respond to lubricated beds
A regionally resolved inventory of High Mountain Asia surge-type glaciers, derived from a multi-factor remote sensing approach
Geometric controls of tidewater glacier dynamics
Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
A simple parametrization of mélange buttressing for calving glaciers
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden
A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity
Contribution of calving to frontal ablation quantified from seismic and hydroacoustic observations calibrated with lidar volume measurements
Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia
Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya
Effects of undercutting and sliding on calving: a global approach applied to Kronebreen, Svalbard
Surface lowering of the debris-covered area of Kanchenjunga Glacier in the eastern Nepal Himalaya since 1975, as revealed by Hexagon KH-9 and ALOS satellite observations
Initiation of a major calving event on the Bowdoin Glacier captured by UAV photogrammetry
Calving localization at Helheim Glacier using multiple local seismic stations
Frontal destabilization of Stonebreen, Edgeøya, Svalbard
Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015
Diagnosing the decline in climatic mass balance of glaciers in Svalbard over 1957–2014
Recent changes in area and thickness of Torngat Mountain glaciers (northern Labrador, Canada)
Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate
Concentration, sources and light absorption characteristics of dissolved organic carbon on a medium-sized valley glacier, northern Tibetan Plateau
3-D surface properties of glacier penitentes over an ablation season, measured using a Microsoft Xbox Kinect
Rapid glacial retreat on the Kamchatka Peninsula during the early 21st century
Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal
Basal buoyancy and fast-moving glaciers: in defense of analytic force balance
The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model
Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts
Ablation from calving and surface melt at lake-terminating Bridge Glacier, British Columbia, 1984–2013
Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent
Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW Svalbard, from SAR offset tracking
Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia
Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014
Modelling annual mass balances of eight Scandinavian glaciers using statistical models
Winter speed-up of quiescent surge-type glaciers in Yukon, Canada
Modelling glacier change in the Everest region, Nepal Himalaya
The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers
Climate regime of Asian glaciers revealed by GAMDAM glacier inventory
A model study of Abrahamsenbreen, a surging glacier in northern Spitsbergen
Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data
Changes in the southeast Vatnajökull ice cap, Iceland, between ~ 1890 and 2010
Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Lander Van Tricht and Philippe Huybrechts
The Cryosphere, 17, 4463–4485, https://doi.org/10.5194/tc-17-4463-2023, https://doi.org/10.5194/tc-17-4463-2023, 2023
Short summary
Short summary
We modelled the historical and future evolution of six ice masses in the Tien Shan, Central Asia, with a 3D ice-flow model under the newest climate scenarios. We show that in all scenarios the ice masses retreat significantly but with large differences. It is highlighted that, because the main precipitation occurs in spring and summer, the ice masses respond to climate change with an accelerating retreat. In all scenarios, the total runoff peaks before 2050, with a (drastic) decrease afterwards.
Chuanxi Zhao, Wei Yang, Evan Miles, Matthew Westoby, Marin Kneib, Yongjie Wang, Zhen He, and Francesca Pellicciotti
The Cryosphere, 17, 3895–3913, https://doi.org/10.5194/tc-17-3895-2023, https://doi.org/10.5194/tc-17-3895-2023, 2023
Short summary
Short summary
This paper quantifies the thinning and surface mass balance of two neighbouring debris-covered glaciers in the southeastern Tibetan Plateau during different seasons, based on high spatio-temporal resolution UAV-derived (unpiloted aerial
vehicle) data and in situ observations. Through a comparison approach and high-precision results, we identify that the glacier dynamic and debris thickness are strongly related to the future fate of the debris-covered glaciers in this region.
Fanny Brun, Owen King, Marion Réveillet, Charles Amory, Anton Planchot, Etienne Berthier, Amaury Dehecq, Tobias Bolch, Kévin Fourteau, Julien Brondex, Marie Dumont, Christoph Mayer, Silvan Leinss, Romain Hugonnet, and Patrick Wagnon
The Cryosphere, 17, 3251–3268, https://doi.org/10.5194/tc-17-3251-2023, https://doi.org/10.5194/tc-17-3251-2023, 2023
Short summary
Short summary
The South Col Glacier is a small body of ice and snow located on the southern ridge of Mt. Everest. A recent study proposed that South Col Glacier is rapidly losing mass. In this study, we examined the glacier thickness change for the period 1984–2017 and found no thickness change. To reconcile these results, we investigate wind erosion and surface energy and mass balance and find that melt is unlikely a dominant process, contrary to previous findings.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Felicity A. Holmes, Eef van Dongen, Riko Noormets, Michał Pętlicki, and Nina Kirchner
The Cryosphere, 17, 1853–1872, https://doi.org/10.5194/tc-17-1853-2023, https://doi.org/10.5194/tc-17-1853-2023, 2023
Short summary
Short summary
Glaciers which end in bodies of water can lose mass through melting below the waterline, as well as by the breaking off of icebergs. We use a numerical model to simulate the breaking off of icebergs at Kronebreen, a glacier in Svalbard, and find that both melting below the waterline and tides are important for iceberg production. In addition, we compare the modelled glacier front to observations and show that melting below the waterline can lead to undercuts of up to around 25 m.
Sajid Ghuffar, Owen King, Grégoire Guillet, Ewelina Rupnik, and Tobias Bolch
The Cryosphere, 17, 1299–1306, https://doi.org/10.5194/tc-17-1299-2023, https://doi.org/10.5194/tc-17-1299-2023, 2023
Short summary
Short summary
The panoramic cameras (PCs) on board Hexagon KH-9 satellite missions from 1971–1984 captured very high-resolution stereo imagery with up to 60 cm spatial resolution. This study explores the potential of this imagery for glacier mapping and change estimation. The high resolution of KH-9PC leads to higher-quality DEMs which better resolve the accumulation region of glaciers in comparison to the KH-9 mapping camera, and KH-9PC imagery can be useful in several Earth observation applications.
Ann-Sofie Priergaard Zinck and Aslak Grinsted
The Cryosphere, 16, 1399–1407, https://doi.org/10.5194/tc-16-1399-2022, https://doi.org/10.5194/tc-16-1399-2022, 2022
Short summary
Short summary
The Müller Ice Cap will soon set the scene for a new drilling project. To obtain an ice core with stratified layers and a good time resolution, thickness estimates are necessary for the planning. Here we present a new and fast method of estimating ice thicknesses from sparse data and compare it to an existing ice flow model. We find that the new semi-empirical method is insensitive to mass balance, is computationally fast, and provides good fits when compared to radar measurements.
Whyjay Zheng
The Cryosphere, 16, 1431–1445, https://doi.org/10.5194/tc-16-1431-2022, https://doi.org/10.5194/tc-16-1431-2022, 2022
Short summary
Short summary
A glacier can speed up when surface water reaches the glacier's bottom via crevasses and reduces sliding friction. This paper builds up a physical model and finds that thick and fast-flowing glaciers are sensitive to this friction disruption. The data from Greenland and Austfonna (Svalbard) glaciers over 20 years support the model prediction. To estimate the projected sea-level rise better, these sensitive glaciers should be frequently monitored for potential future instabilities.
Gregoire Guillet, Owen King, Mingyang Lv, Sajid Ghuffar, Douglas Benn, Duncan Quincey, and Tobias Bolch
The Cryosphere, 16, 603–623, https://doi.org/10.5194/tc-16-603-2022, https://doi.org/10.5194/tc-16-603-2022, 2022
Short summary
Short summary
Surging glaciers show cyclical changes in flow behavior – between slow and fast flow – and can have drastic impacts on settlements in their vicinity.
One of the clusters of surging glaciers worldwide is High Mountain Asia (HMA).
We present an inventory of surging glaciers in HMA, identified from satellite imagery. We show that the number of surging glaciers was underestimated and that they represent 20 % of the area covered by glaciers in HMA, before discussing new physics for glacier surges.
Thomas Frank, Henning Åkesson, Basile de Fleurian, Mathieu Morlighem, and Kerim H. Nisancioglu
The Cryosphere, 16, 581–601, https://doi.org/10.5194/tc-16-581-2022, https://doi.org/10.5194/tc-16-581-2022, 2022
Short summary
Short summary
The shape of a fjord can promote or inhibit glacier retreat in response to climate change. We conduct experiments with a synthetic setup under idealized conditions in a numerical model to study and quantify the processes involved. We find that friction between ice and fjord is the most important factor and that it is possible to directly link ice discharge and grounding line retreat to fjord topography in a quantitative way.
Wenfeng Chen, Tandong Yao, Guoqing Zhang, Fei Li, Guoxiong Zheng, Yushan Zhou, and Fenglin Xu
The Cryosphere, 16, 197–218, https://doi.org/10.5194/tc-16-197-2022, https://doi.org/10.5194/tc-16-197-2022, 2022
Short summary
Short summary
A digital elevation model (DEM) is a prerequisite for estimating regional glacier thickness. Our study first compared six widely used global DEMs over the glacierized Tibetan Plateau by using ICESat-2 (Ice, Cloud and land Elevation Satellite) laser altimetry data. Our results show that NASADEM had the best accuracy. We conclude that NASADEM would be the best choice for ice-thickness estimation over the Tibetan Plateau through an intercomparison of four ice-thickness inversion models.
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021, https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Short summary
Extreme precipitation events in summer 2019 led to catastrophic loss of cave and surface ice in SE Europe at levels unprecedented during the last century. The projected continuous warming and increase in precipitation extremes could pose an additional threat to glaciers in southern Europe, resulting in a potentially ice-free SE Europe by the middle of the next decade (2035 CE).
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021, https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
Short summary
In May 2018 we drilled into Kaskawulsh Glacier to study how it is being affected by climate warming and used models to investigate the evolution of the firn since the 1960s. We found that the accumulation zone has experienced increased melting that has refrozen as ice layers and has formed a perennial firn aquifer. These results better inform climate-induced changes on northern glaciers and variables to take into account when estimating glacier mass change using remote-sensing methods.
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021, https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Short summary
Ice loss from Greenland and Antarctica is often cloaked by a mélange of icebergs and sea ice. Here we provide a simple method to parametrize the resulting back stress on the ice flow for large-scale projection models.
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021, https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
Short summary
We present full crystallographic orientations of warm, coarse-grained ice deformed in a shear setting, enabling better characterization of how crystals in glacial ice preferentially align as ice flows. A commonly noted c-axis pattern, with several favored orientations, may result from bias due to overcounting large crystals with complex 3D shapes. A new sample preparation method effectively increases the sample size and reduces bias, resulting in a simpler pattern consistent with the ice flow.
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020, https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary
Short summary
Jakobshavn Isbræ, considered to be Greenland's fastest glacier, has varied its speed and thinned dramatically since the 1990s. Here we examine the glacier's behaviour over the last decade to better understand this behaviour. We find that when the floating ice (mélange) in front of the glacier freezes in place during the winter, it can control the glacier's speed and thinning rate. A recently colder ocean has strengthened this mélange, allowing the glacier to recoup some of its previous losses.
Andreas Köhler, Michał Pętlicki, Pierre-Marie Lefeuvre, Giuseppa Buscaino, Christopher Nuth, and Christian Weidle
The Cryosphere, 13, 3117–3137, https://doi.org/10.5194/tc-13-3117-2019, https://doi.org/10.5194/tc-13-3117-2019, 2019
Short summary
Short summary
Ice loss at the front of glaciers can be observed with high temporal resolution using seismometers. We combine seismic and underwater sound measurements of iceberg calving at Kronebreen, a glacier in Svalbard, with laser scanning of the glacier front. We develop a method to determine calving ice loss directly from seismic and underwater calving signals. This allowed us to quantify the contribution of calving to the total ice loss at the glacier front, which also includes underwater melting.
Akiko Sakai
The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, https://doi.org/10.5194/tc-13-2043-2019, 2019
Short summary
Short summary
The Glacier Area Mapping for Discharge from the Asian Mountains (GAMDAM) glacier inventory was updated to revise the underestimated glacier area in the first version. The total number and area of glaciers are 134 770 and 100 693 ± 11 790 km2 from 453 Landsat images, which were carefully selected for the period from 1990 to 2010, to avoid mountain shadow, cloud cover, and seasonal snow cover.
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Short summary
On debris-covered glaciers, steep ice cliffs experience dramatically enhanced melt compared with the surrounding debris-covered ice. Using field measurements, UAV data and submetre satellite imagery, we estimate the cliff contribution to 2 years of ablation on a debris-covered tongue in Nepal, carefully taking into account ice dynamics. While they occupy only 7 to 8 % of the tongue surface, ice cliffs contributed to 23 to 24 % of the total tongue ablation.
Dorothée Vallot, Jan Åström, Thomas Zwinger, Rickard Pettersson, Alistair Everett, Douglas I. Benn, Adrian Luckman, Ward J. J. van Pelt, Faezeh Nick, and Jack Kohler
The Cryosphere, 12, 609–625, https://doi.org/10.5194/tc-12-609-2018, https://doi.org/10.5194/tc-12-609-2018, 2018
Short summary
Short summary
This paper presents a new perspective on the role of ice dynamics and ocean interaction in glacier calving processes applied to Kronebreen, a tidewater glacier in Svalbard. A global modelling approach includes ice flow modelling, undercutting estimation by a combination of glacier energy balance and plume modelling as well as calving by a discrete particle model. We show that modelling undercutting is necessary and calving is influenced by basal friction velocity and geometry.
Damodar Lamsal, Koji Fujita, and Akiko Sakai
The Cryosphere, 11, 2815–2827, https://doi.org/10.5194/tc-11-2815-2017, https://doi.org/10.5194/tc-11-2815-2017, 2017
Short summary
Short summary
This study presents the geodetic mass balance of Kanchenjunga Glacier, a heavily debris-covered glacier in the easternmost Nepal Himalaya, between 1975 and 2010 using high-resolution DEMs. The rate of elevation change positively correlates with elevation and glacier velocity, and significant surface lowering is observed at supraglacial ponds. A difference in pond density would strongly affect the different geodetic mass balances of the Kanchenjunga and Khumbu glaciers.
Guillaume Jouvet, Yvo Weidmann, Julien Seguinot, Martin Funk, Takahiro Abe, Daiki Sakakibara, Hakime Seddik, and Shin Sugiyama
The Cryosphere, 11, 911–921, https://doi.org/10.5194/tc-11-911-2017, https://doi.org/10.5194/tc-11-911-2017, 2017
Short summary
Short summary
In this study, we combine UAV (unmanned aerial vehicles) images taken over the Bowdoin Glacier, north-western Greenland, and a model describing the viscous motion of ice to track the propagation of crevasses responsible for the collapse of large icebergs at the glacier-ocean front (calving). This new technique allows us to explain the systematic calving pattern observed in spring and summer of 2015 and anticipate a possible rapid retreat in the future.
M. Jeffrey Mei, David M. Holland, Sridhar Anandakrishnan, and Tiantian Zheng
The Cryosphere, 11, 609–618, https://doi.org/10.5194/tc-11-609-2017, https://doi.org/10.5194/tc-11-609-2017, 2017
Short summary
Short summary
We determine a method to locate calving at Helheim Glacier. By using local seismometers, we are able to find the calving location at a much higher precision than previous studies. The signal–onset time differences at four local seismic stations are used to determine possible seismic-wave origins. We present a catalogue of 12 calving events from 2014 to 2015, which shows that calving preferentially happens at the northern end of Helheim Glacier, which will help to constrain models of calving.
Tazio Strozzi, Andreas Kääb, and Thomas Schellenberger
The Cryosphere, 11, 553–566, https://doi.org/10.5194/tc-11-553-2017, https://doi.org/10.5194/tc-11-553-2017, 2017
Short summary
Short summary
The strong atmospheric warming observed since the 1990s in polar regions requires quantifying the contribution to sea level rise of glaciers and ice caps, but for large areas we do not have much information on ice dynamic fluctuations. The recent increase in satellite data opens up new possibilities to monitor ice flow. We observed over Stonebreen on Edgeøya (Svalbard) a strong increase since 2012 in ice surface velocity along with a decrease in volume and an advance in frontal extension.
Owen King, Duncan J. Quincey, Jonathan L. Carrivick, and Ann V. Rowan
The Cryosphere, 11, 407–426, https://doi.org/10.5194/tc-11-407-2017, https://doi.org/10.5194/tc-11-407-2017, 2017
Short summary
Short summary
We used multiple digital elevation models to quantify melt on 32 glaciers in the Everest region of the Himalayas. We examined whether patterns of melt differed depending on whether the glacier terminated on land or in water. We found that glaciers terminating in large lakes had the highest melt rates, but that those terminating in small lakes had comparable melt rates to those terminating on land. We carried out this research because Himalayan people are highly dependent on glacier meltwater.
Torbjørn Ims Østby, Thomas Vikhamar Schuler, Jon Ove Hagen, Regine Hock, Jack Kohler, and Carleen H. Reijmer
The Cryosphere, 11, 191–215, https://doi.org/10.5194/tc-11-191-2017, https://doi.org/10.5194/tc-11-191-2017, 2017
Short summary
Short summary
We present modelled climatic mass balance for all glaciers in Svalbard for the period 1957–2014 at 1 km resolution using a coupled surface energy balance and snowpack model, thereby closing temporal and spatial gaps in direct and geodetic mass balance estimates.
Supporting previous studies, our results indicate increased mass loss over the period.
A detailed analysis of the involved energy fluxes reveals that increased mass loss is caused by atmospheric warming further amplified by feedbacks.
Nicholas E. Barrand, Robert G. Way, Trevor Bell, and Martin J. Sharp
The Cryosphere, 11, 157–168, https://doi.org/10.5194/tc-11-157-2017, https://doi.org/10.5194/tc-11-157-2017, 2017
Short summary
Short summary
This paper provides a comprehensive assessment of the state of small glaciers in the Canadian province of Labrador. These glaciers, the last in continental northeast North America, exist in heavily shaded locations within the remote Torngat Mountains National Park. Fieldwork, and airborne and spaceborne remote-sensing analyses were used to measure regional glacier area changes and individual glacier thinning rates. These results were then linked to trends in prevailing climatic conditions.
Argha Banerjee
The Cryosphere, 11, 133–138, https://doi.org/10.5194/tc-11-133-2017, https://doi.org/10.5194/tc-11-133-2017, 2017
Short summary
Short summary
Measurements of debris-covered and debris-free glaciers in the Himalaya-Karakoram show similar decadal scale thinning, despite a suppression of melt under the debris. Using physical arguments, supported by simulations of 1-D idealised glaciers, we analyse the evolution of thinning rates on both glacier types under a warming climate. The dynamics of the emergence velocity profile control the thinning rate evolution in general and lead to the observed trends in the thinning rate data.
Fangping Yan, Shichang Kang, Chaoliu Li, Yulan Zhang, Xiang Qin, Yang Li, Xiaopeng Zhang, Zhaofu Hu, Pengfei Chen, Xiaofei Li, Bin Qu, and Mika Sillanpää
The Cryosphere, 10, 2611–2621, https://doi.org/10.5194/tc-10-2611-2016, https://doi.org/10.5194/tc-10-2611-2016, 2016
Short summary
Short summary
DOC release of Laohugou Glacier No. 12 was 192 kg km−2 yr−1, of which 43.2 % could be decomposed and return to atmosphere as CO2 within 28 days, producing positive feedback in the warming process and influencing downstream ecosystems. Radiative forcing of snow pit DOC was calculated to be 0.43 W m−2, accounting for about 10 % of the radiative forcing caused by BC. Therefore, DOC is also a light-absorbing agent in glacierized regions, influencing the albedo of glacier surface and glacier melting.
Lindsey I. Nicholson, Michał Pętlicki, Ben Partan, and Shelley MacDonell
The Cryosphere, 10, 1897–1913, https://doi.org/10.5194/tc-10-1897-2016, https://doi.org/10.5194/tc-10-1897-2016, 2016
Short summary
Short summary
An Xbox Kinect sensor was used as a close-range surface scanner to produce the first accurate 3D surface models of spikes of snow and ice (known as penitentes) that develop in cold, dry, sunny conditions. The data collected show how penitentes develop over time and how they affect the surface roughness of a glacier. These surface models are useful inputs to modelling studies of how penitentes alter energy exchanges between the atmosphere and the surface and how this affects meltwater production.
Colleen M. Lynch, Iestyn D. Barr, Donal Mullan, and Alastair Ruffell
The Cryosphere, 10, 1809–1821, https://doi.org/10.5194/tc-10-1809-2016, https://doi.org/10.5194/tc-10-1809-2016, 2016
Short summary
Short summary
Early 21st century changes in the extent of glaciers on Kamchatka were manually mapped from satellite imagery. This revealed 673 glaciers, with a total surface area of 775.7 ± 27.9 km2 in 2000, and 738 glaciers, with a total area of 592.9 ± 20.4 km2 in 2014. This ~24 % decline in glacier surface area is considered to reflect variations in climate (particularly rising summer temperatures), though the response of individual glaciers was likely modulated by other (non-climatic) factors.
Christian Vincent, Patrick Wagnon, Joseph M. Shea, Walter W. Immerzeel, Philip Kraaijenbrink, Dibas Shrestha, Alvaro Soruco, Yves Arnaud, Fanny Brun, Etienne Berthier, and Sonam Futi Sherpa
The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, https://doi.org/10.5194/tc-10-1845-2016, 2016
Short summary
Short summary
Approximately 25 % of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of these glaciers has not been measured directly. From terrestrial photogrammetry and unmanned aerial vehicle (UAV) methods, this study shows that the ablation is strongly reduced by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs.
C. J. van der Veen
The Cryosphere, 10, 1331–1337, https://doi.org/10.5194/tc-10-1331-2016, https://doi.org/10.5194/tc-10-1331-2016, 2016
Short summary
Short summary
This paper evaluates the geometric force balance, with application to Byrd Glacier, Antarctica. It is concluded that this approach does not yield physically reasonable results.
Kjetil S. Aas, Thorben Dunse, Emily Collier, Thomas V. Schuler, Terje K. Berntsen, Jack Kohler, and Bartłomiej Luks
The Cryosphere, 10, 1089–1104, https://doi.org/10.5194/tc-10-1089-2016, https://doi.org/10.5194/tc-10-1089-2016, 2016
Short summary
Short summary
A high-resolution, coupled atmosphere--climatic mass balance (CMB) model is applied to Svalbard for the period 2003 to 2013. The mean CMB during this period is negative but displays large spatial and temporal variations. Comparison with observations on different scales shows a good overall model performance except for one particular glacier, where wind strongly affects the spatial patterns of CMB. The model also shows considerable sensitivity to model resolution, especially on local scales.
Ursula Weiser, Marc Olefs, Wolfgang Schöner, Gernot Weyss, and Bernhard Hynek
The Cryosphere, 10, 775–790, https://doi.org/10.5194/tc-10-775-2016, https://doi.org/10.5194/tc-10-775-2016, 2016
Short summary
Short summary
Geometric effects induced by tilt errors lead to erroneous measurement of snow albedo. These errors are corrected where tilts of sensors and slopes are unknown. Atmospheric parameters are taken from a nearby reference measurement or a radiation model. The developed model is fitted to the measured data to determine tilts and directions which vary daily due to changing atmospheric conditions and snow cover. The results show an obvious under- or overestimation of albedo depending on the slope direction.
M. Chernos, M. Koppes, and R. D. Moore
The Cryosphere, 10, 87–102, https://doi.org/10.5194/tc-10-87-2016, https://doi.org/10.5194/tc-10-87-2016, 2016
Short summary
Short summary
Ice loss from calving and surface melt is estimated at lake-terminating Bridge Glacier, British Columbia, Canada, from 1984 to 2013. Since the glacier's terminus began to float in 1991, calving has accounted for 10-25% of the glacier's total ice loss below the ELA. Overall, calving is a relatively small component of ice loss and is expected to decrease in importance in the future as the glacier retreats onto dry land. Hence, projections of future retreat remain dependent on climatic conditions.
B. Marzeion, P. W. Leclercq, J. G. Cogley, and A. H. Jarosch
The Cryosphere, 9, 2399–2404, https://doi.org/10.5194/tc-9-2399-2015, https://doi.org/10.5194/tc-9-2399-2015, 2015
Short summary
Short summary
We show that estimates of global glacier mass change during the 20th century, obtained from glacier-length-based reconstructions and from a glacier model driven by gridded climate observations are now consistent with each other and also with an estimate for the years 2003-2009 that is mostly based on remotely sensed data. This consistency is found throughout the entire common periods of the respective data sets. Inconsistencies of reconstructions and observations persist on regional scales.
T. Schellenberger, T. Dunse, A. Kääb, J. Kohler, and C. H. Reijmer
The Cryosphere, 9, 2339–2355, https://doi.org/10.5194/tc-9-2339-2015, https://doi.org/10.5194/tc-9-2339-2015, 2015
Short summary
Short summary
Kronebreen and Kongsbreen are among the fastest flowing glaciers on Svalbard, and surface speeds reached up to 3.2m d-1 at Kronebreen in summer 2013 and 2.7m d-1 at Kongsbreen in late autumn 2012 as retrieved from SAR satellite data. Both glaciers retreated significantly during the observation period, Kongsbreen up to 1800m or 2.5km2 and Kronebreen up to 850m or 2.8km2. Both glaciers are important contributors to the total dynamic mass loss from the Svalbard archipelago.
T. Smith, B. Bookhagen, and F. Cannon
The Cryosphere, 9, 1747–1759, https://doi.org/10.5194/tc-9-1747-2015, https://doi.org/10.5194/tc-9-1747-2015, 2015
Short summary
Short summary
We describe and apply a newly developed glacial mapping algorithm which uses spectral, topographic, velocity, and spatial data to quickly and accurately map glacial extents over a wide area. This method maps both clean glacier ice and debris-covered glacier tongues across diverse topographic, land cover, and spectral settings using primarily open-source tools.
C. Papasodoro, E. Berthier, A. Royer, C. Zdanowicz, and A. Langlois
The Cryosphere, 9, 1535–1550, https://doi.org/10.5194/tc-9-1535-2015, https://doi.org/10.5194/tc-9-1535-2015, 2015
Short summary
Short summary
Located at the far south (~62.5° N) of the Canadian Arctic, Grinnell and Terra Nivea Ice Caps are good climate proxies in this scarce data region. Multiple data sets (in situ, airborne and spaceborne) reveal changes in area, elevation and mass over the past 62 years. Ice wastage sharply accelerated during the last decade for both ice caps, as illustrated by the strongly negative mass balance of Terra Nivea over 2007-2014 (-1.77 ± 0.36 m a-1 w.e.). Possible climatic drivers are also discussed.
M. Trachsel and A. Nesje
The Cryosphere, 9, 1401–1414, https://doi.org/10.5194/tc-9-1401-2015, https://doi.org/10.5194/tc-9-1401-2015, 2015
Short summary
Short summary
We employ statistical models to model annual glacier mass balances of eight Scandinavian glaciers as function of summer temperature and winter precipitation.
Relative importances of winter precipitation and summer temperature vary in time.
Relative importances are influenced by AMO and NAO.
T. Abe and M. Furuya
The Cryosphere, 9, 1183–1190, https://doi.org/10.5194/tc-9-1183-2015, https://doi.org/10.5194/tc-9-1183-2015, 2015
Short summary
Short summary
Whereas glacier surge is known to often initiate in winter, we show significant winter speed-up signals in the upstream region even at quiescent surge-type glaciers in Yukon, Canada. Moreover, the winter speed-up region expanded from upstream to downstream. Given the absence of surface meltwater input in winter, we speculate the presence of englacial water storage that does not directly connect to the surface, yet can promote basal sliding through increased water pressure.
J. M. Shea, W. W. Immerzeel, P. Wagnon, C. Vincent, and S. Bajracharya
The Cryosphere, 9, 1105–1128, https://doi.org/10.5194/tc-9-1105-2015, https://doi.org/10.5194/tc-9-1105-2015, 2015
Short summary
Short summary
A glacier mass balance and redistribution model that integrates field observations and downscaled climate fields is developed to examine glacier sensitivity to future climate in the Everest region of Nepal. The modelled sensitivity of glaciers to future climate change is high, and glacier mass loss is sustained through the 21st century for both middle- and high-emission scenarios. Projected temperature increases will expose large glacier areas to melt and reduce snow accumulations.
T. Nuimura, A. Sakai, K. Taniguchi, H. Nagai, D. Lamsal, S. Tsutaki, A. Kozawa, Y. Hoshina, S. Takenaka, S. Omiya, K. Tsunematsu, P. Tshering, and K. Fujita
The Cryosphere, 9, 849–864, https://doi.org/10.5194/tc-9-849-2015, https://doi.org/10.5194/tc-9-849-2015, 2015
Short summary
Short summary
We present a new glacier inventory for high-mountain Asia named “Glacier Area Mapping for Discharge from the Asian Mountains” (GAMDAM). Glacier outlines were delineated manually using 356 Landsat ETM+ scenes in 226 path-row sets from the period 1999–2003, in conjunction with a digital elevation model and high-resolution Google EarthTM imagery. Our GAMDAM Glacier Inventory includes 87,084 glaciers covering a total area of 91,263 ± 13,689 km2 throughout high-mountain Asia.
A. Sakai, T. Nuimura, K. Fujita, S. Takenaka, H. Nagai, and D. Lamsal
The Cryosphere, 9, 865–880, https://doi.org/10.5194/tc-9-865-2015, https://doi.org/10.5194/tc-9-865-2015, 2015
Short summary
Short summary
Among meteorological elements, precipitation has a large spatial variability and less observation, particularly in high-mountain Asia, although precipitation in mountains is an important parameter for hydrological circulation. Based on the GAMDAM glacier inventory, we estimated precipitation contributing to glacier mass at the median elevation of glaciers, which is presumed to be at equilibrium-line altitude, by tuning adjustment parameters of precipitation.
J. Oerlemans and W. J. J. van Pelt
The Cryosphere, 9, 767–779, https://doi.org/10.5194/tc-9-767-2015, https://doi.org/10.5194/tc-9-767-2015, 2015
Short summary
Short summary
Many glaciers on Svalbard are surging glaciers. A surge is a rapid advance of the glacier snout during a few years, followed by a long period of quiescence. During the surge ice flows to lower terrain and experiences higher melt rates in summer. Here we investigate the impact of surging on the long-term effects of climate warming. We have modelled Abrahamsenbreen in northern Spitsbergen as a typical case. We show that surges tend to accelerate glacier retreat when temperature increases.
D. H. Shangguan, T. Bolch, Y. J. Ding, M. Kröhnert, T. Pieczonka, H. U. Wetzel, and S. Y. Liu
The Cryosphere, 9, 703–717, https://doi.org/10.5194/tc-9-703-2015, https://doi.org/10.5194/tc-9-703-2015, 2015
Short summary
Short summary
Glacier velocity, glacier area, surface elevation and mass changes of the Southern and Northern Inylchek Glacier were investigated by using multi-temporal space-borne data sets. The mass balance of both SIG and NIG was negative(-0.43 ± 0.10 m w.e. a-1 and -0.25 ± 0.10 m w.e. a-1) from ~1975 to 2007. The thinning at the lake dam was higher, likely caused by calving into Lake Merzbacher. Thus, glacier thinning and glacier flow are significantly influenced by the lake.
H. Hannesdóttir, H. Björnsson, F. Pálsson, G. Aðalgeirsdóttir, and Sv. Guðmundsson
The Cryosphere, 9, 565–585, https://doi.org/10.5194/tc-9-565-2015, https://doi.org/10.5194/tc-9-565-2015, 2015
A. E. Racoviteanu, Y. Arnaud, M. W. Williams, and W. F. Manley
The Cryosphere, 9, 505–523, https://doi.org/10.5194/tc-9-505-2015, https://doi.org/10.5194/tc-9-505-2015, 2015
Short summary
Short summary
An overall negative glacier surface area change of 0.5±0.2% yr-1 was observed for the eastern Himalaya since 1962 based on remote sensing data. There were higher rates of area loss for clean glaciers (-34%, or -0.7% yr-1) compared to debris-covered glaciers (-14.3% or -0.3 yr-1) on a glacier-by-glacier basis. Patterns of area change are heterogenous and depend on topographic and climatic factors, glacier altitude (maximum, median, altitudinal range), glacier size, slope and aspect.
Cited articles
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and Motyka, R. J.: Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res., 115, F01005, https://doi.org/10.1029/2009JF001405, 2010.
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I., Mouginot, J., Paden, J., Palmer, S., Rignot, E., and Steinhage, D.: A new bed elevation dataset for Greenland, The Cryosphere, 7, 499–510, https://doi.org/10.5194/tc-7-499-2013, 2013.
Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the dynamics of calving glaciers, Earth Sci. Rev., 82, 143–179, https://doi.org/10.1016/j.earscirev.2007.02.002, 2007.
Burgess, E. W., Forster, R. R., Box, J. E., Mosley-Thompson, E., Bromwich, D. H., Bales, R. C., and Smith, L. C.: A spatially calibrated model of annual accumulation rate on the Greenland Ice Sheet (1958–2007), J. Geophys. Res., 115, F02004, https://doi.org/10.1029/2009JF001293, 2010.
Christoffersen, P., Mugford, R. I., Heywood, K. J., Joughin, I., Dowdeswell, J. A., Syvitski, J. P. M., Luckman, A., and Benham, T. J.: Warming of waters in an East Greenland fjord prior to glacier retreat: mechanisms and connection to large-scale atmospheric conditions, The Cryosphere, 5, 701–714, https://doi.org/10.5194/tc-5-701-2011, 2011.
Colgan, W., Pfeffer, W. T., Rajaram, H., Abdalati, W., and Balog, J.: Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020, The Cryosphere, 6, 1395–1409, https://doi.org/10.5194/tc-6-1395-2012, 2012.
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers: Fourth edition, Elsevier, Amsterdam, 72–77, 2010.
Durand, G., Gagliardini, O., Favierm, L., Zwinger, T., and le Meur, E.: Impact of bedrock description on modeling ice sheet dynamics, Geophys. Res. Lett., 38, L20501, https://doi.org/10.1029/2011GL048892, 2011.
Enderlin, E. M. and Howat, I. M.: Submarine melt rate estimates for floating termini of Greenland outlet glaciers (2000–2010), J. Glaciol., 59, 213, https://doi.org/10.3189/2013JoG12J049, 2013.
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., and Bales, R. C.: Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling, Geophys. Res. Lett., 36, L12501, https://doi.org/10.1029/2009GL038110, 2009.
Gudmundsson, G. H., Krug, J., Durand, G., Favier, L., and Gagliardini, O.: The stability of grounding lines on retrograde slopes, The Cryosphere, 6, 1497–1505, https://doi.org/10.5194/tc-6-1497-2012, 2012.
Holland, D. M., Thomas, R. H., de Young, B., Mibergaard, M. H., and Lyberth, B.: Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters, Nature Geosci., 1, 659–664, https://doi.org/10.1038/ngeo316, 2008.
Howat, I. M., Joughin, I., and Scambos, T. A.: Rapid changes in ice discharge from Greenland outlet glaciers, Science, 315, 1559–156, https://doi.org/10.1126/science.1138478, 2007.
Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E., and Scambos, T. A.: Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–2006: ice dynamics and coupling to climate, J. Glaciol., 54, 646–660, 2008.
Howat, I. M., Box, J. E., Ahn, Y., Herrington, A., and McFadden, E. M.: Seasonal variability in the dynamics of marine-terminating outlet glaciers in Greenland, J. Glaciol., 56, 601–613, 2010.
Jamieson, S. S. R., Vieli, A., Livingstone, S. J., Cofaigh, C. Ó., Stokes, C., Hillenbrand, C. D., and Dowdeswell, J. A. : Ice-stream stability on a reverse bed slope, Nature Geosci., 5, 799–802, https://doi.org/10.1038/ngeo1600, 2012.
Joughin, I. and Alley, R. B.: Stability of the West Antarctic ice sheet in a warming world, Nature Geosci., 4, 506–513, https://doi.org/10.1038/ngeo1194, 2011.
Joughin, I., Abdalati, W., and Fahnestock, M.: Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610, 2004.
Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., Wright, W., and Yungel, J.: Rapid thinning of parts of the southern Greenland Ice Sheet, Science, 283, 1522–1524, https://doi.org/10.1126/science.283.5407.1522, 1999.
McFadden, E. M., Howat, I. M., Joughin, I., Smith, B. E., and Ahn, Y.: Changes in the dynamics of marine terminating outlet glaciers in west Greenland (2000-2009), J. Geophys. Res., 116, F02022, https://doi.org/10.1029/2010JF001757, 2011.
Meier, M. F. and Post, A.: Fast tidewater glaciers, J. Geophys. Res., 92, 9051–9058, 1987.
Moon, T. and Joughin, I.: Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007, J. Geophys. Res., 113, F02022, https://doi.org/10.1029/2007JF000927, 2008.
Moon, T., Joughin, I., Smith, B., and Howat, I.: 21st-century evolution of Greenland outlet glacier velocities, Science, 336, 576–578, https://doi.org/10.1126/science.1219985, 2012.
Motyka, R. M., Truffer, M., Fahnestock, M., Mortensen, J., Rysgaard, S., and Howat, I.: Submarine melting of the 1985 Jakobshavn Isbræ floating tongue and the triggering of the current retreat, J. Geophys. Res., 116, F01007, https://doi.org/10.1029/2009JF001632, 2011.
Nick, F. M., Vieli, A., Howat, I. M., and Joughin, I.: Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus, Nature Geosci., 2, 110–114, https://doi.org/10.1038/ngeo394, 2009.
Nick, F. M., van der Veen, C. J., Vieli, A., and Benn, D. I.: A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics, J. Glaciol., 56, 781–794, 2010.
Nick F. M., Luckman A., Vieli, A., van der Veen, C. J., van, As D., van de Waal, R. S. W., Pattyn, F., Hubbard, A. L., and Floricioiu, D.: The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming, J. Glaciol., 58, 229–239, 2012.
Nowicki, S. M. J. and Wingham, D. J.: Conditions for a steady ice sheet-ice shelf junction, Earth Planet. Sci. Lett., 265, 246–255, https://doi.org/10.1016/j.epsl.2007.10.018, 2008.
O'Neel, S., Pfeffer, W. T., Krimmel R., and Meier, M.: Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat, J. Geophys. Res., 110, F03012, https://doi.org/10.1029/2005JF000292, 2005.
Pattyn F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G., Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M., Payne, A. J., Pollard, D., Rybak, O., Saito, F., and Vieli, A.: Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP, The Cryosphere, 6, 573–588, https://doi.org/10.5194/tc-6-573-2012, 2012.
Pfeffer, W. T.: A simple mechanism for irreversible tidewater glacier retreat, J. Geophys. Res., 112, F03S25, https://doi.org/10.1029/2006JF000590, 2007.
Rignot, E. and Steffen, K.: Channelized bottom melting and stability of floating ice shelves, Geophys. Res. Lett., 35, L02503, https://doi.org/10.1029/2007GL031765, 2008.
Rignot, E., Braaten, D., Gogineni, S. P., Krabill, W. B., and McConnell, J. R.: Rapid ice discharge from southeast Greenland glaciers, Geophys. Res. Lett., 31, L10401, https://doi.org/10.1029/2004GL019474, 2004.
Schoof, C.: Ice sheet grounding line dynamics: Steady-states, stability, and hysteresis, J. Geophys. Res., 112, F03S28, https://doi.org/10.1029/2006JF000664, 2007.
Vieli, A. and Nick ,F. M.: Understanding and modelling rapid dynamic changes of tidewater outlet glaciers: Issues and implications, Surv. Geophys., 32, 437–458, 2011.
Vieli, A. and Payne, A. J.: Assessing the ability of numerical ice sheet models to simulate grounding line migration, J. Geophys. Res., 110, F01003, https://doi.org/10.1029/2004JF000202, 2005.
Walsh, K. M., Howat, I. M., Ahn, Y., and Enderlin, E. M.: Changes in the marine-terminating glaciers of central east Greenland, 2000–2010, The Cryosphere, 6, 211–220, https://doi.org/10.5194/tc-6-211-2012, 2012.