Articles | Volume 18, issue 2
https://doi.org/10.5194/tc-18-559-2024
https://doi.org/10.5194/tc-18-559-2024
Research article
 | 
12 Feb 2024
Research article |  | 12 Feb 2024

Snow water equivalent retrieval over Idaho – Part 1: Using Sentinel-1 repeat-pass interferometry

Shadi Oveisgharan, Robert Zinke, Zachary Hoppinen, and Hans Peter Marshall

Related authors

Snow water equivalent retrieval over Idaho – Part 2: Using L-band UAVSAR repeat-pass interferometry
Zachary Hoppinen, Shadi Oveisgharan, Hans-Peter Marshall, Ross Mower, Kelly Elder, and Carrie Vuyovich
The Cryosphere, 18, 575–592, https://doi.org/10.5194/tc-18-575-2024,https://doi.org/10.5194/tc-18-575-2024, 2024
Short summary

Cited articles

Adebisi, N., Marshall, H., Vuyovich, C. M., Elder, K., Hiemstra, C., and Durand, M.: SnowEx20-21 QSI Lidar Snow Depth 0.5m UTM Grid, Version 1, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/VBUN16K365DG, 2022. a
Baduge, A. W. A., Henschel, M. D., Hobbs, S., Buehler, S. A., Ekman, J., and Lehrbass, B.: Seasonal variation of coherence in SAR interferograms in Kiruna, Northern Sweden, Int. J. Remote Sens., 37, 370–387, 2016. a
Barnett, T., Adam, J., and Lettenmaier, D.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005. a
Conde, V., Nico, G., Mateus, P., Catalão, J., Kontu, A., and Gritsevich4, M.: On the estimation of temporal changes of snow water equivalent by spaceborne SAR interferometry: a new application for the Sentinel-1 mission, J. Hydrol. Hydromech., 67, 93–100, 2019. a, b, c, d, e
Cui, Y., Xiong, C., Lemmetyinen, J., Shi, J., Jiang, L., Peng, B., Li, H., Zhao, T., Ji, D., and Hu, T.: Estimating Snow Water Equivalent with Backscattering at X and Ku Band on Absorption Loss, Remote Sens., 8, 505, https://doi.org/10.3390/rs8060505, 2016. a, b, c, d
Short summary
The seasonal snowpack provides water resources to billions of people worldwide. Large-scale mapping of snow water equivalent (SWE) with high resolution is critical for many scientific and economics fields. In this work we used the radar remote sensing interferometric synthetic aperture radar (InSAR) to estimate the SWE change between 2 d. The error in the estimated SWE change is less than 2 cm for in situ stations. Additionally, the retrieved SWE using InSAR is correlated with lidar snow depth. 
Share