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Abstract. Snow water equivalent (SWE) is identified as the
key element of the snowpack that impacts rivers’ streamflow
and water cycle. Both active and passive microwave remote
sensing methods have been used to retrieve SWE, but there
does not currently exist a SWE product that provides use-
ful estimates in mountainous terrain. Active sensors provide
higher-resolution observations, but the suitable radar fre-
quencies and temporal repeat intervals have not been avail-
able until recently. Interferometric synthetic aperture radar
(InSAR) has been shown to have the potential to estimate
SWE change. In this study, we apply this technique to a long
time series of 6 d temporal repeat Sentinel-1 C-band data
from the 2020–2021 winter. The retrievals show statistically
significant correlations both temporally and spatially with in-
dependent in situ measurements of SWE. The SWE change
measurements vary between −5.3 and 9.4 cm over the entire
time series and all the in situ stations. The Pearson correla-
tion and RMSE between retrieved SWE change observations
and in situ stations measurements are 0.8 and 0.93 cm, re-
spectively. The total retrieved SWE in the entire 2020–2021
time series shows an SWE error of less than 2 cm for the
nine in situ stations in the scene. Additionally, the retrieved
SWE using Sentinel-1 data is well correlated with lidar snow
depth data, with correlation of more than 0.47. Low temporal
coherence is identified as the main reason for degrading the
performance of SWE retrieval using InSAR data. We also
show that the performance of the phase unwrapping algo-
rithm degrades in regions with low temporal coherence. A
higher frequency such as L-band improves the temporal co-
herence and SWE ambiguity. SWE retrieval using C-band
Sentinel-1 data is shown to be successful, but faster revisit
is required to avoid low temporal coherence. Global SWE

retrieval using radar interferometry will have a great oppor-
tunity with the upcoming L-band 12 d repeat-pass NASA-
ISRO Synthetic Aperture Radar (NISAR) data and the fu-
ture 6 d repeat-pass Radar Observing System for Europe in
L-band (ROSE-L) data.

Copyright statement. © 2024 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

The seasonal snowpack provides water resources to billions
of people worldwide (Barnett et al., 2005). Snow is the pri-
mary source of water for river channel discharge in middle-
to-high-latitude areas. Therefore, snow mass and snow cover
has a great impact on global and regional water cycles.
Large-scale mapping of snow water equivalent (SWE) with
high resolution is critical for many scientific and economics
fields. SWE is defined as the depth of water which would be
obtained if all ice contained in the snowpack were melted.
NASA SnowEx is a multi-year effort to improve SWE and
snow surface energy balance measurements and estimates.
SWE has been identified as the key variable for terrestrial
snow by the SnowEx campaign and NASA’s decadal survey.

Estimating SWE on a global scale with enough accuracy
and resolution is still a challenge. Passive spaceborne sensors
based on the microwave emission of the snowpack (Takala
et al., 2011; Kelly et al., 2003; Pulliainen and Hallikainen,
2001; Kelly, 2009) have a coarse spatial resolution on the
10 km scale. The technique saturates for SWE deeper than
150 mm, which makes their application in the mountains
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challenging. Nevertheless, passive microwave sensors repre-
sent the current state of the art of SWE retrieval methods.
These sensors are applied operationally to generate daily es-
timates of SWE globally (Takala et al., 2011; Kelly et al.,
2003); however, many products such as GlobSnow mask out
mountainous areas, due to the saturation limit and resolution.

Airborne lidar has been successful in estimating snow
depth (Painter et al., 2016). However, clouds and limited re-
gional coverage are limiting factors for this method. This
technique also needs a snow-density model to estimate SWE
from the lidar snow depth, and there currently is not a path to
space for global snow depth mapping at the temporal resolu-
tion required.

Active microwave sensors provide high-resolution
and global coverage. There have been many efforts in
the last 2 decades trying to estimate SWE or snow depth
using active sensors mounted on a tower (Cui et al., 2016;
Lemmetyinen et al., 2018; Ruiz et al., 2022; Leinss et al.,
2015), airborne (Marshall et al., 2021; Nagler et al., 2022),
or spaceborne systems (Lievens et al., 2019; Liu et al., 2017;
Conde et al., 2019; Dagurova et al., 2020; Eppler et al.,
2022). Backscattered power from active sensors is used to
estimate SWE (Rott et al., 2010; Ulaby and Stiles, 1980; Cui
et al., 2016; Nghiem and Tsai, 2001; Lievens et al., 2019).
A dual-band (X and Ku) SAR mission has been the focus
of the European Space Agency (ESA) and Canadian Space
Agency (CSA) for SWE spaceborne measurements (Rott
et al., 2010; Lemmetyinen et al., 2018). However, accurate a
priori characterization of snow micro-structural parameters
is of primary importance in the accuracy of SWE retrieval
algorithms using backscattered power (Lemmetyinen et al.,
2018; Durand and Liu, 2012; Cui et al., 2016). The most
common a priori characterization used for SWE retrieval
algorithms using backscattered power is grain radius.
This has been done using passive data; however, the methods
are limited by passive retrieval errors and also mismatch
between active and passive resolutions. The ratio of cross-
polarized to co-polarized Sentinel-1 backscattered power
has been used to estimate snow depth over mountainous
regions with deep snow (Lievens et al., 2019, 2022). Using
Sentinel-1 backscattered power ratio is a unique approach
showing the success of snow depth retrieval using the space-
borne radar time series data. However, the retrieval mostly
works for deep snow in mountainous regions. The radiative
transfer physics at C-band for this method are still poorly
understood. The co-polar phase difference (CPD) between
VV and HH polarization of X-band SAR acquisitions is used
for estimating the depth of fresh snow (Leinss et al., 2014).

Lightweight and portable frequency-modulated
continuous-wave (FMCW) radar systems have been
used to map snowpack properties (such as depth, SWE,
and stratigraphy) rapidly over large distances and at high
resolution (Marshall and Koh, 2008). The system was
normally deployed nadir looking and was a real aperture
radar system. The resolution of FMCW system for SWE

application is in centimeter scale. In order to achieve such
high resolution, the bandwidth should be in gigahertz scale.
Due to limitation on frequency bandwidth allocation of a
spaceborne active sensor (Tao et al., 2019), FMCW systems
cannot be used in spaceborne missions for global coverage
due to their wide bandwidth.

The phase change of specularly reflected signals in sig-
nals of opportunity (SoOp) is shown to be strongly depen-
dent on SWE changes for dry snow (Yueh et al., 2017, 2021;
Shah et al., 2017). The theory behind using SoOp for SWE
retrieval is similar to repeat-pass interferometry that is ex-
plained in Sect. 2. The advantage of this method is that
the stratigraphy of the snow has little impact on the SWE re-
trieval (Leinss et al., 2015; Yueh et al., 2017), similar to SWE
retrieval explained in Sect. 2. Using the long wavelength sig-
nal at P-band in SoOp is very helpful for addressing the loss
of temporal coherence and phase unwrapping challenges of
this method. However, the phase sensitivity to SWE changes
decreases at lower frequencies. There have been very limited
data showing the success of this method at P-band. Achiev-
ing high resolution for SoOp data is another challenge (Yueh
et al., 2017, 2021; Shah et al., 2017).

As explained in detail in next section, the phase difference
between two SAR observations is proportional to changes
in SWE variation (1SWE). We evaluated the performance
of SWE retrieval using interferometry over Idaho. In Part 1
of this study (the current paper), we used Sentinel-1 inter-
ferometric time series data over Idaho. In Part 2 (Hoppinen
et al., 2024), we use Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) interferometric time series data
over Idaho to evaluate the performance of this method. We
explain SWE estimation using repeat-pass interferometry in
Sect. 2. The details about different data sets used in this study
are discussed in Sect. 3. Section 4 describes how we pro-
cessed Sentinel-1 data and convert them to SWE. The re-
trieved SWE is compared with in situ and lidar data in Sect. 5.
This work shows the success of SWE retrieval using long-
time-series spaceborne InSAR data in winter 2021.

2 Using differential interferometry to estimate SWE

Differential SAR interferometry measurements have been
used to detect small surface elevation changes over large ar-
eas with a vertical accuracy of a few millimeters (Gabriel
et al., 1989; Zebker et al., 1994). The measured phase differ-
ence is proportional and sensitive to changes in SWE vari-
ation (1SWE) during the snow season (Guneriussen et al.,
2001; H. Rott and Scheiber, 2003; Deeb et al., 2011; Leinss
et al., 2015; Conde et al., 2019; Liu et al., 2017; Hui et al.,
2016; Nagler et al., 2022; Eppler et al., 2022; Dagurova et al.,
2020; Marshall et al., 2021). The main advantage of this
method is its simplicity and a reduction in necessary a pri-
ori information.
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The snow volume scattering affects the interferometric
phase for very deep snow in Greenland at relatively high fre-
quencies such as C-band (Oveisgharan and Zebker, 2007).
However, for the terrestrial snow, the effect of volume scat-
tering of dry snow on the interferometric phase is very small
compared to scattering from the ground at high frequencies.
The snow refractive index delays the echo received from the
ground. The signal delay caused by refraction can be mea-
sured with differential radar interferometry as (Guneriussen
et al., 2001; Leinss et al., 2015)

1φ =−2κi(cosθ −
√
ε− sin2θ)1d, (1)

where 1φ,κi,1d,θ , and ε are the interferometric phase be-
tween two observation dates, incidence wavenumber, snow
depth change, incidence angle, and permittivity of the snow,
respectively. The change in the interferometric phase is used
to calculate 1SWE (Leinss et al., 2015; Conde et al., 2019;
Liu et al., 2017; Nagler et al., 2022). Similar to the dual-
polarization, dual-frequency retrieval algorithm (Lemmetyi-
nen et al., 2018; Cui et al., 2016), this technique relies on
the dryness of snow in order to penetrate all the way to
the ground so that the scattering from the snow layers and
snow volume is minimized compared to the snow–ground re-
turn (Oveisgharan et al., 2020).

Using Envisat interferometric data to estimate SWE was
not very successful mainly due to the large temporal base-
line and, hence, low temporal coherence (Hui et al., 2016).
A modified version of SWE estimation using InSAR is also
introduced (Eppler et al., 2022; Dagurova et al., 2020). The
backscattering from the roughness in the ground and snow
layers is combined with the interferometric phase to im-
prove the accuracy (Dagurova et al., 2020). The sensitivity of
the dry-snow refraction-induced InSAR phase to topographic
variations is used to bypass the unwrapping problem (Eppler
et al., 2022). Airborne data collected over the Austrian Alps
in 2021 showed good agreement between retrieved SWE us-
ing InSAR and mean in situ SWE. Root mean square differ-
ences of 4.0 mm for a small snowstorm of 14 mm snow depth
at C-band and 11.2 mm for a big snowstorm of 66 mm at L-
band were observed (Nagler et al., 2022). The correlation of
0.76 was observed between the retrieved SWE change using
L-band UAVSAR differential interferometry between 1 and
13 February 2020 and the collected lidar snow depth change
between 1 and 12 February 2020 over the open regions of
Grand Mesa in dry-snow conditions (Marshall et al., 2021).
SWE retrieval using Sentinel-1 interferometric data showed
a mean accuracy of 6 mm over Finland for just two passes
(Conde et al., 2019).

All these studies have proven the potential of this method
but were limited in time or space for data collection or valida-
tion. In this study, we show the performance of SWE retrieval
using a long time series of Sentinel-1 interferometric data in
winter 2021. This study shows that SWE estimation using
repeat-pass interferometry works well by validating the re-

trieved value with a large number of in situ stations and two
regional lidar snow depth maps.

With the recent SnowEx 2020 campaign using UAVSAR
L-band differential interferometry data, Sentinel-1 C-band
differential interferometry, and future NASA-ISRO SAR
(NISAR) L-band data, there will be more advances in
the limitations and capabilities of this method.

2.1 Temporal coherence

The received radar signals at two different times will be cor-
related with each other if the set of scatterers in the resolution
cell remain the same. However, the movement of the scatter-
ers such as leaves and branches or sea ice particles decreases
the temporal coherence (Zebker and Villasenor, 1992; Kell-
ndorfer et al., 2022; Lavalle et al., 2012). The loss of coher-
ence between the observations is one of the main limitations
for SWE retrieval using differential interferometry. Methods
such as using two frequencies or shorter revisit time are used
to overcome these problems (Deeb et al., 2011; Leinss et al.,
2015). Melting and wind are the main reasons for low tem-
poral coherence in snow (Leinss et al., 2015; Luzi et al.,
2009). A medium mean temporal coherence of 0.41 is ob-
served at L-band between two winter seasons in shrub-lands
with 10.2 cm average snow depth (Molan et al., 2018). Tem-
poral coherence decreases with increasing frequency (Leinss
et al., 2015; Nagler et al., 2022; Kellndorfer et al., 2022; Ruiz
et al., 2022). A median temporal coherence of about 0.5 is
observed at 10.2 and 16.8 GHz even after 60 d (Leinss et al.,
2015). However, the spaceborne TerraSAR-X temporal co-
herence over snow at 9.65 GHz is reduced significantly in
11 d (Leinss et al., 2015). This is probably due to random
phase drifts over time that cannot be estimated and corrected
in a spaceborne system compared to a ground radar. Vege-
tation cover decreases the temporal coherence significantly
at high frequencies (Baduge et al., 2016; Kellndorfer et al.,
2022; Ruiz et al., 2022). A tower-based fully polarimetric
InSAR studied the effect of air temperature, precipitation in-
tensity, and wind on the temporal decorrelation at L-, S-, C-,
and X-bands (Ruiz et al., 2022). The temperature was shown
to be the most critical variable affecting the temporal coher-
ence among other variables. Temperature above 0 ◦C reduced
the temporal coherence drastically (Ruiz et al., 2022). On
the other hand, snow cover has a thermal insulation effect
on the ground and underlaying layers (Gu et al., 2019). The
insulation increases with the snow depth. Therefore, during
the snow season we assume the ground remains frozen even
when snow becomes wet. Hence, temporal decoherence from
the ground is negligible. SWE accumulation retrieval was
successful for short temporal baselines and low frequencies
in non-vegetated areas. However, the error increased for high
frequencies and long temporal baselines. The SWE profile
retrieval using C-band data performs well using 12 h and 1 d
repeat-pass data. The retrieval is poor using the 12 d repeat-
pass data at C-band (Ruiz et al., 2022). The 6 d repeat-pass C-
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band data showed good performance for small SWE changes
but poor performance for large SWE changes between the
interferometric pairs due to phase ambiguity caused by large
SWE change (Ruiz et al., 2022). The low temporal coherence
and low penetration depth at frequencies higher than 10 GHz
make L- and C-band desirable frequencies for differential in-
terferometry.

2.2 Relationship between 1SWE and 1φ

With some approximation to Eq. (1), Leinss et al. (2015)
showed a linear relationship between the interferometric
phase and SWE change. The approximation is limited to a
smaller range of incidence angle than Sentinel-1 incidence
angle. However, Leinss et al. (2015) approximation applies
to a wide range of snow density up to solid ice density.
Due to the wide range of Sentinel-1 incidence angle in a
frame, we tried to make a more accurate approximation for
a wider range of incidence angles and snow densities lim-
ited to terrestrial snow. The snow permittivity in Eq. (1) is
dependent on snow density, ρ (g cm−3), and relatively inde-
pendent of signal wavelength. Following Leinss et al. (2015),
we use Mätzler’s model (Mätzler, 1987) for calculating ε in
Eq. (1) (ε(ρ)= 1+ 1.5995ρ+ 1.861ρ3 for ρ < 0.4 g cm−3;
and ε(ρ)= ((1− ρ

0.917 )+1.4759 ρ
0.917 )

3 for ρ>=0.4 g cm−3).
We can rewrite Eq. (1) as

1φ =−2κiC(θ,ρ)
ρwater

ρ
1SWE, (2)

where C(θ,ρ)= cosθ −
√
ε(ρ)− sin2θ . Note that ε(ρ) and

consequently C(θ,ρ) are unitless, ρwater = 1 g cm−3,1SWE
is in meters (m), and κi is in per meter (m−1).

The blue and red lines in Fig. 1a show C(θ,ρ) versus
snow density for incidence angles equal to 0 and 70◦, re-
spectively. As seen in this figure, there is approximately a
linear relationship between C and snow density. We fit a line
to C for different incidence angles as Ĉ(θ,ρ)= A(θ)×ρ for
0.15≤ ρ ≤ 0.5 g cm−3. The blue and red dashed lines show
Ĉ(θ,ρ) at incidence angles equal to 0 and 70, respectively.
As seen in Fig. 1a, the fitted line with zero intercept is a good
approximation. The zero intercept approximation is essen-
tial to retrieve 1SWE independent of snow density. The in-
cidence angle mostly lies between 0 and 80 for Sentinel-1
data. The terrestrial snow density lies mostly between 0.15
and 0.5 g cm−3. Therefore, we limit ourselves to incidence
angle between 0 and 80 and snow density between 0.15 and
0.45 g cm−3 in fitting a line to C. Solid blue line in Fig. 1b
shows A(θ) versus incidence angle. By fitting a polynomial
to A, we can write it as

Â=−0.6784θ2
+ 0.2899θ − 0.8473. (3)

The dashed blue line in Fig. 1b shows the fitted curve, Â(θ).
We can rewrite Eq. (1) as

1φ =−2κi(−0.6784θ2
+ 0.2899θ − 0.8473)1̂SWE. (4)

Figure 1c shows the 1SWE−1̂SWE
1SWE × 100 versus incidence

angle for different snow densities. As seen in this figure,
the error in 1SWE calculation using the approximation in
Eq. (4) is less than 10 % for incidence angles less than 70. We
use Eq. (4) for estimating 1SWE using the interferometric
phase, 1φ, for the rest of this study. Using one equation for
the entire Sentinel-1 frame makes the interferometric phase
conversion to 1SWE very convenient. However, we need to
keep in mind that the approximation for lower-density snow
has more than 10 % error for an incidence angle larger than
70.

3 Data sets

3.1 Sentinel-1

The Sentinel-1 radar operates at C-band at a central fre-
quency of 5.405 GHz. It has four exclusive imaging modes
with different resolutions (down to 5 m) and swath width
up to 400 km. Sentinel-1 has dual-polarization capability and
rapid product delivery. The Sentinel-1 constellation includes
Sentinel-1A and Sentinel-1B. These two satellites are in the
same orbit, with a 180◦ orbital phasing difference. The revisit
time for each of the satellites is 12 d. However, revisit time
can get to 6 d if both satellites make observations. The data
are free and available through the Alaska SAR Facility (ASF)
or the Copernicus Data Hub distribution service. We used the
Interferometric Wide (IW) swath mode data with 5 and 20 m
single-look resolution in the range and azimuth direction, re-
spectively. The IW swath width is about 250 km. We used
ASF on-demand processing to generate the interferometric
phase and coherence at vv and vh (transmit-received polar-
ization) polarization. The Alaska Satellite Facility’s Hybrid
Pluggable Processing Pipeline (HyP3) is a service for pro-
cessing synthetic aperture radar (SAR) imagery (Hogenson
et al., 2020). The workflow includes interferometric phase
correction for ground topography and geolocation. The ASF
HyP3 uses a minimum cost flow (MCF) algorithm for phase
unwrapping. The unwrapped phase and interferometric co-
herence were used in this study. The resolution of the HyP3
phase and coherence is 80 m× 80 m. Sentinel-1 collects data
every 12 d globally but has the capability to collect the data
every 6 d over targeted areas, mainly over Europe and se-
lected areas such as SnowEx sites. In order to validate our
SWE retrieval using Sentinel-1 data, we use lidar data from
the SnowEx campaign and SNOwpack TELemetry Network
(SNOTEL) data as discussed in Sect. 5. We also use the aver-
age of SNOTEL data as a reference point for SWE retrieval,
as seen in Sect. 4.

The NASA SnowEx 2021 time series is the continuation
of the multi-year effort to improve SWE measurements and
estimates. The data acquisition for different sensors and in
situ collections spread over different US sites in winter 2020.
These sites span a range of snow climates and conditions, el-
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Figure 1. (a) C(θ,ρ) versus snow density for θ = 0 and θ = 70 shown by solid blue and red lines, respectively. The blue and red dashed lines
show the linear fit to C(θ,ρ) with zero intercept Ĉ(θ,ρ). (b) The line slope in panel (a) versus incidence angle. The dashed line shows the

fitted polynomial, Â. (c) 1SWE error percentage (1SWE−1̂SWE
1SWE × 100), assuming Ĉ = Âρ versus incidence angle for snow density equal

to 0.15, 0.3, and 0.45 g cm−3, shown by blue, red, and yellow lines, respectively.

Figure 2. © Google Earth View. (a) Google Earth View of Sentinel-1 path 71, frame 444, in Idaho. (b) Zoomed to the Sentinel-1 path 71,
frame 444, shown by the big green rectangle. Red boxes show the location of lidar data acquisition. The green diamonds show SNOTEL
stations with an 1SWE error of less than 2 cm in the entire time series. The red diamonds show SNOTEL stations with an 1SWE error of
more than 2 cm in at least one observation in the time series. Yellow squares are SNOTEL stations 1 and 11 used are a reference point. Blue
diamonds show the location of stations with temporal coherence less than 0.35 or temperature more than 0 ◦C in the entire time series.

evations, aspects, and vegetation. Flight paths were designed
to include sites with ongoing snow research projects, exist-
ing ground-based remote sensing infrastructure (e.g., radar
and lidar), snow-off and planned snow-on aerial lidar, and
scheduled ground snow measurement. The 2021 time series
data set covers fewer regional sites and more frequent tempo-
ral sampling compared to the 2020 campaign. The SnowEx
campaign coordinated with the Sentinel-1 team to observe
some of the SnowEx sites with 6 d revisit during the winter,
which included the Idaho SnowEx sites.

Figure 2a shows one of these sites that was observed every
6 d with Sentinel-1 over Idaho. The green frame shows the
geographic location of path 71, frame 444, of Sentinel-1 data.
Figure 2b is zoomed to the Sentinel-1 frame in panel (a).

3.2 SNOTEL

SNOwpack TELemetry Network (SNOTEL) sites are lo-
cated in remote, high-elevation mountainous regions in the
western US. They automatically measure different snow-
pack characteristics and climate conditions. We used the
United States Department of Agriculture (USDA) website to
access hourly SNOTEL data (https://wcc.sc.egov.usda.gov/
nwcc/inventory, last access: August 2023) over the region of
interest shown in Fig. 2b. As the Sentinel-1 frame in Idaho
is collected at around 06:00 local time, we downloaded the
SWE, snow depth, and near-surface air temperature at 06:00
for each of the SNOTEL stations. Small red, green, and blue
diamonds in Fig. 2b show the SNOTEL locations in the
Sentinel-1 frame. Figure 3a shows the time series SWE of
these SNOTEL sites starting from 1 December 2020 at 06:00.
Different colors show different SNOTEL stations. The eleva-
tion of these stations varies between 975 and 2902 m. There-
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fore, the large spread of SWE between different stations in
Fig. 3a is expected. The dashed vertical lines are the start
date of each 6 d repeat Sentinel-1 data. As seen in this figure,
there is a 6 d repeat data acquisition gap in Sentinel-1 data
on 5 February 2021. Figure 3b shows the mean ± standard
deviation (SD) of SNOTEL 1SWE between the start date
Sentinel-1 data in Fig. 3a and 6 d later. We used the SWE
data from these in situ stations for (a) SWE retrieval valida-
tion by comparing retrieved 1SWE with SNOTEL 1SWE
(as seen in Sect. 5.1) and (b) the InSAR reference point by
subtracting the average of two SNOTEL1SWE from the re-
trieved 1SWE (as explained in Sect. 4).

3.3 QSI lidar

Airborne lidar provides high-resolution snow depth maps.
These data are reliable sources of validation data and a par-
ticularly powerful constraint for InSAR retrieval of SWE. We
used the lidar data for validating the retrieved SWE results.
The “SnowEx20-21 QSI Lidar DEM 0.5m” data set is part
of the SnowEx 2020 and SnowEx 2021 campaigns (Adebisi
et al., 2022). The data include digital elevation models, snow
depth, and vegetation height with 0.5 m spatial resolution.
Data were acquired over multiple areas in Colorado, Idaho,
and Utah during February 2020, March 2021, and Septem-
ber 2021. The two red boxes in Fig. 2b show the location
of lidar data acquisition. The big purple box is over Banner
Summit and the small red box is over Mores Creek in Idaho.
Figures 10a and 11a show the QSI snow depth over Banner
Summit and Mores Creek, respectively. We used these data
in Sect. 5.2 to compare with retrieved SWE using Sentinel-1
data.

4 SWE retrieval using the Sentinel-1 interferometric
phase

As mentioned in Sect. 3.1, Sentinel-1 data were collected ev-
ery 6 d over the region shown in Fig. 2b during 2020 and
2021, following coordination between the SnowEx campaign
and the Sentinel-1 team. We used 6 d repeat Sentinel-1 time
series data between 1 December 2020 and 30 March 2021.
We selected this period to (a) capture most of the seasonal
snowstorm and (b) avoid wet snow as much as possible. The
main sources of error in the science and applications using
Sentinel-1 repeat-pass interferometry are (1) tropospheric
noise, (2) temporal decorrelation, and (3) phase ambiguity.
We removed tropospheric noise from the unwrapped phase
as explained in Sect. 4.1. The unwrapped phase is converted
to 1SWE using Eq. (4). Temporal decorrelation is relatively
high at C-band. The 6 d repeat time improves the temporal
coherence significantly over snow compared to the normal
12 d Sentinel-1 repeat time. In this study, any pixel with tem-
poral coherence more than 0.35 is considered reliable. Tem-
poral coherence of 0.35 is arbitrary, but based on experience

working with InSAR data, it is a reasonable threshold num-
ber. However, for the results in Sect. 5.2, we used all the time
series data, including the data with low coherence, to calcu-
late total SWE. The reason is that in order to compare the
total SWE on a date close to the lidar acquisition date, we
need the whole 1SWE time series up to that date.

Phase ambiguity is still one of the big sources of error in
some of our data as discussed in Sect. 5.1.2. The radar signal
propagating through the ionosphere is delayed. The delay is
a function of frequency of the signal, Earth’s magnetic field,
and total electron content (TEC) and affects the accuracy of
the1SWE retrieval. The ionospheric error at C-band is much
smaller than other sources of error, and we consider it negli-
gible in this study.

The temperature is also an important factor. Equation (1)
is valid for dry snow (Leinss et al., 2015), and we use near-
surface air temperature above 0 ◦C as a metric that indicates
wet snow in the snow season. Any retrieved SWE with SNO-
TEL near-surface air temperature more than 0 ◦C is unreli-
able in our study. Similar to coherence filtering, for the re-
sults in Sect. 5.2, we used all the time series data, including
the data with temperature more than 0 ◦C. Similar to tempo-
ral coherence, the reason is that in order to compare the total
SWE with lidar snow depth on the lidar acquisition date, we
need the entire 1SWE time series up to that date.

Another important factor in interferometric phase images
is the reference point to calibrate the unwrapped phase or
consequently 1SWE. In geophysics applications using In-
SAR, the reference point is a stable target with no displace-
ment or known displacement in the time interval between ac-
quisition of the two images. For 1SWE estimation using In-
SAR, the reference point is chosen either by corner reflectors
(cleaned of snow) with stable zero phase (Nagler et al., 2022;
Dagurova et al., 2020) or using the average of in situ 1SWE
(Conde et al., 2019) or using a snow-free region (Tarricone
et al., 2023). As seen in Fig. 2b, there are a large number of in
situ stations in this frame. In this study, we used the average
of two in situ1SWE values to calibrate the retrieved1SWE
images. The two selected in situ stations have reliable mea-
surements (coherence more than 0.35 and temperature less
than 0 ◦C) for the entire time series. For the rest of this study
we used in situ stations 1 and 11 1SWE values to calibrate
the retrieved 1SWE. Stations 1 and 11 are shown by yellow
squares in Fig. 2b.

Figure 4a, b, and c show retrieved 1SWE between 1 and
7 December 2020, 13 and 19 December 2020, and 24 and
30 January 2021, respectively. The small diamonds show the
location of in situ stations in this Sentinel-1 frame. The av-
erages of in situ 1SWE for Fig. 4a, b, and c are 0.01, 2.72,
and 4.33 cm, respectively. The retrieved 1SWE images in
the top row of Fig. 4 show no SWE change in panel (a) and
snowstorms in panels (b) and (c), which match the in situ
measurements.

The bottom row of Fig. 4 shows the coherence of the im-
ages in the top row of Fig. 4. Interferometric decorrelation
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Figure 3. (a) The daily SWE (cm) of in situ stations shown in Fig. 2b from 1 December 2020 to 30 March 2021. The dashed vertical lines
show the start date of Sentinel-1 observations. (b) The mean ± SD of in situ 1SWE for Sentinel-1 observation dates shown in panel (a).
Note that the 1SWE is marked on the first day of each observation.

Figure 4. Retrieved 1SWE using Sentinel-1 path 71, frame 444, interferometric phase data between (a) 1 and 7 December 2020, (b) 13
and 19 December 2020, and (c) 24 and 30 January 2021. Sentinel-1 path 71, frame 444, coherence between (d) 1 and 7 December 2020
(observation 1), (e) 13 and 19 December 2020 (observation 3), and (f) 24 and 30 January 2021 (observation 10). The small diamonds are in
situ locations. The averages of in situ 1SWE for panels (a), (b), and (c) are 0.01, 2.72, and 4.33 cm, respectively.

has different sources, such as temporal decorrelation, vol-
ume decorrelation, signal to noise ratio decorrelation, and
geometric decorrelation, among others. The volume decor-
relation is negligible due to the relatively small Sentinel-1
perpendicular baseline. Temporal decorrelation is the dom-
inant source of decorrelation. For the rest of this study, we
assume the observed interferometric decorrelation is approx-
imately the temporal coherence. As shown in Fig. 4e and f,
snowstorms reduce the coherence significantly, whereas no
SWE change shows a very small decorrelation, as expected.

4.1 Tropospheric noise removal

A radio wave’s differential phase delay variation through the
troposphere is one of the largest error sources in interfero-
metric synthetic aperture radar (InSAR) measurements, and
water vapor variability in the troposphere is known to be the
dominant factor. The differential delay present in a given
interferogram may reach tens of centimeters. Various ways
of mitigating tropospheric effects are routinely employed.
Here, we used a global atmospheric weather model to predict
the radar phase delay due to variations in atmospheric pres-
sure and water vapor content between passes. Specifically,
we used the European Center for Medium-Range Weather
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Forecasts (ECMWF) ERA5 model of atmospheric variables,
which provides hourly estimates on a 30 km global grid
based on assimilation of surface and satellite meteorological
data. We used the Python-based Atmospheric Phase Screen
(PyAPS) software (Jolivet et al., 2011) to interpolate this grid
and convert those variables into a radar phase delay. PyAPS
is integrated into, and leveraged by, the Miami InSAR Time-
series software in Python (MintPy) (Yunjun et al., 2019). We
used MintPy to crop the atmospheric delays to match the
spatial extent of the interferograms and projected the delays
into radar line of sight (LOS). It should be noted that while
the ERA weather models often provide a reliable method
for representing atmospheric phenomena at > 30 km wave-
lengths (grid spacing), they are less accurate at finer spatial
scales, where atmospheric conditions can vary as a function
of topography. Model interpolation between grid nodes as a
function of elevation were performed; however, some over-
smoothing of atmospheric variations might still occur. More
work is necessary to better determine the overall effective-
ness of atmospheric phase removal, including whether tro-
pospheric delay is completely mitigated or overcorrected and
on what spatial scales.

Figure 5 shows an example of how significant tropo-
spheric noise can be in an InSAR image. Figure 5a shows
the line-of-sight displacement with no atmospheric correc-
tion over our area of interest in Fig. 2b between 13 and
19 March2021. Figure 5b shows the atmospheric noise esti-
mation using PyAPS. Figure 5c shows LOS displacement af-
ter tropospheric noise removal by subtracting panel (b) from
panel (a). Comparing Fig. 5a and c, we can see that the at-
mospheric noise can affect the estimated 1SWE by 5–10 cm
(LOS displacement error converted to 1SWE) in the upper
left of the images.

5 Results and discussions

In this section we compare retrieved SWE using the Sentinel-
1 interferometric phase with in situ stations and lidar data.

5.1 Comparing retrieved SWE using Sentinel-1 and
SNOTEL SWE

5.1.1 Comparing retrieved 1SWE using Sentinel-1 and
SNOTEL 1SWE

We used all the retrieved 1SWE (using the Sentinel-1 data
from 1 December 2020 to 30 March 2021) for in situ sta-
tions shown in Fig. 2b and compared them with correspond-
ing SNOTEL 1SWE. As mentioned in Sect. 4, any retrieved
value with temporal coherence less than 0.35 and tempera-
ture higher than 0 ◦C is discarded. Note that the data shown
in Fig. 6 are the SWE change between two consecutive
Sentinel-1 data that are 6 d apart. We showed the 1SWE for
all stations and all consecutive observations between 11 De-
cember 2020 and 30 March 2021. As mentioned in Sect. 3.1,

the resolution of the Sentinel-1 InSAR data from HyP3 is
80 m× 80 m. We used a 10× 10 multi-look window of re-
trieved SWE and temporal coherence around the SNOTEL
locations to reduce the speckle noise. Therefore, we com-
pared the SNOTEL SWE with the 800 m× 800 m retrieved
SWE around the SNOTEL site. The heterogeneity of the en-
vironment such as vegetation cover, vegetation fraction, land
type, and SWE distribution in the 800 m× 800 m around the
SNOTEL station affects our accuracy. We will analyze the ef-
fect of the heterogeneity of the environment on the SWE re-
trieval for SNOTEL stations in the future work of this study.

Figure 6a compares all the retrieved 1SWE time series
using Sentinel-1 data over all in situ stations with SNO-
TEL 1SWE. As seen in this figure, the retrieved and in
situ 1SWE are highly correlated (0.8), with an RMSE of
0.93 cm.

Figure 6b shows the correlation and RMSE between the
entire time series of retrieved and in situ 1SWE for each
station, with blue and red circles respectively. As seen in
this figure, the correlation is good (more than 0.6 for all sta-
tions except three). The RMSE is less than 2 cm for all sta-
tions and less than 1 cm for most stations. Note that station 4
has just one observation with temporal coherence more than
0.35. That observation is the first observation with zero SWE
change. Therefore, there are not enough points to calculate
ρi . Hence, the RMSE and correlation are zero.

Figure 6c shows the correlation and RMSE between the in
situ stations and retrieved 1SWE for each Sentinel-1 acqui-
sition first date, with blue and red circles respectively. Note
that the labels on the x axis show the first date of each in-
terferometric observation. The RMSE is again less than 2 cm
for all dates and less than 1 cm for many dates. As seen in
this figure, the correlation is more than 0.4 for some dates
and poor (less than 0.4) for some others. Among the obser-
vation dates with a correlation of less than 0.35 (observa-
tion 1, 2, 4, 7, 9, 15, 16, and 17), observations 1, 2, 7, 9,
15, and 16 (first date of 1 December, 7 December, 6 January,
18 January, 7 March, and 13 March) have very small snow
accumulation (the average 1SWE is less than 0.5 cm, with
1SWE close to zero for most stations). Therefore, the phase
is not sensitive enough to SWE change, hence the low corre-
lation. For observation 4 and 17 (first date of 19 December
and 19 March), we observed that the low coherence degrades
the phase unwrapping performance for these InSAR images.
Figure 7a and b show the wrapped phase for observations 4
and 5, respectively. Note that the correlation between in situ
and retrieved 1SWE in Fig. 6c is 0.1 for observation 4 and
0.7 for observation 5. The average in situ1SWE between 19
and 25 December 2020 (observation 4) is 1.6 cm and that be-
tween 25 and 31 December 2020 (observation 5) is 2.3 cm.
However, the interferometric fringes in Fig. 7a are very noisy
compared to Fig. 7b. We observe that 4 out of 6 d between 19
and 25 December 2020 (observation 4) are relatively warm,
including day 19 December 2020. All 31 stations have tem-
peratures between −7 and 6 ◦C at 06:00 in those 4 d. The
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Figure 5. Sentinel-1 path 71, frame 444, (a) line-of-sight (LOS) displacement (m) with atmospheric noise, (b) atmospheric noise (m), and
(c) line-of-sight displacement (m) without atmospheric noise, between 13 and 19 March 2021.

Figure 6. (a) Retrieved 1SWE using the Sentinel-1 interferometric phase versus in situ 1SWE for all the stations with temporal coherence
more than 0.35 for the entire Sentinel-1 time series from December 2020 to March 2021. (b) Correlation (left axis) and absolute error (right
axis) between retrieved1SWE using the Sentinel-1 interferometric phase and in situ1SWE for each in situ station. (c) Correlation (left axis)
and absolute error (right axis) between retrieved1SWE using the Sentinel-1 interferometric phase and in situ1SWE for each interferogram.
Note that the labels on the x axis show the first date of each interferometric observation.

warm days cause a lot of melting and refreezing in those 4 d.
Hence, we expect to have small temporal coherence and con-
sequently noisier fringes. On the other hand, the tempera-
ture is relatively warm only on 26 December 2020. The rest
of the 5 d between 25 and 31 December 2020 (observation
5) are mostly colder than −7 ◦C for all 31 stations, thus re-
sulting in higher temporal coherence and less noisier fringes.
We believe the noisy fringes degrade the performance of the
unwrapping algorithm significantly. Therefore, the retrieved
1SWE is more accurate for observation 5 compared to ob-
servation 4. One of the main future works of this study is to
improve the phase unwrapping over images with low coher-
ence.

5.1.2 Comparing retrieved total SWE using Sentinel-1
and SNOTEL total SWE

In this section, we used time-series-retrieved 1SWE to cal-
culate total SWE at each date compared to the start date of
our time series (1 December 2020) by

SWE(ti+1)=

ti∑
tj=t1

1SWE(tj , tj+1), (5)

where t1 is 1 December 2020. For instance, SWE
at 25 December 2020 compared to 1 Decem-
ber 2020 is the summation of all four retrieved
1SWE (1SWE1−7 Dec 2020+1SWE7−13 Dec 2020+

1SWE13−19 Dec 2020+1SWE19−25 Dec 2020). Note that
the SWE(ti+1) is measured compared to SWE(t1). For
simplicity, we assume the SWE at time t1 is equal to zero.

Figure 8a, b, and c show the time series of total SWE for in
situ stations 12, 30, and 20, respectively. Note that we used
the average of stations 1 and 11 1SWE as a reference point
in this study. The red and blue lines show the retrieved and in
situ total SWE at each Sentinel-1 date acquisition compared
to 1 December 2020. However, as mentioned in Sects. 4 and
5.1.1, we only used 1SWE values with temporal coherence
more than 0.35 and temperature less than 0 ◦C. We had 18
observations for the entire time series. Discarding some ob-
servation due to low temporal coherence or high temperature
changes the time series length. As seen in Fig. 8, we keep all
18 observations for station 20 but only 15 observations for
station 12.

As seen in this figure, the time series of total retrieved
SWE aligns closely with in situ values for stations 12 and
30. The error is less than 2 cm in the entire time series. How-
ever, the retrieved SWE for station 20 diverges from in situ
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Figure 7. Sentinel-1 wrapped phase path 71, frame 444, between (a) 19 and 25 December 2020 (observation 4) and (b) 25 and 31 Decem-
ber 2020 (observation 5).

Figure 8. Time series of total in situ and retrieved SWE using the Sentinel-1 interferometric phase shown by blue and red lines, respectively,
for stations 12 (shown in panel a), 30 (b), and 20 (c).

values even though it follows the same pattern. The error
in total SWE estimation is about 10 cm at the end of the
time series. We think the main reason for divergence is the
phase unwrapping error and phase ambiguity. As discussed
in Sect. 5.1.1, the noisy fringes degrade the performance of
the unwrapping algorithm. A similar problem is observed in
tower-based studies. The retrieval diverges from the in situ
values by phase ambiguity values over large snowstorms at
C-band (Fig. 13c in Ruiz et al., 2022). However, even in these
cases, the trends of SWE remain the same between retrieved
and in situ values. We will investigate the reason behind the
divergence of retrieved SWE from in situ SWE of these sta-
tions in the future work of this study.

Figure 9a shows the Sentinel-1 1SWE ambiguity ver-
sus incidence angle. The red line shows the 1SWE am-
biguity using Eq. (4) (1φ = 2π ). The blue line shows the
1SWE ambiguity using the Leinss et al. (2015) approxima-
tion (1φ = κi(1.59+ θ2.5)1SWE). As seen in this figure,
1SWE ambiguity is between 1.5 and 3.5 cm depending on
the incidence angle. The relatively small 1SWE ambiguity
of Sentinel-1 makes the unwrapping challenging for snow-
storms. Figure 9b shows the temporal coherence between 11

and 17 February 2021. We can see very low coherence in the
snowstorm regions, which degrades the unwrapping process.
As mentioned before, one of the main future projects of this
study is to work on improving the unwrapping phase.

For each station plot in Fig. 8, we also report the av-
erage RMSE error (<1SWE Errstation# >) and correlation
(ρstation#) between retrieved and in situ 1SWE, as also plot-
ted in Fig. 6b. We also report the average of temporal coher-
ence for all the interferograms over that station (< ρtemp >)
to show how reliable the measurements at that station are.
For all three stations, the RMSE error for 1SWE is less than
1.1 cm, the correlation between in situ and retrieved 1SWE
is greater than 0.8, and temporal coherence is greater than
0.5. The SNOTEL sites are shown by small diamonds in
Fig. 2b. The green small diamonds have a total SWE error
of less than 2 cm in the entire time series, similar to sta-
tions 12 and 30. The red diamonds have a total SWE error
of more than 2 cm, similar to station 20. However, the re-
trieved SWE has a similar pattern to in situ SWE. Therefore,
we think they have a phase unwrapping problem similar to
station 20. These stations are also shown in Fig. 7a. As seen
in this figure, the red diamonds are mostly located in regions
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Figure 9. (a) 1SWE ambiguity versus incidence angle using Leinss’s approximation (blue line) and Oveisgharan’s approximation (red line)
and (b) coherence for data acquired between 11 and 17 February 2021 (observation 11). Green diamonds show the location of stations with
a total SWE error of less than 2 cm. Red diamonds show the location of stations with a total SWE error of more than 2 cm.

with noisy fringes, which makes the unwrapping challeng-
ing. Among all 31 stations in the Sentinel-1 frame, 6 of them
have temporal coherence less than 0.35 or temperature more
than 0 ◦C in their entire time series. These stations are shown
by blue diamonds in Fig. 2b. Two stations are used for cali-
bration of the phase. Hence, these two stations cannot be used
for comparisons. So, there were 23 stations with more than
two reliable observation dates in their time series. Among
the 23 stations, 9 have an SWE error of less than 2 cm (green
diamonds) and 14 of them have SWE error larger than 2 cm
(red diamonds).

5.2 Comparing retrieved SWE using Sentinel-1 and
lidar SWE

As mentioned in Sect. 3.3, the QSI lidar data were collected
during the SnowEx campaign. There are two lidar data sets
collected over the Sentinel-1 path 71, frame 444, in winter
2021. The locations are shown with red rectangles in Fig. 2b.

Figures 10a and 11a show the lidar snow depth on
15 March 2021 over Banner Summit and Mores Creek, re-
spectively. As shown in Fig. 2b, Banner Summit covers
SNOTEL 2 and Mores Creek covers SNOTEL 21. These two
SNOTEL stations are shown by diamonds in Figs. 10a and
11a. The terrain DEM is measured by a lidar sensor dur-
ing September 2021. The DEM is used to measure the snow
depth using the lidar data collected on 15 March 2021. The
big purple rectangle in Fig. 2b corresponds to Banner Sum-
mit, and the small red rectangle corresponds to Mores Creek.
We calculated the total SWE compared to 1 December 2020
on the closest day to lidar date acquisition. We used all the
retrieved 1SWE from 1 December 2020 to 19 March 2021
and calculated the total SWE on 19 March 2021 using
Eq. (5). Figures 10b and 11b show the retrieved SWE on
19 March 2021 over Banner Summit and Mores Creek, re-
spectively. Panels (a) and (b) in Figs. 10 and 11 have very
similar patterns. The 2D histograms of these two images are
shown in Figs. 10c and 11c, where the x and y axes show the

lidar snow depth and Sentinel-1-retrieved SWE, respectively.
The colors in panel (c) show the 10number of cells with lidar
snow depth x and InSAR SWE y. The correlation between
these two data sets is 0.47 for Banner Summit and 0.59 for
Mores Creek. Note that the lidar data show the snow depth,
whereas Sentinel-1-retrieved data show the total SWE accu-
mulated during the Sentinel-1 overpasses analyzed. On the
other hand, lidar has a much higher resolution. The relatively
good correlation (0.47 and 0.59) between the two indepen-
dent measurements with different resolutions is a very good
indication of the success of this method in estimating SWE.

Figure 12a and c show the mean of all Sentinel-1
temporal coherence data between 1 December 2020 and
19 March 2021 over Banner Summit and Mores Creek, re-
spectively. As seen in these figures, the temporal coher-
ence varies between 0.2 and 0.9. As mentioned earlier in
this section, the correlation between lidar snow depth data
on 15 March 2021 and retrieved total SWE using Sentinel-
1 data on 19 March 2021 is 0.47 for Banner Summit and
0.59 for Mores Creek. However, some of the points may
have low temporal coherence and may not be viable for re-
trieval as discussed in Sect. 4. The left axis in Fig. 12b and
d show the correlation between lidar snow depth data on
15 March 2021 and retrieved total SWE using Sentinel-1
data on 19 March 2021 for points with mean temporal co-
herence above ρtemp, threshold. Figure 12b shows the correla-
tion versus ρtemp, threshold over Banner Summit, and Fig. 12d
shows the correlation over Mores Creek. Note that the corre-
lation is 0.47 for Banner Summit and 0.59 for Mores Creek
with no filter (ρtemp, threshold = 0.1) as reported in Figs. 10c
and 11c, respectively. The right axis in Fig. 12b and d shows
the number of points in the image in panels (a) and (c) with
mean temporal coherence more than ρtemp, threshold. There are
5 times more points in Fig. 12a compared to Fig. 12c. There-
fore, we can better perform a statistical evaluation for panel
(b) compared to panel (d). As seen in Fig. 12b, the correlation
between lidar snow depth and retrieved total SWE increases
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Figure 10. (a) QSI lidar snow depth over Banner Summit, ID, on 15 March 2021 (b). Retrieved total SWE using Sentinel-1 interferometric
data from 1 December 2020 to 19 March 2021 over Banner Summit, ID. (c) Two-dimensional histogram of data in panel (b) versus data in
panel (a).

Figure 11. (a) QSI lidar snow depth over Mores Creek, ID, on 15 March 2021. (b) Retrieved total SWE using Sentinel-1 interferometric data
from 1 December 2020 to 19 March 2021 over Mores Creek, ID. (c) Two-dimensional histogram of data in panel (b) versus data in panel (a).

by filtering out points with low temporal coherence, as ex-
pected. We need to investigate more to explain the reason for
correlation decrease in the 0.74< ρtemp, threshold < 0.8 inter-
val.

The correlation between lidar snow depth and retrieved
total SWE in Fig. 12d) is relatively constant with increas-
ing ρtemp, threshold. However, as we increase ρtemp, threshold to
more than 0.46, the correlation gradually decreases to 0.4
at ρtemp, threshold = 0.65 and remains relatively constant up
to ρtemp, threshold = 0.72. The number of points in the im-
age with temporal coherence more than 0.72 is less than
20. Therefore, the correlation is not statistically very mean-
ingful. Mores Creek has a lower elevation (6100 m at sta-
tion 21) compared to Banner Summit (7040 m at station 2).
Mores Creek is also warmer (mean temperature of −4.3 ◦C
for the entire time series at station 21) than Banner Summit
(mean temperature of −8.8 ◦C for the entire time series at
station 3). We expect to have higher correlation with filter-
ing low temporal coherence points as seen in Fig. 12b. We
think the reason we do not see such a behavior in Fig. 12d
is that the warmer temperature, melting, and refreezing de-
grade the retrieval performance even for highly correlated re-
gions. More investigation is needed to better explain the con-
stant or decreasing correlation with increasing ρtemp, threshold
in Fig. 12d.

Left axis in Fig. 13a and b shows the correlation be-
tween lidar snow depth on 15 March 2021 and retrieved total
SWE for each observation between 1 December 2020 and
19 March 2021 over Banner Summit and Mores Creek, re-
spectively. Observation 16 shows the correlation reported in
Figs. 10c and 11c. The right axis in Fig. 13a and b shows
1SWE (cm) for each observation between 1 December 2020
and 19 March 2021 at station 2 in Banner Summit and sta-
tion 21 in Mores Creek, respectively. As seen in both figures,
the correlation gradually increases after observation 7 or 8, as
expected. On the other hand, the correlation is smaller for ob-
servation 16 compared to 15. Observation 16 shows the total
SWE on 19 March 2021, and lidar data show the snow depth
on 15 March 2021. There is about 1 cm 1SWE for observa-
tion 16 that is not fully captured by lidar. Therefore, com-
paring total SWE for observation 15 with lidar snow depth is
more appropriate. The correlation is high for observation 4
at the beginning of the snow season for both Banner Summit
and Mores Creek. Observation 4 is after the first snowstorm
of the season. It shows that the spatial variability of snow at
the end of the snow season is captured by the first or second
snowstorm. Although 1SWE for station 21 is zero for the
first observation, the correlation between lidar snow depth
on 19 March 2021 and total SWE on the first observation is
relatively high, as seen in Fig. 13b. As shown in Fig. 11a,
station 2 is in the relatively low snow depth region. We be-
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Figure 12. (a) Mean of Sentinel-1 temporal coherence between 1 December 2020 and 19 March 2021 over Banner Summit, ID. (b) (Left axis)
Correlation between lidar snow depth and retrieved total SWE on 19 March 2021 using Sentinel-1 over Banner Summit for all points with
mean temporal coherence greater than ρtemp, threshold versus ρtemp, threshold. (Right axis) Number of points in Banner Summit with mean
temporal coherence greater than ρtemp, threshold versus ρtemp, threshold. (c) Mean of Sentinel-1 temporal coherence between 1 December 2020
and 19 March 2021 over Mores Creek, ID. (d) (Left axis) Correlation between lidar snow depth and retrieved total SWE using Sentinel-1
over Mores Creek for all points with mean temporal coherence greater than ρtemp, threshold versus ρtemp, threshold. (Right axis) Number of
points in Mores Creek with mean temporal coherence greater than ρtemp, threshold versus ρtemp, threshold.

Figure 13. (a) (Left axis) Correlation between lidar snow depth
and retrieved total SWE using Sentinel-1 on a specific observation
date over Banner Summit versus observation number. (Right axis)
1SWE (cm) for any specific observation date at station 2 in Banner
Summit. (b) (Left axis) Correlation between lidar snow depth and
retrieved total SWE using Sentinel-1 on a specific observation date
over Mores Creek versus observation number. (Right axis) 1SWE
(cm) for any specific observation date at station 27 in Mores Creek.

lieve there has been a snowstorm in the high-altitude region
of Mores Creek. The high correlation is simply the correla-
tion between lidar data on 19 March 2021 and the first snow-
storm in Mores Creek.

6 Conclusions

In this study, we used Sentinel-1 time series to retrieve
1SWE and consequently total SWE. We chose a frame in
Idaho that covers several SnowEx 2020–2021 sites and 31
SNOTEL in situ stations. Lidar data are available for validat-
ing our results. Sentinel-1 data were collected every 6 d over
this SnowEx site instead of the regular 12 d, which helps a
lot with temporal coherence over snowstorms. This provides
a unique dense time series of spaceborne data for studying
the performance of SWE retrieval using InSAR.

We showed that retrieved1SWE between two consecutive
Sentinel-1 observations is highly correlated (0.8) with in situ
values, with an RMSE of 0.93 cm. For the reference point of
the interferometric phase, we used two in situ stations with
temporal coherence more than 0.35 and temperature less than
0 ◦C for the entire time series. We subtracted the difference
between the average of in situ and retrieved 1SWE of these
two stations from retrieved values to calibrate the retrieved
1SWE. The 1SWE RMSE error is less than 2 cm for all
stations and less than 1 cm for most stations. The correla-
tion between retrieved and in situ 1SWE is more than 0.6

https://doi.org/10.5194/tc-18-559-2024 The Cryosphere, 18, 559–574, 2024



572 S. Oveisgharan et al.: Snow water equivalent retrieval over Idaho – Part 1

for most stations. Interferograms with a small average of in
situ 1SWE show low correlation between retrieved and in
situ 1SWE. We demonstrated that low temporal coherence
not only degrades the SWE retrieval performance, but also
the unwrapping algorithm performance. We showed that big
melting events between two Sentinel-1 acquisitions make the
interferometric fringes noisy and the unwrapping algorithm
challenging. The retrieved total SWE has an RMSE error of
less than 2 cm compared with in situ values in the entire time
series for 9 stations and an error of more than 2 cm for 14
stations.

The highlight of the results of this study is the sim-
ilarity between two independent measurements retrieved
SWE using Sentinel-1 data and lidar snow depth data.
We used Sentinel-1 data between 1 December 2020 and
19 March 2021 to retrieve 1SWE time series. By adding the
entire time series of 1SWE, we calculated the total SWE on
19 March 2021. Total retrieved SWE values using Sentinel-1
interferometric data and lidar snow depth images over two
regions in Idaho show similar patterns and are correlated by
more than 0.47. We showed that the correlation is higher for
regions with higher temporal coherence in Banner Summit.

Considering all these validations, we show for the first
time that SWE retrieval using time series of InSAR space-
borne data is a very promising candidate for the future SWE
mission.

We also show that the main constraints for this method are
temporal coherence, phase unwrapping, and phase ambigu-
ity. We show that snowstorms reduce the temporal coherence
significantly. Low temporal coherence reduces the accuracy
of the interferometric phase and unwrapping algorithm. This
study all shows that melting due to warm temperature re-
duces the temporal coherence and the performance of the un-
wrapping algorithm. Small SWE ambiguity at C-band (1.5 to
3.5 cm) makes the phase unwrapping more challenging. We
think using an in situ station as the reference point helps re-
duce the phase ambiguity error, at least locally, compared to
other methods for referencing the interferometric images. If
the temporal coherence is large enough for the entire image
to reduce the phase unwrapping error, using the in situ SWE
as the reference point reduces the phase ambiguity error in
a larger region. Using a snow-free point or snow-free cor-
ner reflector as the reference point cannot address the phase
ambiguity in regions with deep snow. Going from C-band to
lower frequencies such as L-band improves both the tempo-
ral coherence and SWE ambiguity. With the L-band NISAR
launch coming next winter, the new data set would be a great
opportunity for global SWE retrieval.
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