Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-3933-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-3933-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AWI-ICENet1: a convolutional neural network retracker for ice altimetry
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Alireza Dehghanpour
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Department of Geosciences, University of Bremen, Bremen, Germany
Ronny Hänsch
German Aerospace Centre, Munich, Germany
Erik Loebel
Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany
Martin Horwath
Institut für Planetare Geodäsie, Technische Universität Dresden, Dresden, Germany
Angelika Humbert
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Department of Geosciences, University of Bremen, Bremen, Germany
Related authors
Matthias O. Willen, Bert Wouters, Taco Broerse, Eric Buchta, and Veit Helm
EGUsphere, https://doi.org/10.5194/egusphere-2024-3086, https://doi.org/10.5194/egusphere-2024-3086, 2024
Short summary
Short summary
Collapse of the West Antarctic ice sheet in the Amundsen Sea Embayment is likely in the near future. Vertical uplift of bedrock due to glacial isostatic adjustment stabilizes the ice sheet and may delay its collapse. So far, only spatially and temporally sparse GNSS measurements have been able to observe this bedrock motion. We have combined satellite data and quantified a region-wide bedrock motion that independently matches GNSS measurements. This can improve ice-sheet predictions.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1151, https://doi.org/10.5194/egusphere-2024-1151, 2024
Short summary
Short summary
We study the evolution of a massive lake on the Greenland Ice Sheet using satellite and airborne data and some modelling. The lake is emptying rapidly. The water flows to the base of the glacier through cracks and gullies that remain visible over years. Some of them become reactive. We find features inside the glacier that stem from the drainage events with even 1 km width. These features are persistent over the years, although they are changing in shape.
Ole Zeising, Niklas Neckel, Nils Dörr, Veit Helm, Daniel Steinhage, Ralph Timmermann, and Angelika Humbert
The Cryosphere, 18, 1333–1357, https://doi.org/10.5194/tc-18-1333-2024, https://doi.org/10.5194/tc-18-1333-2024, 2024
Short summary
Short summary
The 79° North Glacier in Greenland has experienced significant changes over the last decades. Due to extreme melt rates, the ice has thinned significantly in the vicinity of the grounding line, where a large subglacial channel has formed since 2010. We attribute these changes to warm ocean currents and increased subglacial discharge from surface melt. However, basal melting has decreased since 2018, indicating colder water inflow into the cavity below the glacier.
Matthias O. Willen, Martin Horwath, Eric Buchta, Mirko Scheinert, Veit Helm, Bernd Uebbing, and Jürgen Kusche
The Cryosphere, 18, 775–790, https://doi.org/10.5194/tc-18-775-2024, https://doi.org/10.5194/tc-18-775-2024, 2024
Short summary
Short summary
Shrinkage of the Antarctic ice sheet (AIS) leads to sea level rise. Satellite gravimetry measures AIS mass changes. We apply a new method that overcomes two limitations: low spatial resolution and large uncertainties due to the Earth's interior mass changes. To do so, we additionally include data from satellite altimetry and climate and firn modelling, which are evaluated in a globally consistent way with thoroughly characterized errors. The results are in better agreement with independent data.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Angelika Humbert, Veit Helm, Niklas Neckel, Ole Zeising, Martin Rückamp, Shfaqat Abbas Khan, Erik Loebel, Jörg Brauchle, Karsten Stebner, Dietmar Gross, Rabea Sondershaus, and Ralf Müller
The Cryosphere, 17, 2851–2870, https://doi.org/10.5194/tc-17-2851-2023, https://doi.org/10.5194/tc-17-2851-2023, 2023
Short summary
Short summary
The largest floating glacier mass in Greenland, the 79° N Glacier, is showing signs of instability. We investigate how crack formation at the glacier's calving front has changed over the last decades by using satellite imagery and airborne data. The calving front is about to lose contact to stabilizing ice islands. Simulations show that the glacier will accelerate as a result of this, leading to an increase in ice discharge of more than 5.1 % if its calving front retreats by 46 %.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere, 16, 4107–4139, https://doi.org/10.5194/tc-16-4107-2022, https://doi.org/10.5194/tc-16-4107-2022, 2022
Short summary
Short summary
Ice shelves are normally flat structures that fringe the Antarctic continent. At some locations they have channels incised into their underside. On Filchner Ice Shelf, such a channel is more than 50 km long and up to 330 m high. We conducted field measurements of basal melt rates and found a maximum of 2 m yr−1. Simulations represent the geometry evolution of the channel reasonably well. There is no reason to assume that this type of melt channel is destabilizing ice shelves.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
Short summary
Support Force Glacier rapidly flows into Filcher Ice Shelf of Antarctica. As we know little about this glacier and its subglacial drainage, we used seismic energy to map the transition area from grounded to floating ice where a drainage channel enters the ocean cavity. Soft sediments close to the grounding line are probably transported by this drainage channel. The constant ice thickness over the steeply dipping seabed of the ocean cavity suggests a stable transition and little basal melting.
Stefan Kowalewski, Veit Helm, Elizabeth Mary Morris, and Olaf Eisen
The Cryosphere, 15, 1285–1305, https://doi.org/10.5194/tc-15-1285-2021, https://doi.org/10.5194/tc-15-1285-2021, 2021
Short summary
Short summary
This study presents estimates of total mass input for the Pine Island Glacier (PIG) over the period 2005–2014 from airborne radar measurements. Our analysis reveals a total mass input similar to an earlier estimate for the period 1985–2009 and same area. This suggests a stationary total mass input contrary to the accelerated mass loss of PIG over the past decades. However, we also find that its uncertainty is highly sensitive to the geostatistical assumptions required for its calculation.
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14, https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Different approaches to retrieve the optical-equivalent snow grain size using satellite, airborne, and ground-based observations were evaluated and compared to modeled data. The study is focused on low Sun and partly rough surface conditions encountered North of Greenland in March/April 2018. We proposed an adjusted airborne retrieval method to reduce the retrieval uncertainty.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020, https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Short summary
The angular reflection of solar radiation by snow surfaces is particularly anisotropic and highly variable. We measured the angular reflection from an aircraft using a digital camera in Antarctica in 2013/14 and studied its variability: the anisotropy increases with a lower Sun but decreases for rougher surfaces and larger snow grains. The applied methodology allows for a direct comparison with satellite observations, which generally underestimated the anisotropy measured within this study.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Ludwig Schröder, Martin Horwath, Reinhard Dietrich, Veit Helm, Michiel R. van den Broeke, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, https://doi.org/10.5194/tc-13-427-2019, 2019
Short summary
Short summary
We developed an approach to combine measurements of seven satellite altimetry missions over the Antarctic Ice Sheet. Our resulting monthly grids of elevation changes between 1978 and 2017 provide unprecedented details of the long-term and interannual variation. Derived mass changes agree well with contemporaneous data of surface mass balance and satellite gravimetry and show which regions were responsible for the significant accelerations of mass loss in recent years.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Sophie Berger, Reinhard Drews, Veit Helm, Sainan Sun, and Frank Pattyn
The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017, https://doi.org/10.5194/tc-11-2675-2017, 2017
Short summary
Short summary
Floating ice shelves act as a plug for the Antarctic ice sheet. The efficiency of this ice plug depends on how and how much the ocean melts the ice from below. This study relies on satellite imagery and a Lagrangian approach to map in detail the basal mass balance of an Antarctic ice shelf. Although the large-scale melting pattern of the ice shelf agrees with previous studies, our technique successfully detects local variability (< 1 km) in the basal melting of the ice shelf.
Thomas B. Overly, Robert L. Hawley, Veit Helm, Elizabeth M. Morris, and Rohan N. Chaudhary
The Cryosphere, 10, 1679–1694, https://doi.org/10.5194/tc-10-1679-2016, https://doi.org/10.5194/tc-10-1679-2016, 2016
Short summary
Short summary
We demonstrate that snow accumulation rates across the Greenland Ice Sheet, determined from RADAR layers and modeled snow density profiles, are identical to ground-based measurements of snow accumulation. Three regional climate models underestimate snow accumulation compared to RADAR layer estimates. Using RADAR increases spatial coverage and improves accuracy of snow accumulation estimates. Incorporating our results into climate models may reduce uncertainty of sea-level rise estimates.
Sandra Schwegmann, Eero Rinne, Robert Ricker, Stefan Hendricks, and Veit Helm
The Cryosphere, 10, 1415–1425, https://doi.org/10.5194/tc-10-1415-2016, https://doi.org/10.5194/tc-10-1415-2016, 2016
Short summary
Short summary
Our study aimed to investigate whether CS-2 and Envisat radar freeboard can be merged without intermission biases in order to obtain a 20-year data set. The comparison revealed a reasonable regional agreement between radar freeboards derived from both sensors. Differences are mostly below 0.1 m for modal freeboard and even less for mean freeboard over winter months (May–October). The highest differences occur in regions with multi-year sea ice and along the coasts.
S. Goeller, V. Helm, M. Thoma, and K. Grosfeld
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-3995-2015, https://doi.org/10.5194/tcd-9-3995-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The Ross Ice Streams in West Antarctica showed a high variability in the past. We model basal water pathways and catchment areas for present and future ice sheet geometries (gained by applying satellite-derived elevation change rates) in this sector. Thus, we can explain the current ice stream configuration and estimate implications for the next two centuries, where we find that a major basal hydraulic tributary of the Kamb and Whillans IS could be redirected underneath the Bindschadler IS.
R. Ricker, S. Hendricks, V. Helm, H. Skourup, and M. Davidson
The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, https://doi.org/10.5194/tc-8-1607-2014, 2014
V. Helm, A. Humbert, and H. Miller
The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, https://doi.org/10.5194/tc-8-1539-2014, 2014
L. Gray, D. Burgess, L. Copland, R. Cullen, N. Galin, R. Hawley, and V. Helm
The Cryosphere, 7, 1857–1867, https://doi.org/10.5194/tc-7-1857-2013, https://doi.org/10.5194/tc-7-1857-2013, 2013
M. Zygmuntowska, K. Khvorostovsky, V. Helm, and S. Sandven
The Cryosphere, 7, 1315–1324, https://doi.org/10.5194/tc-7-1315-2013, https://doi.org/10.5194/tc-7-1315-2013, 2013
Matthias O. Willen, Bert Wouters, Taco Broerse, Eric Buchta, and Veit Helm
EGUsphere, https://doi.org/10.5194/egusphere-2024-3086, https://doi.org/10.5194/egusphere-2024-3086, 2024
Short summary
Short summary
Collapse of the West Antarctic ice sheet in the Amundsen Sea Embayment is likely in the near future. Vertical uplift of bedrock due to glacial isostatic adjustment stabilizes the ice sheet and may delay its collapse. So far, only spatially and temporally sparse GNSS measurements have been able to observe this bedrock motion. We have combined satellite data and quantified a region-wide bedrock motion that independently matches GNSS measurements. This can improve ice-sheet predictions.
Katrina Lutz, Ilaria Tabone, Angelika Humbert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-3056, https://doi.org/10.5194/egusphere-2024-3056, 2024
Short summary
Short summary
Supraglacial lakes develop from meltwater collecting on the surface of glaciers. These lakes can drain rapidly, discharging meltwater to the glacier bed. In this study, we assess the spatial and temporal distribution of rapid drainages in Northeast Greenland using optical satellite images. After comparing rapid drainage occurrence with several environmental and geophysical parameters, little indication of the influencing conditions for a rapid drainage was found.
Maria T. Kappelsberger, Martin Horwath, Eric Buchta, Matthias O. Willen, Ludwig Schröder, Sanne B. M. Veldhuijsen, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 18, 4355–4378, https://doi.org/10.5194/tc-18-4355-2024, https://doi.org/10.5194/tc-18-4355-2024, 2024
Short summary
Short summary
The interannual variations in the height of the Antarctic Ice Sheet (AIS) are mainly due to natural variations in snowfall. Precise knowledge of these variations is important for the detection of any long-term climatic trends in AIS surface elevation. We present a new product that spatially resolves these height variations over the period 1992–2017. The product combines the strengths of atmospheric modeling results and satellite altimetry measurements.
Steven Franke, Daniel Steinhage, Veit Helm, Alexandra M. Zuhr, Julien A. Bodart, Olaf Eisen, and Paul Bons
EGUsphere, https://doi.org/10.5194/egusphere-2024-2349, https://doi.org/10.5194/egusphere-2024-2349, 2024
Short summary
Short summary
We use radar technology to study the internal architecture of the ice sheet in western DML, East Antarctica. We identified and dated nine internal reflection horizons (IRHs), revealing important information about the ice sheet's history and dynamics. Some IRHs can be linked to past volcanic eruptions and are of similar age to IRHs detected in other parts of Antarctica. Our findings enhance our understanding of ice sheet behaviour and aid in developing better models for predicting future changes.
Christoph Dahle, Eva Boergens, Ingo Sasgen, Thorben Döhne, Sven Reißland, Henryk Dobslaw, Volker Klemann, Michael Murböck, Rolf König, Robert Dill, Mike Sips, Ulrike Sylla, Andreas Groh, Martin Horwath, and Frank Flechtner
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-347, https://doi.org/10.5194/essd-2024-347, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
The satellite missions GRACE and GRACE-FO are unique observing systems to quantify global mass changes at the Earth’s surface from space. Time series of these mass changes are of high value for various applications, e.g., in hydrology, glaciology, and oceanography. GravIS provides easy access to user-friendly, regularly updated mass anomaly products. The associated portal visualizes and describes these data, aiming to highlight their significance for understanding changes in the climate system.
Erik Loebel, Mirko Scheinert, Martin Horwath, Angelika Humbert, Julia Sohn, Konrad Heidler, Charlotte Liebezeit, and Xiao Xiang Zhu
The Cryosphere, 18, 3315–3332, https://doi.org/10.5194/tc-18-3315-2024, https://doi.org/10.5194/tc-18-3315-2024, 2024
Short summary
Short summary
Comprehensive datasets of calving-front changes are essential for studying and modeling outlet glaciers. Current records are limited in temporal resolution due to manual delineation. We use deep learning to automatically delineate calving fronts for 23 glaciers in Greenland. Resulting time series resolve long-term, seasonal, and subseasonal patterns. We discuss the implications of our results and provide the cryosphere community with a data product and an implementation of our processing system.
Lea-Sophie Höyns, Thomas Kleiner, Andreas Rademacher, Martin Rückamp, Michael Wolovick, and Angelika Humbert
EGUsphere, https://doi.org/10.5194/egusphere-2024-1251, https://doi.org/10.5194/egusphere-2024-1251, 2024
Short summary
Short summary
Glaciers' sliding over bedrock is governed by water pressure in the hydrological system underneath the glacier and the roughness of the land underneath the glacier. We estimate this roughness using a modelling approach, which optimises this unknown parameter. The water pressure is simulated, too, which improves the robustness of the computed drag at the ice sheet base. We provide this data to other modellers and scientists doing geophysical field observations.
Niko Schmidt, Angelika Humbert, and Thomas Slawig
Geosci. Model Dev., 17, 4943–4959, https://doi.org/10.5194/gmd-17-4943-2024, https://doi.org/10.5194/gmd-17-4943-2024, 2024
Short summary
Short summary
Future sea-level rise is of big significance for coastal regions. The melting and acceleration of glaciers plays a major role in sea-level change. Computer simulation of glaciers costs a lot of computational resources. In this publication, we test a new way of simulating glaciers. This approach produces the same results but has the advantage that it needs much less computation time. As simulations can be obtained with fewer computation resources, higher resolution and physics become affordable.
Angelika Humbert, Veit Helm, Ole Zeising, Niklas Neckel, Matthias H. Braun, Shfaqat Abbas Khan, Martin Rückamp, Holger Steeb, Julia Sohn, Matthias Bohnen, and Ralf Müller
EGUsphere, https://doi.org/10.5194/egusphere-2024-1151, https://doi.org/10.5194/egusphere-2024-1151, 2024
Short summary
Short summary
We study the evolution of a massive lake on the Greenland Ice Sheet using satellite and airborne data and some modelling. The lake is emptying rapidly. The water flows to the base of the glacier through cracks and gullies that remain visible over years. Some of them become reactive. We find features inside the glacier that stem from the drainage events with even 1 km width. These features are persistent over the years, although they are changing in shape.
Katrina Lutz, Lily Bever, Christian Sommer, Angelika Humbert, Mirko Scheinert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1244, https://doi.org/10.5194/egusphere-2024-1244, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding the amount of water lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Ole Zeising, Niklas Neckel, Nils Dörr, Veit Helm, Daniel Steinhage, Ralph Timmermann, and Angelika Humbert
The Cryosphere, 18, 1333–1357, https://doi.org/10.5194/tc-18-1333-2024, https://doi.org/10.5194/tc-18-1333-2024, 2024
Short summary
Short summary
The 79° North Glacier in Greenland has experienced significant changes over the last decades. Due to extreme melt rates, the ice has thinned significantly in the vicinity of the grounding line, where a large subglacial channel has formed since 2010. We attribute these changes to warm ocean currents and increased subglacial discharge from surface melt. However, basal melting has decreased since 2018, indicating colder water inflow into the cavity below the glacier.
Matthias O. Willen, Martin Horwath, Eric Buchta, Mirko Scheinert, Veit Helm, Bernd Uebbing, and Jürgen Kusche
The Cryosphere, 18, 775–790, https://doi.org/10.5194/tc-18-775-2024, https://doi.org/10.5194/tc-18-775-2024, 2024
Short summary
Short summary
Shrinkage of the Antarctic ice sheet (AIS) leads to sea level rise. Satellite gravimetry measures AIS mass changes. We apply a new method that overcomes two limitations: low spatial resolution and large uncertainties due to the Earth's interior mass changes. To do so, we additionally include data from satellite altimetry and climate and firn modelling, which are evaluated in a globally consistent way with thoroughly characterized errors. The results are in better agreement with independent data.
Erik Loebel, Celia A. Baumhoer, Andreas Dietz, Mirko Scheinert, and Martin Horwath
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-535, https://doi.org/10.5194/essd-2023-535, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Glacier calving front positions are important for understanding glacier dynamics and constrain ice modelling. We apply a deep learning framework on multispectral Landsat imagery to create a calving front record for 19 key outlet glaciers of the Antarctic Peninsula. The resulting data product includes 2064 calving front locations from 2013 to 2023 and achieves sub-seasonal temporal resolution.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Michael Wolovick, Angelika Humbert, Thomas Kleiner, and Martin Rückamp
The Cryosphere, 17, 5027–5060, https://doi.org/10.5194/tc-17-5027-2023, https://doi.org/10.5194/tc-17-5027-2023, 2023
Short summary
Short summary
The friction underneath ice sheets can be inferred from observed velocity at the top, but this inference requires smoothing. The selection of smoothing has been highly variable in the literature. Here we show how to rigorously select the best smoothing, and we show that the inferred friction converges towards the best knowable field as model resolution improves. We use this to learn about the best description of basal friction and to formulate recommended best practices for other modelers.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Yannic Fischler, Thomas Kleiner, Christian Bischof, Jeremie Schmiedel, Roiy Sayag, Raban Emunds, Lennart Frederik Oestreich, and Angelika Humbert
Geosci. Model Dev., 16, 5305–5322, https://doi.org/10.5194/gmd-16-5305-2023, https://doi.org/10.5194/gmd-16-5305-2023, 2023
Short summary
Short summary
Water underneath ice sheets affects the motion of glaciers. This study presents a newly developed code, CUAS-MPI, that simulates subglacial hydrology. It is designed for supercomputers and is hence a parallelized code. We measure the performance of this code for simulations of the entire Greenland Ice Sheet and find that the code works efficiently. Moreover, we validated the code to ensure the correctness of the solution. CUAS-MPI opens new possibilities for simulations of ice sheet hydrology.
Ailsa Chung, Frédéric Parrenin, Daniel Steinhage, Robert Mulvaney, Carlos Martín, Marie G. P. Cavitte, David A. Lilien, Veit Helm, Drew Taylor, Prasad Gogineni, Catherine Ritz, Massimo Frezzotti, Charles O'Neill, Heinrich Miller, Dorthe Dahl-Jensen, and Olaf Eisen
The Cryosphere, 17, 3461–3483, https://doi.org/10.5194/tc-17-3461-2023, https://doi.org/10.5194/tc-17-3461-2023, 2023
Short summary
Short summary
We combined a numerical model with radar measurements in order to determine the age of ice in the Dome C region of Antarctica. Our results show that at the current ice core drilling sites on Little Dome C, the maximum age of the ice is almost 1.5 Ma. We also highlight a new potential drill site called North Patch with ice up to 2 Ma. Finally, we explore the nature of a stagnant ice layer at the base of the ice sheet which has been independently observed and modelled but is not well understood.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
Angelika Humbert, Veit Helm, Niklas Neckel, Ole Zeising, Martin Rückamp, Shfaqat Abbas Khan, Erik Loebel, Jörg Brauchle, Karsten Stebner, Dietmar Gross, Rabea Sondershaus, and Ralf Müller
The Cryosphere, 17, 2851–2870, https://doi.org/10.5194/tc-17-2851-2023, https://doi.org/10.5194/tc-17-2851-2023, 2023
Short summary
Short summary
The largest floating glacier mass in Greenland, the 79° N Glacier, is showing signs of instability. We investigate how crack formation at the glacier's calving front has changed over the last decades by using satellite imagery and airborne data. The calving front is about to lose contact to stabilizing ice islands. Simulations show that the glacier will accelerate as a result of this, leading to an increase in ice discharge of more than 5.1 % if its calving front retreats by 46 %.
Michael J. Bentley, James A. Smith, Stewart S. R. Jamieson, Margaret R. Lindeman, Brice R. Rea, Angelika Humbert, Timothy P. Lane, Christopher M. Darvill, Jeremy M. Lloyd, Fiamma Straneo, Veit Helm, and David H. Roberts
The Cryosphere, 17, 1821–1837, https://doi.org/10.5194/tc-17-1821-2023, https://doi.org/10.5194/tc-17-1821-2023, 2023
Short summary
Short summary
The Northeast Greenland Ice Stream is a major outlet of the Greenland Ice Sheet. Some of its outlet glaciers and ice shelves have been breaking up and retreating, with inflows of warm ocean water identified as the likely reason. Here we report direct measurements of warm ocean water in an unusual lake that is connected to the ocean beneath the ice shelf in front of the 79° N Glacier. This glacier has not yet shown much retreat, but the presence of warm water makes future retreat more likely.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Ole Zeising, Tamara Annina Gerber, Olaf Eisen, M. Reza Ershadi, Nicolas Stoll, Ilka Weikusat, and Angelika Humbert
The Cryosphere, 17, 1097–1105, https://doi.org/10.5194/tc-17-1097-2023, https://doi.org/10.5194/tc-17-1097-2023, 2023
Short summary
Short summary
The flow of glaciers and ice streams is influenced by crystal fabric orientation. Besides sparse ice cores, these can be investigated by radar measurements. Here, we present an improved method which allows us to infer the horizontal fabric asymmetry using polarimetric phase-sensitive radar data. A validation of the method on a deep ice core from the Greenland Ice Sheet shows an excellent agreement, which is a large improvement over previously used methods.
Lena Nicola, Erik Loebel, and Alexandra M. Zuhr
Polarforschung, 90, 81–84, https://doi.org/10.5194/polf-90-81-2022, https://doi.org/10.5194/polf-90-81-2022, 2022
Short summary
Short summary
To facilitate the search for funding within Germany and internationally, APECS Germany has started to host a list of grant, fellowship and other funding opportunities at https://apecs-germany.de/funding/. In our article, we present our new website while describing the different stages of the quest to find funding and to highlight best practices for, for example, writing grant proposals.
Angelika Humbert, Julia Christmann, Hugh F. J. Corr, Veit Helm, Lea-Sophie Höyns, Coen Hofstede, Ralf Müller, Niklas Neckel, Keith W. Nicholls, Timm Schultz, Daniel Steinhage, Michael Wolovick, and Ole Zeising
The Cryosphere, 16, 4107–4139, https://doi.org/10.5194/tc-16-4107-2022, https://doi.org/10.5194/tc-16-4107-2022, 2022
Short summary
Short summary
Ice shelves are normally flat structures that fringe the Antarctic continent. At some locations they have channels incised into their underside. On Filchner Ice Shelf, such a channel is more than 50 km long and up to 330 m high. We conducted field measurements of basal melt rates and found a maximum of 2 m yr−1. Simulations represent the geometry evolution of the channel reasonably well. There is no reason to assume that this type of melt channel is destabilizing ice shelves.
Vasaw Tripathi, Andreas Groh, Martin Horwath, and Raaj Ramsankaran
Hydrol. Earth Syst. Sci., 26, 4515–4535, https://doi.org/10.5194/hess-26-4515-2022, https://doi.org/10.5194/hess-26-4515-2022, 2022
Short summary
Short summary
GRACE/GRACE-FO provided global observations of water storage change since 2002. Scaling is a common approach to compensate for the spatial filtering inherent to the results. However, for complex hydrological basins, the compatibility of scaling with the characteristics of regional hydrology has been rarely assessed. We assess traditional scaling approaches and a new scaling approach for the Indus Basin. Our results will help users with regional focus understand implications of scaling choices.
Erik Loebel, Luisa von Albedyll, Rey Mourot, and Lena Nicola
Polarforschung, 90, 29–32, https://doi.org/10.5194/polf-90-29-2022, https://doi.org/10.5194/polf-90-29-2022, 2022
Short summary
Short summary
On the occasion of Polar Week in March 2021 and with the motto
let’s talk fieldwork, APECS Germany hosted an online polar fieldwork panel discussion. Joined by a group of six early-career polar scientists and an audience of over 140 participants, the event provided an informal environment for debating experiences, issues and ideas. This contribution summarizes the event, sharing practical knowledge about polar fieldwork and fieldwork opportunities for early-career scientists.
Yannic Fischler, Martin Rückamp, Christian Bischof, Vadym Aizinger, Mathieu Morlighem, and Angelika Humbert
Geosci. Model Dev., 15, 3753–3771, https://doi.org/10.5194/gmd-15-3753-2022, https://doi.org/10.5194/gmd-15-3753-2022, 2022
Short summary
Short summary
Ice sheet models are used to simulate the changes of ice sheets in future but are currently often run in coarse resolution and/or with neglecting important physics to make them affordable in terms of computational costs. We conducted a study simulating the Greenland Ice Sheet in high resolution and adequate physics to test where the ISSM ice sheet code is using most time and what could be done to improve its performance for future computer architectures that allow massive parallel computing.
M. Reza Ershadi, Reinhard Drews, Carlos Martín, Olaf Eisen, Catherine Ritz, Hugh Corr, Julia Christmann, Ole Zeising, Angelika Humbert, and Robert Mulvaney
The Cryosphere, 16, 1719–1739, https://doi.org/10.5194/tc-16-1719-2022, https://doi.org/10.5194/tc-16-1719-2022, 2022
Short summary
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.
Martin Rückamp, Thomas Kleiner, and Angelika Humbert
The Cryosphere, 16, 1675–1696, https://doi.org/10.5194/tc-16-1675-2022, https://doi.org/10.5194/tc-16-1675-2022, 2022
Short summary
Short summary
We present a comparative modelling study between the full-Stokes (FS) and Blatter–Pattyn (BP) approximation applied to the Northeast Greenland Ice Stream. Both stress regimes are implemented in one single ice sheet code to eliminate numerical issues. The simulations unveil minor differences in the upper ice stream but become considerable at the grounding line of the 79° North Glacier. Model differences are stronger for a power-law friction than a linear friction law.
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere, 16, 1469–1482, https://doi.org/10.5194/tc-16-1469-2022, https://doi.org/10.5194/tc-16-1469-2022, 2022
Short summary
Short summary
Remote-sensing-derived basal melt rates of ice shelves are of great importance due to their capability to cover larger areas. We performed in situ measurements with a phase-sensitive radar on the southern Filchner Ice Shelf, showing moderate melt rates and low small-scale spatial variability. The comparison with remote-sensing-based melt rates revealed large differences caused by the estimation of vertical strain rates from remote sensing velocity fields that modern fields can overcome.
Steven Franke, Daniela Jansen, Tobias Binder, John D. Paden, Nils Dörr, Tamara A. Gerber, Heinrich Miller, Dorthe Dahl-Jensen, Veit Helm, Daniel Steinhage, Ilka Weikusat, Frank Wilhelms, and Olaf Eisen
Earth Syst. Sci. Data, 14, 763–779, https://doi.org/10.5194/essd-14-763-2022, https://doi.org/10.5194/essd-14-763-2022, 2022
Short summary
Short summary
The Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland. In order to better understand the past and future dynamics of the NEGIS, we present a high-resolution airborne radar data set (EGRIP-NOR-2018) for the onset region of the NEGIS. The survey area is centered at the location of the drill site of the East Greenland Ice-Core Project (EastGRIP), and radar profiles cover both shear margins and are aligned parallel to several flow lines.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Timm Schultz, Ralf Müller, Dietmar Gross, and Angelika Humbert
The Cryosphere, 16, 143–158, https://doi.org/10.5194/tc-16-143-2022, https://doi.org/10.5194/tc-16-143-2022, 2022
Short summary
Short summary
Firn is the interstage product between snow and ice. Simulations describing the process of firn densification are used in the context of estimating mass changes of the ice sheets and past climate reconstructions. The first stage of firn densification takes place in the upper few meters of the firn column. We investigate how well a material law describing the process of grain boundary sliding works for the numerical simulation of firn densification in this stage.
Lukas Müller, Martin Horwath, Mirko Scheinert, Christoph Mayer, Benjamin Ebermann, Dana Floricioiu, Lukas Krieger, Ralf Rosenau, and Saurabh Vijay
The Cryosphere, 15, 3355–3375, https://doi.org/10.5194/tc-15-3355-2021, https://doi.org/10.5194/tc-15-3355-2021, 2021
Short summary
Short summary
Harald Moltke Bræ, a marine-terminating glacier in north-western Greenland, undergoes remarkable surges of episodic character. Our data show that a recent surge from 2013 to 2019 was initiated at the glacier front and exhibits a pronounced seasonality with flow velocities varying by 1 order of magnitude, which has not been observed at Harald Moltke Bræ in this way before. These findings are crucial for understanding surge mechanisms at Harald Moltke Bræ and other marine-terminating glaciers.
Ole Zeising and Angelika Humbert
The Cryosphere, 15, 3119–3128, https://doi.org/10.5194/tc-15-3119-2021, https://doi.org/10.5194/tc-15-3119-2021, 2021
Short summary
Short summary
Greenland’s largest ice stream – the Northeast Greenland Ice Stream (NEGIS) – extends far into the interior of the ice sheet. Basal meltwater acts as a lubricant for glaciers and sustains sliding. Hence, observations of basal melt rates are of high interest. We performed two time series of precise ground-based radar measurements in the upstream region of NEGIS and found high melt rates of 0.19 ± 0.04 m per year.
Mirko Scheinert, Christoph Mayer, Martin Horwath, Matthias Braun, Anja Wendt, and Daniel Steinhage
Polarforschung, 89, 57–64, https://doi.org/10.5194/polf-89-57-2021, https://doi.org/10.5194/polf-89-57-2021, 2021
Short summary
Short summary
Ice sheets, glaciers and further ice-covered areas with their changes as well as interactions with the solid Earth and the ocean are subject of intensive research, especially against the backdrop of global climate change. The resulting questions are of concern to scientists from various disciplines such as geodesy, glaciology, physical geography and geophysics. Thus, the working group "Polar Geodesy and Glaciology", founded in 2013, offers a forum for discussion and stimulating exchange.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
Short summary
Support Force Glacier rapidly flows into Filcher Ice Shelf of Antarctica. As we know little about this glacier and its subglacial drainage, we used seismic energy to map the transition area from grounded to floating ice where a drainage channel enters the ocean cavity. Soft sediments close to the grounding line are probably transported by this drainage channel. The constant ice thickness over the steeply dipping seabed of the ocean cavity suggests a stable transition and little basal melting.
Stefan Kowalewski, Veit Helm, Elizabeth Mary Morris, and Olaf Eisen
The Cryosphere, 15, 1285–1305, https://doi.org/10.5194/tc-15-1285-2021, https://doi.org/10.5194/tc-15-1285-2021, 2021
Short summary
Short summary
This study presents estimates of total mass input for the Pine Island Glacier (PIG) over the period 2005–2014 from airborne radar measurements. Our analysis reveals a total mass input similar to an earlier estimate for the period 1985–2009 and same area. This suggests a stationary total mass input contrary to the accelerated mass loss of PIG over the past decades. However, we also find that its uncertainty is highly sensitive to the geostatistical assumptions required for its calculation.
Evelyn Jäkel, Tim Carlsen, André Ehrlich, Manfred Wendisch, Michael Schäfer, Sophie Rosenburg, Konstantina Nakoudi, Marco Zanatta, Gerit Birnbaum, Veit Helm, Andreas Herber, Larysa Istomina, Linlu Mei, and Anika Rohde
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-14, https://doi.org/10.5194/tc-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Different approaches to retrieve the optical-equivalent snow grain size using satellite, airborne, and ground-based observations were evaluated and compared to modeled data. The study is focused on low Sun and partly rough surface conditions encountered North of Greenland in March/April 2018. We proposed an adjusted airborne retrieval method to reduce the retrieval uncertainty.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020, https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Short summary
The angular reflection of solar radiation by snow surfaces is particularly anisotropic and highly variable. We measured the angular reflection from an aircraft using a digital camera in Antarctica in 2013/14 and studied its variability: the anisotropy increases with a lower Sun but decreases for rougher surfaces and larger snow grains. The applied methodology allows for a direct comparison with satellite observations, which generally underestimated the anisotropy measured within this study.
Martin Rückamp, Heiko Goelzer, and Angelika Humbert
The Cryosphere, 14, 3309–3327, https://doi.org/10.5194/tc-14-3309-2020, https://doi.org/10.5194/tc-14-3309-2020, 2020
Short summary
Short summary
Estimates of future sea-level contribution from the Greenland ice sheet have a large uncertainty based on different origins. We conduct numerical experiments to test the sensitivity of Greenland ice sheet projections to spatial resolution. Simulations with a higher resolution unveil up to 5 % more sea-level rise compared to coarser resolutions. The sensitivity depends on the magnitude of outlet glacier retreat. When no retreat is enforced, the sensitivity exhibits an inverse behaviour.
Martin Rückamp, Angelika Humbert, Thomas Kleiner, Mathieu Morlighem, and Helene Seroussi
Geosci. Model Dev., 13, 4491–4501, https://doi.org/10.5194/gmd-13-4491-2020, https://doi.org/10.5194/gmd-13-4491-2020, 2020
Short summary
Short summary
We present enthalpy formulations within the Ice-Sheet and Sea-Level System model that show better performance than earlier implementations. A first experiment indicates that the treatment of discontinuous conductivities of the solid–fluid system with a geometric mean produce accurate results when applied to coarse vertical resolutions. In a second experiment, we propose a novel stabilization formulation that avoids the problem of thin elements. This method provides accurate and stable results.
Heiko Goelzer, Sophie Nowicki, Anthony Payne, Eric Larour, Helene Seroussi, William H. Lipscomb, Jonathan Gregory, Ayako Abe-Ouchi, Andrew Shepherd, Erika Simon, Cécile Agosta, Patrick Alexander, Andy Aschwanden, Alice Barthel, Reinhard Calov, Christopher Chambers, Youngmin Choi, Joshua Cuzzone, Christophe Dumas, Tamsin Edwards, Denis Felikson, Xavier Fettweis, Nicholas R. Golledge, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Sebastien Le clec'h, Victoria Lee, Gunter Leguy, Chris Little, Daniel P. Lowry, Mathieu Morlighem, Isabel Nias, Aurelien Quiquet, Martin Rückamp, Nicole-Jeanne Schlegel, Donald A. Slater, Robin S. Smith, Fiamma Straneo, Lev Tarasov, Roderik van de Wal, and Michiel van den Broeke
The Cryosphere, 14, 3071–3096, https://doi.org/10.5194/tc-14-3071-2020, https://doi.org/10.5194/tc-14-3071-2020, 2020
Short summary
Short summary
In this paper we use a large ensemble of Greenland ice sheet models forced by six different global climate models to project ice sheet changes and sea-level rise contributions over the 21st century.
The results for two different greenhouse gas concentration scenarios indicate that the Greenland ice sheet will continue to lose mass until 2100, with contributions to sea-level rise of 90 ± 50 mm and 32 ± 17 mm for the high (RCP8.5) and low (RCP2.6) scenario, respectively.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
E. Nocerino, F. Menna, and R. Hänsch
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2020, 63–67, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-63-2020, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-63-2020, 2020
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu
The Cryosphere, 14, 2283–2301, https://doi.org/10.5194/tc-14-2283-2020, https://doi.org/10.5194/tc-14-2283-2020, 2020
Short summary
Short summary
We present the results of the third Marine Ice Sheet Intercomparison Project (MISMIP+). MISMIP+ is one in a series of exercises that test numerical models of ice sheet flow in simple situations. This particular exercise concentrates on the response of ice sheet models to the thinning of their floating ice shelves, which is of interest because numerical models are currently used to model the response to contemporary and near-future thinning in Antarctic ice shelves.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Marco Meloni, Jerome Bouffard, Tommaso Parrinello, Geoffrey Dawson, Florent Garnier, Veit Helm, Alessandro Di Bella, Stefan Hendricks, Robert Ricker, Erica Webb, Ben Wright, Karina Nielsen, Sanggyun Lee, Marcello Passaro, Michele Scagliola, Sebastian Bjerregaard Simonsen, Louise Sandberg Sørensen, David Brockley, Steven Baker, Sara Fleury, Jonathan Bamber, Luca Maestri, Henriette Skourup, René Forsberg, and Loretta Mizzi
The Cryosphere, 14, 1889–1907, https://doi.org/10.5194/tc-14-1889-2020, https://doi.org/10.5194/tc-14-1889-2020, 2020
Short summary
Short summary
This manuscript aims to describe the evolutions which have been implemented in the new CryoSat Ice processing chain Baseline-D and the validation activities carried out in different domains such as sea ice, land ice and hydrology.
This new CryoSat processing Baseline-D will maximise the uptake and use of CryoSat data by scientific users since it offers improved capability for monitoring the complex and multiscale changes over the cryosphere.
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020, https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Short summary
We provide an estimate of the future sea level contribution of Antarctica from basal ice shelf melting up to the year 2100. The full uncertainty range in the warming-related forcing of basal melt is estimated and applied to 16 state-of-the-art ice sheet models using a linear response theory approach. The sea level contribution we obtain is very likely below 61 cm under unmitigated climate change until 2100 (RCP8.5) and very likely below 40 cm if the Paris Climate Agreement is kept.
Matthias O. Willen, Martin Horwath, Ludwig Schröder, Andreas Groh, Stefan R. M. Ligtenberg, Peter Kuipers Munneke, and Michiel R. van den Broeke
The Cryosphere, 14, 349–366, https://doi.org/10.5194/tc-14-349-2020, https://doi.org/10.5194/tc-14-349-2020, 2020
Hélène Seroussi, Sophie Nowicki, Erika Simon, Ayako Abe-Ouchi, Torsten Albrecht, Julien Brondex, Stephen Cornford, Christophe Dumas, Fabien Gillet-Chaulet, Heiko Goelzer, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Thomas Kleiner, Eric Larour, Gunter Leguy, William H. Lipscomb, Daniel Lowry, Matthias Mengel, Mathieu Morlighem, Frank Pattyn, Anthony J. Payne, David Pollard, Stephen F. Price, Aurélien Quiquet, Thomas J. Reerink, Ronja Reese, Christian B. Rodehacke, Nicole-Jeanne Schlegel, Andrew Shepherd, Sainan Sun, Johannes Sutter, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, and Tong Zhang
The Cryosphere, 13, 1441–1471, https://doi.org/10.5194/tc-13-1441-2019, https://doi.org/10.5194/tc-13-1441-2019, 2019
Short summary
Short summary
We compare a wide range of Antarctic ice sheet simulations with varying initialization techniques and model parameters to understand the role they play on the projected evolution of this ice sheet under simple scenarios. Results are improved compared to previous assessments and show that continued improvements in the representation of the floating ice around Antarctica are critical to reduce the uncertainty in the future ice sheet contribution to sea level rise.
Ludwig Schröder, Martin Horwath, Reinhard Dietrich, Veit Helm, Michiel R. van den Broeke, and Stefan R. M. Ligtenberg
The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, https://doi.org/10.5194/tc-13-427-2019, 2019
Short summary
Short summary
We developed an approach to combine measurements of seven satellite altimetry missions over the Antarctic Ice Sheet. Our resulting monthly grids of elevation changes between 1978 and 2017 provide unprecedented details of the long-term and interannual variation. Derived mass changes agree well with contemporaneous data of surface mass balance and satellite gravimetry and show which regions were responsible for the significant accelerations of mass loss in recent years.
Sebastian Beyer, Thomas Kleiner, Vadym Aizinger, Martin Rückamp, and Angelika Humbert
The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018, https://doi.org/10.5194/tc-12-3931-2018, 2018
Short summary
Short summary
The evolution of subglacial channels below ice sheets is very important for the dynamics of glaciers as the water acts as a lubricant. We present a new numerical model (CUAS) that generalizes existing approaches by accounting for two different flow situations within a single porous medium layer: (1) a confined aquifer if sufficient water supply is available and (2) an unconfined aquifer, otherwise. The model is applied to artificial scenarios as well as to the Northeast Greenland Ice Stream.
Martin Rückamp, Ulrike Falk, Katja Frieler, Stefan Lange, and Angelika Humbert
Earth Syst. Dynam., 9, 1169–1189, https://doi.org/10.5194/esd-9-1169-2018, https://doi.org/10.5194/esd-9-1169-2018, 2018
Short summary
Short summary
Sea-level rise associated with changing climate is expected to pose a major challenge for societies. Based on the efforts of COP21 to limit global warming to 2.0 °C by the end of the 21st century (Paris Agreement), we simulate the future contribution of the Greenland ice sheet (GrIS) to sea-level change. The projected sea-level rise ranges between 21–38 mm by 2100
and 36–85 mm by 2300. Our results indicate that uncertainties in the projections stem from the underlying climate data.
Reinhard Calov, Sebastian Beyer, Ralf Greve, Johanna Beckmann, Matteo Willeit, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Andrey Ganopolski
The Cryosphere, 12, 3097–3121, https://doi.org/10.5194/tc-12-3097-2018, https://doi.org/10.5194/tc-12-3097-2018, 2018
Short summary
Short summary
We present RCP 4.5 and 8.5 projections for the Greenland glacial system with the new glacial system model IGLOO 1.0, which incorporates the ice sheet model SICOPOLIS 3.3, a model of basal hydrology and a parameterization of submarine melt of outlet glaciers. Surface temperature and mass balance anomalies from the MAR climate model serve as forcing delivering projections for the contribution of the Greenland ice sheet to sea level rise and submarine melt of Helheim and Store outlet glaciers.
Nanna B. Karlsson, Tobias Binder, Graeme Eagles, Veit Helm, Frank Pattyn, Brice Van Liefferinge, and Olaf Eisen
The Cryosphere, 12, 2413–2424, https://doi.org/10.5194/tc-12-2413-2018, https://doi.org/10.5194/tc-12-2413-2018, 2018
Short summary
Short summary
In this study, we investigate the probability that the Dome Fuji region in East Antarctica contains ice more than 1.5 Ma old. The retrieval of a continuous ice-core record extending beyond 1 Ma is imperative to understand why the frequency of ice ages changed from 40 to 100 ka approximately 1 Ma ago.
We use a new radar dataset to improve the ice thickness maps, and apply a thermokinematic model to predict basal temperature and age of the ice. Our results indicate several areas of interest.
Heiko Goelzer, Sophie Nowicki, Tamsin Edwards, Matthew Beckley, Ayako Abe-Ouchi, Andy Aschwanden, Reinhard Calov, Olivier Gagliardini, Fabien Gillet-Chaulet, Nicholas R. Golledge, Jonathan Gregory, Ralf Greve, Angelika Humbert, Philippe Huybrechts, Joseph H. Kennedy, Eric Larour, William H. Lipscomb, Sébastien Le clec'h, Victoria Lee, Mathieu Morlighem, Frank Pattyn, Antony J. Payne, Christian Rodehacke, Martin Rückamp, Fuyuki Saito, Nicole Schlegel, Helene Seroussi, Andrew Shepherd, Sainan Sun, Roderik van de Wal, and Florian A. Ziemen
The Cryosphere, 12, 1433–1460, https://doi.org/10.5194/tc-12-1433-2018, https://doi.org/10.5194/tc-12-1433-2018, 2018
Short summary
Short summary
We have compared a wide spectrum of different initialisation techniques used in the ice sheet modelling community to define the modelled present-day Greenland ice sheet state as a starting point for physically based future-sea-level-change projections. Compared to earlier community-wide comparisons, we find better agreement across different models, which implies overall improvement of our understanding of what is needed to produce such initial states.
Ingo Sasgen, Alba Martín-Español, Alexander Horvath, Volker Klemann, Elizabeth J. Petrie, Bert Wouters, Martin Horwath, Roland Pail, Jonathan L. Bamber, Peter J. Clarke, Hannes Konrad, Terry Wilson, and Mark R. Drinkwater
Earth Syst. Sci. Data, 10, 493–523, https://doi.org/10.5194/essd-10-493-2018, https://doi.org/10.5194/essd-10-493-2018, 2018
Short summary
Short summary
We present a collection of data sets, consisting of surface-elevation rates for Antarctic ice sheet from a combination of Envisat and ICESat, bedrock uplift rates for 118 GPS sites in Antarctica, and optimally filtered GRACE gravity field rates. We provide viscoelastic response functions to a disc load forcing for Earth structures present in East and West Antarctica. This data collection enables a joint inversion for present-day ice-mass changes and glacial isostatic adjustment in Antarctica.
Sophie Berger, Reinhard Drews, Veit Helm, Sainan Sun, and Frank Pattyn
The Cryosphere, 11, 2675–2690, https://doi.org/10.5194/tc-11-2675-2017, https://doi.org/10.5194/tc-11-2675-2017, 2017
Short summary
Short summary
Floating ice shelves act as a plug for the Antarctic ice sheet. The efficiency of this ice plug depends on how and how much the ocean melts the ice from below. This study relies on satellite imagery and a Lagrangian approach to map in detail the basal mass balance of an Antarctic ice shelf. Although the large-scale melting pattern of the ice shelf agrees with previous studies, our technique successfully detects local variability (< 1 km) in the basal melting of the ice shelf.
Melanie Rankl, Johannes Jakob Fürst, Angelika Humbert, and Matthias Holger Braun
The Cryosphere, 11, 1199–1211, https://doi.org/10.5194/tc-11-1199-2017, https://doi.org/10.5194/tc-11-1199-2017, 2017
Ludwig Schröder, Andreas Richter, Denis V. Fedorov, Lutz Eberlein, Evgeny V. Brovkov, Sergey V. Popov, Christoph Knöfel, Martin Horwath, Reinhard Dietrich, Alexey Y. Matveev, Mirko Scheinert, and Valery V. Lukin
The Cryosphere, 11, 1111–1130, https://doi.org/10.5194/tc-11-1111-2017, https://doi.org/10.5194/tc-11-1111-2017, 2017
Short summary
Short summary
The paper describes the processing of kinematic GNSS data observed over nine seasons in East Antarctica. The obtained surface elevation profiles are used to validate several data sets of satellite altimetry. Thus, we find a clear recommendation that processing versions provide the highest accuracy and precision. The profiles are used to derive a new set of ICESat laser campaign biases and finally, to evaluate several DEMs.
Thomas B. Overly, Robert L. Hawley, Veit Helm, Elizabeth M. Morris, and Rohan N. Chaudhary
The Cryosphere, 10, 1679–1694, https://doi.org/10.5194/tc-10-1679-2016, https://doi.org/10.5194/tc-10-1679-2016, 2016
Short summary
Short summary
We demonstrate that snow accumulation rates across the Greenland Ice Sheet, determined from RADAR layers and modeled snow density profiles, are identical to ground-based measurements of snow accumulation. Three regional climate models underestimate snow accumulation compared to RADAR layer estimates. Using RADAR increases spatial coverage and improves accuracy of snow accumulation estimates. Incorporating our results into climate models may reduce uncertainty of sea-level rise estimates.
Sandra Schwegmann, Eero Rinne, Robert Ricker, Stefan Hendricks, and Veit Helm
The Cryosphere, 10, 1415–1425, https://doi.org/10.5194/tc-10-1415-2016, https://doi.org/10.5194/tc-10-1415-2016, 2016
Short summary
Short summary
Our study aimed to investigate whether CS-2 and Envisat radar freeboard can be merged without intermission biases in order to obtain a 20-year data set. The comparison revealed a reasonable regional agreement between radar freeboards derived from both sensors. Differences are mostly below 0.1 m for modal freeboard and even less for mean freeboard over winter months (May–October). The highest differences occur in regions with multi-year sea ice and along the coasts.
Eythor Gudlaugsson, Angelika Humbert, Thomas Kleiner, Jack Kohler, and Karin Andreassen
The Cryosphere, 10, 751–760, https://doi.org/10.5194/tc-10-751-2016, https://doi.org/10.5194/tc-10-751-2016, 2016
Short summary
Short summary
This paper explores the influence of a subglacial lake on ice dynamics and internal layers by means of numerical modelling as well as simulating the effect of a subglacial drainage event on isochrones. We provide an explanation for characteristic dip and ridge features found at the edges of many subglacial lakes and conclude that draining lakes can result in travelling waves at depth within isochrones, thus indicating the possibility of detecting past drainage events with ice penetrating radar.
Johannes H. Bondzio, Hélène Seroussi, Mathieu Morlighem, Thomas Kleiner, Martin Rückamp, Angelika Humbert, and Eric Y. Larour
The Cryosphere, 10, 497–510, https://doi.org/10.5194/tc-10-497-2016, https://doi.org/10.5194/tc-10-497-2016, 2016
Short summary
Short summary
We implemented a level-set method in the ice sheet system model. This method allows us to dynamically evolve a calving front subject to user-defined calving rates. We apply the method to Jakobshavn Isbræ, West Greenland, and study its response to calving rate perturbations. We find its behaviour strongly dependent on the calving rate, which was to be expected. Both reduced basal drag and rheological shear margin weakening sustain the acceleration of this dynamic outlet glacier.
S. Goeller, V. Helm, M. Thoma, and K. Grosfeld
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-3995-2015, https://doi.org/10.5194/tcd-9-3995-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The Ross Ice Streams in West Antarctica showed a high variability in the past. We model basal water pathways and catchment areas for present and future ice sheet geometries (gained by applying satellite-derived elevation change rates) in this sector. Thus, we can explain the current ice stream configuration and estimate implications for the next two centuries, where we find that a major basal hydraulic tributary of the Kamb and Whillans IS could be redirected underneath the Bindschadler IS.
J. Christmann, R. Müller, K. G. Webber, D. Isaia, F. H. Schader, S. Kipfstuhl, J. Freitag, and A. Humbert
Earth Syst. Sci. Data, 7, 87–92, https://doi.org/10.5194/essd-7-87-2015, https://doi.org/10.5194/essd-7-87-2015, 2015
N. Wilkens, J. Behrens, T. Kleiner, D. Rippin, M. Rückamp, and A. Humbert
The Cryosphere, 9, 675–690, https://doi.org/10.5194/tc-9-675-2015, https://doi.org/10.5194/tc-9-675-2015, 2015
T. Kleiner, M. Rückamp, J. H. Bondzio, and A. Humbert
The Cryosphere, 9, 217–228, https://doi.org/10.5194/tc-9-217-2015, https://doi.org/10.5194/tc-9-217-2015, 2015
Short summary
Short summary
We present benchmark experiments and analytical solutions to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. The results of the applied models agree well with the analytical solutions if the change in conductivity between cold and temperate ice is properly considered in the model.
R. Ricker, S. Hendricks, V. Helm, H. Skourup, and M. Davidson
The Cryosphere, 8, 1607–1622, https://doi.org/10.5194/tc-8-1607-2014, https://doi.org/10.5194/tc-8-1607-2014, 2014
V. Helm, A. Humbert, and H. Miller
The Cryosphere, 8, 1539–1559, https://doi.org/10.5194/tc-8-1539-2014, https://doi.org/10.5194/tc-8-1539-2014, 2014
L. Gray, D. Burgess, L. Copland, R. Cullen, N. Galin, R. Hawley, and V. Helm
The Cryosphere, 7, 1857–1867, https://doi.org/10.5194/tc-7-1857-2013, https://doi.org/10.5194/tc-7-1857-2013, 2013
M. Zygmuntowska, K. Khvorostovsky, V. Helm, and S. Sandven
The Cryosphere, 7, 1315–1324, https://doi.org/10.5194/tc-7-1315-2013, https://doi.org/10.5194/tc-7-1315-2013, 2013
Related subject area
Discipline: Ice sheets | Subject: Remote Sensing
Change in grounding line location on the Antarctic Peninsula measured using a tidal motion offset correlation method
Sentinel-1 detection of ice slabs on the Greenland Ice Sheet
A Framework for Automated Supraglacial Lake Detection and Depth Retrieval in ICESat-2 Photon Data Across the Greenland and Antarctic Ice Sheets
Mapping the extent of giant Antarctic icebergs with deep learning
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
AutoTerm: an automated pipeline for glacier terminus extraction using machine learning and a “big data” repository of Greenland glacier termini
Machine learning of Antarctic firn density by combining radiometer and scatterometer remote sensing data
Recent changes in drainage route and outburst magnitude of the Russell Glacier ice-dammed lake, West Greenland
Grounding line retreat and tide-modulated ocean channels at Moscow University and Totten Glacier ice shelves, East Antarctica
Seasonal land-ice-flow variability in the Antarctic Peninsula
Empirical correction of systematic orthorectification error in Sentinel-2 velocity fields for Greenlandic outlet glaciers
A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry
An empirical algorithm to map perennial firn aquifers and ice slabs within the Greenland Ice Sheet using satellite L-band microwave radiometry
Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery
Penetration of interferometric radar signals in Antarctic snow
Brief communication: Ice sheet elevation measurements from the Sentinel-3A and Sentinel-3B tandem phase
Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals
Brief communication: Mapping Greenland's perennial firn aquifers using enhanced-resolution L-band brightness temperature image time series
Quantifying spatiotemporal variability of glacier algal blooms and the impact on surface albedo in southwestern Greenland
Aerogeophysical characterization of an active subglacial lake system in the David Glacier catchment, Antarctica
Measuring the location and width of the Antarctic grounding zone using CryoSat-2
Brief Communication: Update on the GPS reflection technique for measuring snow accumulation in Greenland
Improved GNSS-R bi-static altimetry and independent digital elevation models of Greenland and Antarctica from TechDemoSat-1
Melt in Antarctica derived from Soil Moisture and Ocean Salinity (SMOS) observations at L band
Sentinel-3 Delay-Doppler altimetry over Antarctica
The Reference Elevation Model of Antarctica
Assessment of altimetry using ground-based GPS data from the 88S Traverse, Antarctica, in support of ICESat-2
Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland
Coherent large beamwidth processing of radio-echo sounding data
Multi-channel and multi-polarization radar measurements around the NEEM site
Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet
Recent dynamic changes on Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula
Benjamin J. Wallis, Anna E. Hogg, Yikai Zhu, and Andrew Hooper
The Cryosphere, 18, 4723–4742, https://doi.org/10.5194/tc-18-4723-2024, https://doi.org/10.5194/tc-18-4723-2024, 2024
Short summary
Short summary
The grounding line, where ice begins to float, is an essential variable to understand ice dynamics, but in some locations it can be challenging to measure with established techniques. Using satellite data and a new method, Wallis et al. measure the grounding line position of glaciers and ice shelves in the Antarctic Peninsula and find retreats of up to 16.3 km have occurred since the last time measurements were made in the 1990s.
Riley Culberg, Roger J. Michaelides, and Julie Z. Miller
The Cryosphere, 18, 2531–2555, https://doi.org/10.5194/tc-18-2531-2024, https://doi.org/10.5194/tc-18-2531-2024, 2024
Short summary
Short summary
Ice slabs enhance meltwater runoff from the Greenland Ice Sheet. Therefore, it is important to understand their extent and change in extent over time. We present a new method for detecting ice slabs in satellite radar data, which we use to map ice slabs at 500 m resolution across the entire ice sheet in winter 2016–2017. Our results provide better spatial coverage and resolution than previous maps from airborne radar and lay the groundwork for long-term monitoring of ice slabs from space.
Philipp Sebastian Arndt and Helen Amanda Fricker
EGUsphere, https://doi.org/10.5194/egusphere-2024-1156, https://doi.org/10.5194/egusphere-2024-1156, 2024
Short summary
Short summary
We develop a method for ice-sheet-scale retrieval of supraglacial meltwater depths using ICESat-2 photon data. We report results for two drainage basins in Greenland and Antarctica during two contrasting melt seasons, where our method reveals a total of 1249 lakes up to 25 m deep. The large volume and wide variety of accurate depth data that our method provides enables the development of data-driven models of meltwater volumes in satellite imagery.
Anne Braakmann-Folgmann, Andrew Shepherd, David Hogg, and Ella Redmond
The Cryosphere, 17, 4675–4690, https://doi.org/10.5194/tc-17-4675-2023, https://doi.org/10.5194/tc-17-4675-2023, 2023
Short summary
Short summary
In this study, we propose a deep neural network to map the extent of giant Antarctic icebergs in Sentinel-1 images automatically. While each manual delineation requires several minutes, our U-net takes less than 0.01 s. In terms of accuracy, we find that U-net outperforms two standard segmentation techniques (Otsu, k-means) in most metrics and is more robust to challenging scenes with sea ice, coast and other icebergs. The absolute median deviation in iceberg area across 191 images is 4.1 %.
Trystan Surawy-Stepney, Anna E. Hogg, Stephen L. Cornford, and David C. Hogg
The Cryosphere, 17, 4421–4445, https://doi.org/10.5194/tc-17-4421-2023, https://doi.org/10.5194/tc-17-4421-2023, 2023
Short summary
Short summary
The presence of crevasses in Antarctica influences how the ice sheet behaves. It is important, therefore, to collect data on the spatial distribution of crevasses and how they are changing. We present a method of mapping crevasses from satellite radar imagery and apply it to 7.5 years of images, covering Antarctica's floating and grounded ice. We develop a method of measuring change in the density of crevasses and quantify increased fracturing in important parts of the West Antarctic Ice Sheet.
Enze Zhang, Ginny Catania, and Daniel T. Trugman
The Cryosphere, 17, 3485–3503, https://doi.org/10.5194/tc-17-3485-2023, https://doi.org/10.5194/tc-17-3485-2023, 2023
Short summary
Short summary
Glacier termini are essential for studying why glaciers retreat, but they need to be mapped automatically due to the volume of satellite images. Existing automated mapping methods have been limited due to limited automation, lack of quality control, and inadequacy in highly diverse terminus environments. We design a fully automated, deep-learning-based method to produce termini with quality control. We produced 278 239 termini in Greenland and provided a way to deliver new termini regularly.
Weiran Li, Sanne B. M. Veldhuijsen, and Stef Lhermitte
EGUsphere, https://doi.org/10.5194/egusphere-2023-1556, https://doi.org/10.5194/egusphere-2023-1556, 2023
Short summary
Short summary
This study used a machine learning approach to estimate the densities over the Antarctic Ice Sheet, particularly in the areas where the snow is usually dry. The motivation is to establish a link between satellite parameters to snow densities, as measurements are difficult for people to take on site. It provides valuable insights into the complexities of the relationship between satellite parameters and firn density and provides potential for further studies.
Mads Dømgaard, Kristian K. Kjeldsen, Flora Huiban, Jonathan L. Carrivick, Shfaqat A. Khan, and Anders A. Bjørk
The Cryosphere, 17, 1373–1387, https://doi.org/10.5194/tc-17-1373-2023, https://doi.org/10.5194/tc-17-1373-2023, 2023
Short summary
Short summary
Sudden releases of meltwater from glacier-dammed lakes can influence ice flow, cause flooding hazards and landscape changes. This study presents a record of 14 drainages from 2007–2021 from a lake in west Greenland. The time series reveals how the lake fluctuates between releasing large and small amounts of drainage water which is caused by a weakening of the damming glacier following the large events. We also find a shift in the water drainage route which increases the risk of flooding hazards.
Tian Li, Geoffrey J. Dawson, Stephen J. Chuter, and Jonathan L. Bamber
The Cryosphere, 17, 1003–1022, https://doi.org/10.5194/tc-17-1003-2023, https://doi.org/10.5194/tc-17-1003-2023, 2023
Short summary
Short summary
The Totten and Moscow University glaciers in East Antarctica have the potential to make a significant contribution to future sea-level rise. We used a combination of different satellite measurements to show that the grounding lines have been retreating along the fast-flowing ice streams across these two glaciers. We also found two tide-modulated ocean channels that might open new pathways for the warm ocean water to enter the ice shelf cavity.
Karla Boxall, Frazer D. W. Christie, Ian C. Willis, Jan Wuite, and Thomas Nagler
The Cryosphere, 16, 3907–3932, https://doi.org/10.5194/tc-16-3907-2022, https://doi.org/10.5194/tc-16-3907-2022, 2022
Short summary
Short summary
Using high-spatial- and high-temporal-resolution satellite imagery, we provide the first evidence for seasonal flow variability of land ice draining to George VI Ice Shelf (GVIIS), Antarctica. Ultimately, our findings imply that other glaciers in Antarctica may be susceptible to – and/or currently undergoing – similar ice-flow seasonality, including at the highly vulnerable and rapidly retreating Pine Island and Thwaites glaciers.
Thomas R. Chudley, Ian M. Howat, Bidhyananda Yadav, and Myoung-Jong Noh
The Cryosphere, 16, 2629–2642, https://doi.org/10.5194/tc-16-2629-2022, https://doi.org/10.5194/tc-16-2629-2022, 2022
Short summary
Short summary
Sentinel-2 images are subject to distortion due to orthorectification error, which makes it difficult to extract reliable glacier velocity fields from images from different orbits. Here, we use a complete record of velocity fields at four Greenlandic outlet glaciers to empirically estimate the systematic error, allowing us to correct cross-track glacier velocity fields to a comparable accuracy to other medium-resolution satellite datasets.
Weiran Li, Cornelis Slobbe, and Stef Lhermitte
The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, https://doi.org/10.5194/tc-16-2225-2022, 2022
Short summary
Short summary
This study proposes a new method for correcting the slope-induced errors in satellite radar altimetry. The slope-induced errors can significantly affect the height estimations of ice sheets if left uncorrected. This study applies the method to radar altimetry data (CryoSat-2) and compares the performance with two existing methods. The performance is assessed by comparison with independent height measurements from ICESat-2. The assessment shows that the method performs promisingly.
Julie Z. Miller, Riley Culberg, David G. Long, Christopher A. Shuman, Dustin M. Schroeder, and Mary J. Brodzik
The Cryosphere, 16, 103–125, https://doi.org/10.5194/tc-16-103-2022, https://doi.org/10.5194/tc-16-103-2022, 2022
Short summary
Short summary
We use L-band brightness temperature imagery from NASA's Soil Moisture Active Passive (SMAP) satellite to map the extent of perennial firn aquifer and ice slab areas within the Greenland Ice Sheet. As Greenland's climate continues to warm and seasonal surface melting increases in extent, intensity, and duration, quantifying the possible rapid expansion of perennial firn aquifers and ice slab areas has significant implications for understanding the stability of the Greenland Ice Sheet.
Rajashree Tri Datta and Bert Wouters
The Cryosphere, 15, 5115–5132, https://doi.org/10.5194/tc-15-5115-2021, https://doi.org/10.5194/tc-15-5115-2021, 2021
Short summary
Short summary
The ICESat-2 laser altimeter can detect the surface and bottom of a supraglacial lake. We introduce the Watta algorithm, automatically calculating lake surface, corrected bottom, and (sub-)surface ice at high resolution adapting to signal strength. ICESat-2 depths constrain full lake depths of 46 lakes over Jakobshavn glacier using multiple sources of imagery, including very high-resolution Planet imagery, used for the first time to extract supraglacial lake depths empirically using ICESat-2.
Helmut Rott, Stefan Scheiblauer, Jan Wuite, Lukas Krieger, Dana Floricioiu, Paola Rizzoli, Ludivine Libert, and Thomas Nagler
The Cryosphere, 15, 4399–4419, https://doi.org/10.5194/tc-15-4399-2021, https://doi.org/10.5194/tc-15-4399-2021, 2021
Short summary
Short summary
We studied relations between interferometric synthetic aperture radar (InSAR) signals and snow–firn properties and tested procedures for correcting the penetration bias of InSAR digital elevation models at Union Glacier, Antarctica. The work is based on SAR data of the TanDEM-X mission, topographic data from optical sensors and field measurements. We provide new insights on radar signal interactions with polar snow and show the performance of penetration bias retrievals using InSAR coherence.
Malcolm McMillan, Alan Muir, and Craig Donlon
The Cryosphere, 15, 3129–3134, https://doi.org/10.5194/tc-15-3129-2021, https://doi.org/10.5194/tc-15-3129-2021, 2021
Short summary
Short summary
We evaluate the consistency of ice sheet elevation measurements made by two satellites: Sentinel-3A and Sentinel-3B. We analysed data from the unique
tandemphase of the mission, where the two satellites flew 30 s apart to provide near-instantaneous measurements of Earth's surface. Analysing these data over Antarctica, we find no significant difference between the satellites, which is important for demonstrating that they can be used interchangeably for long-term ice sheet monitoring.
Zachary Fair, Mark Flanner, Kelly M. Brunt, Helen Amanda Fricker, and Alex Gardner
The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, https://doi.org/10.5194/tc-14-4253-2020, 2020
Short summary
Short summary
Ice on glaciers and ice sheets may melt and pond on ice surfaces in summer months. Detection and observation of these meltwater ponds is important for understanding glaciers and ice sheets, and satellite imagery has been used in previous work. However, image-based methods struggle with deep water, so we used data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Airborne Topographic Mapper (ATM) to demonstrate the potential for lidar depth monitoring.
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Shujie Wang, Marco Tedesco, Patrick Alexander, Min Xu, and Xavier Fettweis
The Cryosphere, 14, 2687–2713, https://doi.org/10.5194/tc-14-2687-2020, https://doi.org/10.5194/tc-14-2687-2020, 2020
Short summary
Short summary
Glacial algal blooms play a significant role in darkening the Greenland Ice Sheet during summertime. The dark pigments generated by glacial algae could substantially reduce the bare ice albedo and thereby enhance surface melt. We used satellite data to map the spatial distribution of glacial algae and characterized the seasonal growth pattern and interannual trends of glacial algae in southwestern Greenland. Our study is important for bridging microbial activities with ice sheet mass balance.
Laura E. Lindzey, Lucas H. Beem, Duncan A. Young, Enrica Quartini, Donald D. Blankenship, Choon-Ki Lee, Won Sang Lee, Jong Ik Lee, and Joohan Lee
The Cryosphere, 14, 2217–2233, https://doi.org/10.5194/tc-14-2217-2020, https://doi.org/10.5194/tc-14-2217-2020, 2020
Short summary
Short summary
An extensive aerogeophysical survey including two active subglacial lakes was conducted over David Glacier, Antarctica. Laser altimetry shows that the lakes were at a highstand, while ice-penetrating radar has no unique signature for the lakes when compared to the broader basal environment. This suggests that active subglacial lakes are more likely to be part of a distributed subglacial hydrological system than to be discrete reservoirs, which has implications for future surveys and drilling.
Geoffrey J. Dawson and Jonathan L. Bamber
The Cryosphere, 14, 2071–2086, https://doi.org/10.5194/tc-14-2071-2020, https://doi.org/10.5194/tc-14-2071-2020, 2020
Short summary
Short summary
The grounding zone is where grounded ice begins to float and is the boundary at which the ocean has the most significant influence on the inland ice sheet. Here, we present the results of mapping the grounding zone of Antarctic ice shelves from CryoSat-2 radar altimetry. We found good agreement with previous methods that mapped the grounding zone. We also managed to map areas of Support Force Glacier and the Doake Ice Rumples (Filchner–Ronne Ice Shelf), which were previously incompletely mapped.
Kristine M. Larson, Michael MacFerrin, and Thomas Nylen
The Cryosphere, 14, 1985–1988, https://doi.org/10.5194/tc-14-1985-2020, https://doi.org/10.5194/tc-14-1985-2020, 2020
Short summary
Short summary
Reflected GPS signals can be used to measure snow accumulation. The GPS method is accurate and has a footprint that is larger than that of many other methods. This short note makes available 9 years of daily snow accumulation measurements from Greenland that were derived from reflected GPS signals. It also provides information about open-source software that the cryosphere community can use to analyze other datasets.
Jessica Cartwright, Christopher J. Banks, and Meric Srokosz
The Cryosphere, 14, 1909–1917, https://doi.org/10.5194/tc-14-1909-2020, https://doi.org/10.5194/tc-14-1909-2020, 2020
Short summary
Short summary
This study uses reflected GPS signals to measure ice at the South Pole itself for the first time. These measurements are essential to understand the interaction of the ice with the Earth’s physical systems. Orbital constraints mean that satellites are usually unable to measure in the vicinity of the South Pole itself. This is overcome here by using data obtained by UK TechDemoSat-1. Data are processed to obtain the height of glacial ice across the Greenland and Antarctic ice sheets.
Marion Leduc-Leballeur, Ghislain Picard, Giovanni Macelloni, Arnaud Mialon, and Yann H. Kerr
The Cryosphere, 14, 539–548, https://doi.org/10.5194/tc-14-539-2020, https://doi.org/10.5194/tc-14-539-2020, 2020
Short summary
Short summary
To study the coast and ice shelves affected by melt in Antarctica during the austral summer, we exploited the 1.4 GHz radiometric satellite observations. We showed that this frequency provides additional information on melt occurrence and on the location of the water in the snowpack compared to the 19 GHz observations. This opens an avenue for improving the melting season monitoring with a combination of both frequencies and exploring the possibility of deep-water detection in the snowpack.
Malcolm McMillan, Alan Muir, Andrew Shepherd, Roger Escolà, Mònica Roca, Jérémie Aublanc, Pierre Thibaut, Marco Restano, Américo Ambrozio, and Jérôme Benveniste
The Cryosphere, 13, 709–722, https://doi.org/10.5194/tc-13-709-2019, https://doi.org/10.5194/tc-13-709-2019, 2019
Short summary
Short summary
Melting of the Greenland and Antarctic ice sheets is one of the main causes of current sea level rise. Understanding ice sheet change requires large-scale systematic satellite monitoring programmes. This study provides the first assessment of a new long-term source of measurements, from Sentinel-3 satellite altimetry. We estimate the accuracy of Sentinel-3 across Antarctica, show that the satellite can detect regions that are rapidly losing ice, and identify signs of subglacial lake activity.
Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin
The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, https://doi.org/10.5194/tc-13-665-2019, 2019
Short summary
Short summary
The Reference Elevation Model of Antarctica (REMA) is the first continental-scale terrain map at less than 10 m resolution, and the first with a time stamp, enabling measurements of elevation change. REMA is constructed from over 300 000 individual stereoscopic elevation models (DEMs) extracted from submeter-resolution satellite imagery. REMA is vertically registered to satellite altimetry, resulting in errors of less than 1 m over most of its area and relative uncertainties of decimeters.
Kelly M. Brunt, Thomas A. Neumann, and Christopher F. Larsen
The Cryosphere, 13, 579–590, https://doi.org/10.5194/tc-13-579-2019, https://doi.org/10.5194/tc-13-579-2019, 2019
Short summary
Short summary
This paper provides an assessment of new GPS elevation data collected near the South Pole, Antarctica, that will ultimately be used for ICESat-2 satellite elevation data validation. Further, using the new ground-based GPS data, this paper provides an assessment of airborne lidar elevation data collected between 2014 and 2017, which will also be used for ICESat-2 data validation.
Andrew G. Williamson, Alison F. Banwell, Ian C. Willis, and Neil S. Arnold
The Cryosphere, 12, 3045–3065, https://doi.org/10.5194/tc-12-3045-2018, https://doi.org/10.5194/tc-12-3045-2018, 2018
Short summary
Short summary
A new approach is presented for automatically monitoring changes to area and volume of surface lakes on the Greenland Ice Sheet using Landsat 8 and Sentinel-2 satellite data. The dual-satellite record improves on previous work since it tracks changes to more lakes (including small ones), identifies more lake-drainage events, and has higher precision. The results also show that small lakes are important in ice-sheet hydrology as they route more surface run-off into the ice sheet than large lakes.
Anton Heister and Rolf Scheiber
The Cryosphere, 12, 2969–2979, https://doi.org/10.5194/tc-12-2969-2018, https://doi.org/10.5194/tc-12-2969-2018, 2018
Short summary
Short summary
We provide a method based on Fourier analysis of coherent radio-echo sounding data for analyzing angular back-scattering characteristics of the ice sheet and bed. The characteristics can be used for the bed roughness estimation and detection of subglacial water. The method also offers improved estimation of the internal layers' tilt. The research is motivated by a need for a tool for training dictionaries for model-based tomographic focusing of multichannel coherent radio-echo sounders.
Jilu Li, Jose A. Vélez González, Carl Leuschen, Ayyangar Harish, Prasad Gogineni, Maurine Montagnat, Ilka Weikusat, Fernando Rodriguez-Morales, and John Paden
The Cryosphere, 12, 2689–2705, https://doi.org/10.5194/tc-12-2689-2018, https://doi.org/10.5194/tc-12-2689-2018, 2018
Short summary
Short summary
Ice properties inferred from multi-polarization measurements can provide insight into ice strain, viscosity, and ice flow. The Center for Remote Sensing of Ice Sheets used a ground-based radar for multi-channel and multi-polarization measurements at the NEEM site. This paper describes the radar system, antenna configurations, data collection, and processing and analysis of this data set. Comparisons between the radar observations, simulations, and ice core fabric data are in very good agreement.
Fifi Ibrahime Adodo, Frédérique Remy, and Ghislain Picard
The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, https://doi.org/10.5194/tc-12-1767-2018, 2018
Short summary
Short summary
In Antarctica, the seasonal cycle of the backscatter behaves differently at high and low frequencies, peaking in winter and in summer, respectively. At the intermediate frequency, some areas behave analogously to low frequency in terms of the seasonal cycle, but other areas behave analogously to high frequency. This calls into question the empirical relationships often used to correct elevation changes from radar penetration into the snowpack using backscatter.
Peter Friedl, Thorsten C. Seehaus, Anja Wendt, Matthias H. Braun, and Kathrin Höppner
The Cryosphere, 12, 1347–1365, https://doi.org/10.5194/tc-12-1347-2018, https://doi.org/10.5194/tc-12-1347-2018, 2018
Short summary
Short summary
Fleming Glacier is the biggest tributary glacier of the former Wordie Ice Shelf. Radar satellite data and airborne ice elevation measurements show that the glacier accelerated by ~27 % between 2008–2011 and that ice thinning increased by ~70 %. This was likely a response to a two-phase ungrounding of the glacier tongue between 2008 and 2011, which was mainly triggered by increased basal melt during two strong upwelling events of warm circumpolar deep water.
Cited articles
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, https://www.tensorflow.org/ (last access: 1 June 2024), 2015. a
Adams, R. and Brown, G.: A model for altimeter returns from penetrable geophysical media, IEEE T. Geosci. Remote, 36, 1784–1793, https://doi.org/10.1109/36.718645, 1998. a
Adodo, F. I., Remy, F., and Picard, G.: Seasonal variations of the backscattering coefficient measured by radar altimeters over the Antarctic Ice Sheet, The Cryosphere, 12, 1767–1778, https://doi.org/10.5194/tc-12-1767-2018, 2018. a
Amarouche, L., Thibaut, P., Zanife, O. Z., Dumont, J.-P., Vincent, P., and Steunou, N.: Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects, Marine Geodesy, 27, 171–197, https://doi.org/10.1080/01490410490465210, 2004. a
Armitage, T. W. K., Wingham, D. J., and Ridout, A. L.: Meteorological Origin of the Static Crossover Pattern Present in Low-Resolution-Mode CryoSat-2 Data Over Central Antarctica, IEEE Geosci. Remote Sens. Lett., 11, 1295–1299, https://doi.org/10.1109/LGRS.2013.2292821, 2014. a, b
Arthern, R. J., Wingham, D. J., and Ridout, A. L.: Controls on ERS altimeter measurements over ice sheets: Footprint-scale topography, backscatter fluctuations, and the dependence of microwave penetration depth on satellite orientation, J. Geophys. Res.-Atmos., 106, 33471–33484, https://doi.org/10.1029/2001JD000498, 2001. a, b
Baumhoer, C. A., Dietz, A. J., Kneisel, C., and Kuenzer, C.: Automated Extraction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep Learning, Remote Sens., 11, 2529, https://doi.org/10.3390/rs11212529, 2019. a
Brown, G.: The average impulse response of a rough surface and its applications, IEEE T. Antenn. Propag., 25, 67–74, https://doi.org/10.1109/TAP.1977.1141536, 1977. a, b
Buzzanga, B., Heijkoop, E., Hamlington, B. D., Nerem, R. S., and Gardner, A.: An Assessment of Regional ICESat-2 Sea-Level Trends, Geophys. Res. Lett., 48, e2020GL092327, https://doi.org/10.1029/2020GL092327, 2021. a
Cai, Y., Hu, S., Lang, S., Guo, Y., and Liu, J.: End-to-End Classification Network for Ice Sheet Subsurface Targets in Radar Imagery, Appl. Sci., 10, 2501, https://doi.org/10.3390/app10072501, 2020. a
Campos-Taberner, M., Garcia-Haro, F. J., Martinez, B., Izquierdo-Verdiguier, E., Atzberger, C., Camps-Valls, G., and Gilabert, M. A.: Understanding deep learning in land use classification based on Sentinel-2 time series, Sci. Rep.-UK, 10, 17188, https://doi.org/10.1038/s41598-020-74215-5, 2020. a
Christie, F. D. W., Steig, E. J., Gourmelen, N., Tett, S. F. B., and Bingham, R. G.: Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica, Nat. Commun., 14, 93, https://doi.org/10.1038/s41467-022-35471-3, 2023. a
Dalsasso, E., Denis, L., and Tupin, F.: As If by Magic: Self-Supervised Training of Deep Despeckling Networks With MERLIN, IEEE T. Geosci. Remote, 60, 1–13, https://doi.org/10.1109/TGRS.2021.3128621, 2022. a
Davis, C.: A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeters, IEEE T. Geosci. Remote, 35, 974–979, https://doi.org/10.1109/36.602540, 1997. a, b, c
Davis, C. H. and Zwally, H. J.: Geographic and seasonal variations in the surface properties of the ice sheets by satellite-radar altimetry, J. Glaciol., 39, 687–697, https://doi.org/10.3189/S0022143000016580, 1993. a
Davison, B. J., Hogg, A. E., Rigby, R., Veldhuijsen, S., van Wessem, J. M., van den Broeke, M. R., Holland, P. R., Selley, H. L., and Dutrieux, P.: Sea level rise from West Antarctic mass loss significantly modified by large snowfall anomalies, Nat. Commun., 14, 1479, https://doi.org/10.1038/s41467-023-36990-3, 2023. a
Dinardo, S., Fenoglio-Marc, L., Buchhaupt, C., Becker, M., Scharroo, R., Joana Fernandes, M., and Benveniste, J.: Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea, Adv. Space Res., 62, 1371–1404, https://doi.org/10.1016/j.asr.2017.12.018, 2018. a
Dinardo, S., Fenoglio-Marc, L., Becker, M., Scharroo, R., Fernandes, M. J., Staneva, J., Grayek, S., and Benveniste, J.: A RIP-based SAR retracker and its application in North East Atlantic with Sentinel-3, Adv. Space Res., 68, 892–929, https://doi.org/10.1016/j.asr.2020.06.004, 2021. a
Dong, S., Tang, X., Guo, J., Fu, L., Chen, X., and Sun, B.: EisNet: Extracting Bedrock and Internal Layers From Radiostratigraphy of Ice Sheets With Machine Learning, IEEE T. Geosci. Remote, 60, 1–12, https://doi.org/10.1109/TGRS.2021.3136648, 2022. a
Donini, E., Bovolo, F., and Bruzzone, L.: A Deep Learning Architecture for Semantic Segmentation of Radar Sounder Data, IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2021.3125773, 2022. a
Dubayah, R., Blair, J. B., Goetz, S., Fatoyinbo, L., Hansen, M., Healey, S., Hofton, M., Hurtt, G., Kellner, J., Luthcke, S., Armston, J., Tang, H., Duncanson, L., Hancock, S., Jantz, P., Marselis, S., Patterson, P. L., Qi, W., and Silva, C.: The Global Ecosystem Dynamics Investigation: High-resolution laser ranging of the Earth's forests and topography, Sci. Remote Sens., 1, 100002, https://doi.org/10.1016/j.srs.2020.100002, 2020. a
Fayad, I., Ienco, D., Baghdadi, N., Gaetano, R., Alvares, C. A., Stape, J. L., Ferraço Scolforo, H., and Le Maire, G.: A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms, Remote Sens. Environ., 265, 112652, https://doi.org/10.1016/j.rse.2021.112652, 2021. a, b, c, d, e, f, g, h
Flament, T. and Rémy, F.: Dynamic thinning of Antarctic glaciers from along-track repeat radar altimetry, J. Glaciol., 58, 830–840, https://doi.org/10.3189/2012JoG11J118, 2012. a, b, c
Frappart, F., Legrésy, B., Niño, F., Blarel, F., Fuller, N., Fleury, S., Birol, F., and Calmant, S.: An ERS-2 altimetry reprocessing compatible with ENVISAT for long-term land and ice sheets studies, Remote Sens. Environ., 184, 558–581, https://doi.org/10.1016/j.rse.2016.07.037, 2016. a
García, M. H., Donini, E., and Bovolo, F.: Automatic Segmentation of Ice Shelves with Deep Learning, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 4833–4836, https://doi.org/10.1109/IGARSS47720.2021.9553610, 2021. a
Ghosh, R. and Bovolo, F.: TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic Segmentation of Radar Sounder Data, IEEE T. Geosci. Remote, 60, 1–13, https://doi.org/10.1109/TGRS.2022.3180761, 2022. a
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins, E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L., and Zwally, H. J.: Ice-sheet mass balance and climate change, Nature, 498, 51–59, https://doi.org/10.1038/nature12238, 2013. a
He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770–778, https://doi.org/10.1109/CVPR.2016.90, 2016. a
Helm, V.: Convolutional neural network training dataset and results of AWI-ICENet1 retracker, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.964596, 2024. a
Howat, I., Porter, C., Noh, M.-J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.: The Reference Elevation Model of Antarctica – Mosaics, Version 2, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/EBW8UC, 2022. a
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019. a
Joughin, I. and Alley, R. B.: Stability of the West Antarctic ice sheet in a warming world, Nat. Geosci., 4, 506–513, https://doi.org/10.1038/ngeo1194, 2011. a
Kamangir, H., Rahnemoonfar, M., Dobbs, D., Paden, J., and Fox, G.: Deep Hybrid Wavelet Network for Ice Boundary Detection in Radra Imagery, in: IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, 3449–3452, https://doi.org/10.1109/IGARSS.2018.8518617, 2018. a
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, ArXiv [preprint], https://doi.org/10.48550/ARXIV.1412.6980, 2014. a
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with Deep Convolutional Neural Networks, in: Advances in Neural Information Processing Systems, edited by Pereira, F., Burges, C., Bottou, L., and Weinberger, K., vol. 25, Curran Associates, Inc., https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (last access: 1 June 2024), 2012. a
Lacroix, P., Dechambre, M., Legrésy, B., Blarel, F., and Rémy, F.: On the use of the dual-frequency ENVISAT altimeter to determine snowpack properties of the Antarctic ice sheet, Remote Sens. Environ., 112, 1712–1729, https://doi.org/10.1016/j.rse.2007.08.022, 2008. a, b
Lang, N., Jetz, W., Schindler, K., and Wegner, J. D.: A high-resolution canopy height model of the Earth, arXiv [preprint], arXiv:2204.08322, 2022. a
Larour, E., Ivins, E. R., and Adhikari, S.: Should coastal planners have concern over where land ice is melting?, Sci. Adv., 3, e1700537, https://doi.org/10.1126/sciadv.1700537, 2017. a
Larue, F., Picard, G., Aublanc, J., Arnaud, L., Robledano-Perez, A., LE Meur, E., Favier, V., Jourdain, B., Savarino, J., and Thibaut, P.: Radar altimeter waveform simulations in Antarctica with the Snow Microwave Radiative Transfer Model (SMRT), Remote Sens. Environ., 263, 112534, https://doi.org/10.1016/j.rse.2021.112534, 2021. a
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a
Lee, S., Im, J., Kim, J., Kim, M., Shin, M., Kim, H.-C., and Quackenbush, L. J.: Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection, Remote Sens., 8, 698, https://doi.org/10.3390/rs8090698, 2016. a
Legresy, B., Remy, F., and Schaeffer, P.: Different ERS altimeter measurements between ascending and descending tracks caused by wind induced features over ice sheets, Geophys. Res. Lett., 26, 2231–2234, https://doi.org/10.1029/1999GL900531, 1999. a
Legresy, B., Papa, F., Remy, F., Vinay, G., van den Bosch, M., and Zanife, O.-Z.: ENVISAT radar altimeter measurements over continental surfaces and ice caps using the ICE-2 retracking algorithm, Remote Sens. Environ., 95, 150–163, https://doi.org/10.1016/j.rse.2004.11.018, 2005. a, b
Legrésy, B. and Rémy, F.: Altimetric observations of surface characteristics of the Antarctic ice sheet, J. Glaciol., 43, 265–275, https://doi.org/10.3189/S002214300000321X, 1997. a, b, c
Li, W., Slobbe, C., and Lhermitte, S.: A leading-edge-based method for correction of slope-induced errors in ice-sheet heights derived from radar altimetry, The Cryosphere, 16, 2225–2243, https://doi.org/10.5194/tc-16-2225-2022, 2022. a
Liu-Schiaffini, M., Ng, G., Grima, C., and Young, D.: Ice Thickness From Deep Learning and Conditional Random Fields: Application to Ice-Penetrating Radar Data With Radiometric Validation, IEEE T. Geosci. Remote, 60, 1–14, https://doi.org/10.1109/TGRS.2022.3214147, 2022. a
Loebel, E., Scheinert, M., Horwath, M., Heidler, K., Christmann, J., Phan, L. D., Humbert, A., and Zhu, X. X.: Extracting Glacier Calving Fronts by Deep Learning: The Benefit of Multispectral, Topographic, and Textural Input Features, IEEE T. Geosci. Remote, 60, 1–12, https://doi.org/10.1109/TGRS.2022.3208454, 2022. a
Loebel, E., Scheinert, M., Horwath, M., Humbert, A., Sohn, J., Heidler, K., Liebezeit, C., and Zhu, X. X.: Calving front monitoring at sub-seasonal resolution: a deep learning application to Greenland glaciers, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2023-52, in review, 2023. a
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith, B., Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sens. Environ., 190, 260–273, https://doi.org/10.1016/j.rse.2016.12.029, 2017. a
Martin, T. V., Zwally, H. J., Brenner, A. C., and Bindschadler, R. A.: Analysis and retracking of continental ice sheet radar altimeter waveforms, J. Geophys. Res.-Oceans, 88, 1608–1616, https://doi.org/10.1029/JC088iC03p01608, 1983. a
McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W. K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W. J., Ligtenberg, S., Horwath, M., Groh, A., Muir, A., and Gilbert, L.: A high-resolution record of Greenland mass balance, Geophys. Res. Lett., 43, 7002–7010, https://doi.org/10.1002/2016GL069666, 2016. a, b, c, d
Michel, A., Flament, T., and Rémy, F.: Study of the Penetration Bias of ENVISAT Altimeter Observations over Antarctica in Comparison to ICESat Observations, Remote Sens., 6, 9412–9434, https://doi.org/10.3390/rs6109412, 2014. a
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J. L., Prats-Iraola, P., and Dini, L.: Rapid glacier retreat rates observed in West Antarctica, Nat. Geosci., 15, 48–53, https://doi.org/10.1038/s41561-021-00877-z, 2022. a
Mohajerani, Y., Jeong, S., Scheuchl, B., Velicogna, I., Rignot, E., and Milillo, P.: Automatic delineation of glacier grounding lines in differential interferometric synthetic-aperture radar data using deep learning, Sci. Rep.-UK, 11, 4992, https://doi.org/10.1038/s41598-021-84309-3, 2021. a
Mouginot, J., Rignot, E., and Scheuchl, B.: Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013, Geophys. Res. Lett., 41, 1576–1584, https://doi.org/10.1002/2013GL059069, 2014. a
Müller, F. L., Dettmering, D., Bosch, W., and Seitz, F.: Monitoring the Arctic Seas: How Satellite Altimetry Can Be Used to Detect Open Water in Sea-Ice Regions, Remote Sens., 9, 551, https://doi.org/10.3390/rs9060551, 2017. a
Nield, G. A., Whitehouse, P. L., King, M. A., and Clarke, P. J.: Glacial isostatic adjustment in response to changing Late Holocene behaviour of ice streams on the Siple Coast, West Antarctica, Geophys. J. Int., 205, 1–21, https://doi.org/10.1093/gji/ggv532, 2016. a
Nilsson, J., Vallelonga, P., Simonsen, S. B., Sørensen, L. S., Forsberg, R., Dahl-Jensen, D., Hirabayashi, M., Goto-Azuma, K., Hvidberg, C. S., Kjær, H. A., and Satow, K.: Greenland 2012 melt event effects on CryoSat-2 radar altimetry, Geophys. Res. Lett., 42, 3919–3926, https://doi.org/10.1002/2015GL063296, 2015. a, b, c
Nilsson, J., Gardner, A., Sandberg Sørensen, L., and Forsberg, R.: Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet, The Cryosphere, 10, 2953–2969, https://doi.org/10.5194/tc-10-2953-2016, 2016. a, b
NSIDC: Guide for Applying ICESat Inter-campaign Bias Corrections (ICBs), https://nsidc.org/sites/default/files/icesat-intercampaign-bias-corrections.pdf (last access: 1 June 2024), 2021. a
Otosaka, I. N., Shepherd, A., Ivins, E. R., Schlegel, N.-J., Amory, C., van den Broeke, M. R., Horwath, M., Joughin, I., King, M. D., Krinner, G., Nowicki, S., Payne, A. J., Rignot, E., Scambos, T., Simon, K. M., Smith, B. E., Sørensen, L. S., Velicogna, I., Whitehouse, P. L., A, G., Agosta, C., Ahlstrøm, A. P., Blazquez, A., Colgan, W., Engdahl, M. E., Fettweis, X., Forsberg, R., Gallée, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B. C., Harig, C., Helm, V., Khan, S. A., Kittel, C., Konrad, H., Langen, P. L., Lecavalier, B. S., Liang, C.-C., Loomis, B. D., McMillan, M., Melini, D., Mernild, S. H., Mottram, R., Mouginot, J., Nilsson, J., Noël, B., Pattle, M. E., Peltier, W. R., Pie, N., Roca, M., Sasgen, I., Save, H. V., Seo, K.-W., Scheuchl, B., Schrama, E. J. O., Schröder, L., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T. C., Vishwakarma, B. D., van Wessem, J. M., Wiese, D., van der Wal, W., and Wouters, B.: Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020, Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, 2023. a
Porter, C., Howat, I., Noh, M.-J., Husby, E., Khuvis, S., Danish, E., Tomko, K., Gardiner, J., Negrete, A., Yadav, B., Klassen, J., Kelleher, C., Cloutier, M., Bakker, J., Enos, J., Arnold, G., Bauer, G., and Morin, P.: ArcticDEM – Mosaics, Version 4.1, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/3VDC4W, 2023. a
Richter, A., Popov, S. V., Fritsche, M., Lukin, V. V., Matveev, A. Y., Ekaykin, A. A., Lipenkov, V. Y., Fedorov, D. V., Eberlein, L., Schröder, L., Ewert, H., Horwath, M., and Dietrich, R.: Height changes over subglacial Lake Vostok, East Antarctica: Insights from GNSS observations, J. Geophys. Res.-Earth Surf., 119, 2460–2480, https://doi.org/10.1002/2014JF003228, 2014. a, b
Ridley, J. K. and Partington, K. C.: A model of satellite radar altimeter return from ice sheets, Int. J. Remote Sens., 9, 601–624, https://doi.org/10.1080/01431168808954881, 1988. a, b
Rignot, E., Vaughan, D. G., Schmeltz, M., Dupont, T., and Macayeal, D.: Acceleration of Pine Island and Thwaites Glaciers, West Antarctica, Ann. Glaciol., 34, 189–194, https://doi.org/10.3189/172756402781817950, 2002. a
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014. a
Roemer, S., Legrésy, B., Horwath, M., and Dietrich, R.: Refined analysis of radar altimetry data applied to the region of the subglacial Lake Vostok/Antarctica, Remote Sens. Environ., 106, 269–284, https://doi.org/10.1016/j.rse.2006.02.026, 2007. a, b, c
Ronneberger, O., Fischer, P., and Brox, T.: U-Net: Convolutional Networks for Biomedical Image Segmentation, ArXiv [preprint], abs/1505.04597, https://api.semanticscholar.org/CorpusID:3719281 (last access: 1 June 2024), 2015. a
Scambos, T., Bell, R., Alley, R., Anandakrishnan, S., Bromwich, D., Brunt, K., Christianson, K., Creyts, T., Das, S., DeConto, R., Dutrieux, P., Fricker, H., Holland, D., MacGregor, J., Medley, B., Nicolas, J., Pollard, D., Siegfried, M., Smith, A., Steig, E., Trusel, L., Vaughan, D., and Yager, P.: How much, how fast?: A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century, Global Planet. Change, 153, 16–34, https://doi.org/10.1016/j.gloplacha.2017.04.008, 2017. a
Scheuchl, B., Mouginot, J., Rignot, E., Morlighem, M., and Khazendar, A.: Grounding line retreat of Pope, Smith, and Kohler Glaciers, West Antarctica, measured with Sentinel-1a radar interferometry data, Geophys. Res. Lett., 43, 8572–8579, https://doi.org/10.1002/2016GL069287, 2016. a
Shen, X., Zhang, J., Zhang, X., Meng, J., and Ke, C.: Sea Ice Classification Using Cryosat-2 Altimeter Data by Optimal Classifier–Feature Assembly, IEEE Geosci. Remote Sens. Lett., 14, 1948–1952, https://doi.org/10.1109/LGRS.2017.2743339, 2017a. a
Shen, X.-y., Zhang, J., Meng, J.-m., Zhang, J., and Ke, C.-q.: Sea ice type classification based on random forest machine learning with Cryosat-2 altimeter data, in: 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP), 1–5, https://doi.org/10.1109/RSIP.2017.7958792, 2017b. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wouters, B., and Team, T. I.: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Slater, T., Shepherd, A., Mcmillan, M., Armitage, T. W. K., Otosaka, I., and Arthern, R. J.: Compensating Changes in the Penetration Depth of Pulse-Limited Radar Altimetry Over the Greenland Ice Sheet, IEEE T. Geosci. Remote, 57, 9633–9642, https://doi.org/10.1109/TGRS.2019.2928232, 2019. a
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.: Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes, Science, 368, 1239–1242, https://doi.org/10.1126/science.aaz5845, 2020. a, b, c
Smith, B., Adusumilli, S., Csathó, B. M., Felikson, D., Fricker, H. A., Gardner, A., Holschuh, N., Lee, J., Nilsson, J., Paolo, F. S., Siegfried, M. R., Sutterley, T., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A Land Ice Height, Version 6, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center[data set], https://doi.org/10.5067/ATLAS/ATL06.006, 2023. a
Studinger, M., Smith, B. E., Kurtz, N., Petty, A., Sutterley, T., and Tilling, R.: Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models, The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, 2024. a, b
Thibaut, P., Poisson, J. C., Bronner, E., and Picot, N.: Relative Performance of the MLE3 and MLE4 Retracking Algorithms on Jason-2 Altimeter Waveforms, Marine Geodesy, 33, 317–335, https://doi.org/10.1080/01490419.2010.491033, 2010. a
Thibaut, P., Piras, F., Roinard, H., Guerou, A., Boy, F., Maraldi, C., Bignalet-Cazalet, F., Dibarboure, G., and Picot, N.: Benefits of the “Adaptive Retracking Solution” for the JASON-3 GDR-F Reprocessing Campaign, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 7422–7425, https://doi.org/10.1109/IGARSS47720.2021.9553647, 2021. a
Wingham, D., Francis, C., Baker, S., Bouzinac, C., Brockley, D., Cullen, R., de Chateau-Thierry, P., Laxon, S., Mallow, U., Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F., Viau, P., and Wallis, D.: CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields, Adv. Space Res., 37, 841–871, https://doi.org/10.1016/j.asr.2005.07.027, 2006. a
Xia, X. and Kulis, B.: W-Net: A Deep Model for Fully Unsupervised Image Segmentation, arXiv [preprint], 1711.08506, https://doi.org/10.48550/arXiv.1711.08506, 2017. a
Zwally, H. J., Schutz, R., Bentley, C., Bufton, J., Herring, T., Minster, J., Spinhirne, J., and Thomas, R.: GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data, Version 34, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/ICESAT/GLAS/DATA225, 2014. a
Short summary
We present a new approach (AWI-ICENet1), based on a deep convolutional neural network, for analysing satellite radar altimeter measurements to accurately determine the surface height of ice sheets. Surface height estimates obtained with AWI-ICENet1 (along with related products, such as ice sheet height change and volume change) show improved and unbiased results compared to other products. This is important for the long-term monitoring of ice sheet mass loss and its impact on sea level rise.
We present a new approach (AWI-ICENet1), based on a deep convolutional neural network, for...