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Abstract. The Greenland and Antarctic ice sheets are im-
portant indicators of climate change and major contributors
to sea level rise. Hence, precise, long-term observations of
ice mass change are required to assess their contribution to
sea level rise. Such observations can be achieved through
three different methods. They can be achieved directly by
measuring regional changes in the Earth’s gravity field us-
ing the Gravity Recovery and Climate Experiment Follow-
On (GRACE-FO) satellite system. Alternatively, they can
be achieved indirectly by measuring changes in ice thick-
ness using satellite altimetry or by estimating changes in
the mass budget using a combination of regional climate
model data and ice discharge across the grounding line, based
on multi-sensor satellite radar observations of ice velocity
(Hanna et al., 2013). Satellite radar altimetry has been used
to measure elevation change since 1992 through a combi-
nation of various missions. In addition to the surface slope
and complex topography, it has been shown that one of the
most challenging issues concerns spatial and temporal vari-
ability in radar pulse penetration into the snowpack. This re-
sults in an inaccurate measurement of the true surface el-
evation and consequently affects surface elevation change
(SEC) estimates. To increase the accuracy of surface eleva-
tion measurements retrieved by retracking the radar return
waveform and thus reduce the uncertainty in the SEC, we
developed a deep convolutional-neural-network architecture
(AWI-ICENet1). AWI-ICENet1 is trained using a simulated
reference data set with 3.8 million waveforms, taking into
account different surface slopes, topography, and attenua-
tion. The successfully trained network is finally applied as

an AWI-ICENet1 retracker to the full time series of CryoSat-
2 Low Resolution Mode (LRM) waveforms over both ice
sheets. We compare the AWI-ICENet1-retrieved SEC with
estimates from conventional retrackers, including the thresh-
old first-maximum retracker algorithm (TFMRA) and the
European Space Agency’s (ESA) ICE1 and ICE2 products.
Our results show less uncertainty and a great decrease in the
effect of time-variable radar penetration, reducing the need
for corrections based on its close relationship with backscat-
ter and/or leading-edge width, which are typically used in
SEC processing. This technique provides new opportunities
to utilize convolutional neural networks in the processing of
satellite altimetry data and is thus applicable to historical, re-
cent, and future missions.

1 Introduction

Ice sheet mass loss is a major contributor to sea level rise.
The Greenland Ice Sheet (GrIS) alone contributed 21.0±
1.9 mm (Otosaka et al., 2023) between 1992–2022, while
Antarctica contributed 7.6± 3.9 mm between 1992–2017
(Shepherd et al., 2018). The non-linearity of mass loss from
Antarctica is driven by West Antarctica, where glacier ac-
celeration and retreat have caused an increasing contribution
since 1992 (Rignot et al., 2002, 2014; Mouginot et al., 2014;
Scheuchl et al., 2016; Milillo et al., 2022; Christie et al.,
2023). The stability of the West Antarctic Ice Sheet (WAIS)
is a major concern (Joughin and Alley, 2011) as even a sin-
gle glacier, Thwaites Glacier, has the potential to contribute
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65 cm to sea level rise (Scambos et al., 2017). This exempli-
fies the need for accurate observations of ice sheet mass loss.
Due to the self-gravitation effect, local sea level rise along
the world’s coastlines strongly depends on the spatial distri-
bution of ice sheet mass loss (Larour et al., 2017). This is
where the advantage of altimeters comes into play. Altime-
ter data can provide data on ice sheet mass loss at a high
spatial resolution compared to gravimeters. The accuracy of
altimeter-based mass loss products depends on the precision
of the individual elevation measurements, the repeat cycle,
the spatial interpolation scheme, and the conversion from
volume change to mass change (including firn densification).
In this study, we focus on improving the accuracy of individ-
ual elevation measurements.

Ku-band satellite altimeters have been surveying ice sheets
since the early 1990s with substantial coverage, beginning
with ERS-1 and ERS-2 from the ESA, followed by Envisat
from 2002–2012. The launch of CryoSat-2 in 2010 marked
the introduction of the first altimeter dedicated to studying
the Earth’s cryosphere. CryoSat-2 orbits at an unusually high
inclination, reaching latitudes of 88° N and 88° S. In addition,
it includes major improvements for measuring icy surfaces.
Alongside the conventional Low Resolution Mode (LRM), a
synthetic-aperture-radar (SAR) mode was introduced to in-
crease the spatial resolution in the along-track direction. To
locate the point of closest approach in sloped terrain in the
across-track direction a second antenna was mounted, en-
abling us to measure the phase difference in the so-called
SAR interferometer (SARIn) mode. This helps us estimate
the angle of arrival and thus enables us to relocate the ground
return. However, in this study, we focus on CryoSat-2 data in
LRM mode. The first space-borne radar altimeter in the Ka-
band, SARAL/AltiKa, was launched in 2013. The latest radar
altimeters are Sentinel-3A and Sentinel-3B, which have been
operating since 2016 and 2018, respectively, and both have
Ku-band altimeters that operate in SAR mode. In addition to
the radar altimeters, two laser altimeters have surveyed polar
areas: NASA’s ICESat-1 operated from 2003–2009, (Zwally
et al., 2014) and since 2018, ICESat-2 has been operational
(Markus et al., 2017; Smith et al., 2020). The great advan-
tage of laser altimetry is its high precision in single distance
measurements and its low penetration into dry snow (Smith
et al., 2020; Studinger et al., 2024). In addition, its small foot-
print size and high pointing precision provide a high spatial
resolution for the observations, even in areas of steep slope
and complex terrain (Smith et al., 2020). The disadvantage
of laser altimetry concerns cloud cover, which prevents sur-
face measurements and leads to data gaps. Distorted eleva-
tion measurements due to snow drift might also affect the
accuracy. As we use data from all six available laser beams
and a 3-year measurement period from January 2019 to De-
cember 2021, the data coverage is exceptionally good. The
advantages of high precision, dense sampling, a small foot-
print size, and low penetration depth outweigh the disadvan-
tages of occasional data loss due to cloud cover. Therefore,

we use ICESat-2-based estimates of rates of elevation change
as a reference for comparison with our radar-altimetry-based
results. As dry ice and snow are transparent for radar waves,
the penetration of the radar signal complicates the detection
of the true surface. In general, the returned power over ice
sheets consists of surface and volume components: surface
scattering at the air–snow interface, scattering from internal
layers, and volume scattering from snow grains. While the
onset of surface scattering leads to a sharp rise in power (of-
ten called the leading edge), volume scattering affects the
gentle decline in power over time (the trailing slope; TSL).
In general, the waveform shape of a return echo mainly de-
pends on the local surface topography within the area of the
radar footprint and small-scale surface roughness (i.e. rough-
ness on the scale of the radar wavelength). This leads to dis-
tinct differences between waveforms from rough terrains and
waveforms from smooth surface topography. Additionally,
volume scattering acts like a low-pass filter, widening the
waveform while adding more energy to the waveform tail
and enlarging the leading-edge width (LEW), especially for
conventional LRM waveforms. Volume scattering is caused
by the scattering of radar waves that penetrate into the ice
sheet, interacting with snow and firn grains, and depends
on the size of the grains, while the absorption loss of radar
waves is mainly governed by temperature. As a result, vol-
ume scattering varies widely over ice sheets due to differ-
ences in snow and firn properties. As a consequence, the
penetration of the radar signal in the Ku-band can lead to
a bias in elevation detection on the order of 10–20 cm (Larue
et al., 2021) or more, depending on the retracking method
used to measure the range between the antenna mounted on
the satellite and the surface. Studies by Davis (1997), Helm
et al. (2014), and Nilsson et al. (2016) show that selecting a
retracker which aims to retrack the range at the lower part
of the leading edge, such as the threshold-centre-of-gravity
(TCOG) retracker or the threshold first-maximum retracker
algorithm (TFMRA), can strongly suppress the radar pene-
tration bias. However, some signal contribution still remains,
which can be partly corrected using additional waveform pa-
rameters, such as LEW, the TSL, and/or radar backscatter
(as proposed, for example, by Flament and Rémy (2012), Si-
monsen and Sørensen (2017), and Schröder et al. (2019)). In
this study, we aim to reduce this penetration bias directly in
the waveform retracking by employing a machine learning
approach.

Machine learning, particularly deep learning (DL), offers
a data-driven alternative to traditional physical and statisti-
cal approaches for modelling the functional relationship be-
tween measurements and target variables. It is particularly
successful in cases where the true relationship between in-
put and output is too complex to be approximated by tra-
ditional models, which often only capture part of the full
spectrum or rely on simplifying assumptions for tractabil-
ity. Convolutional neural networks (ConvNets), initially pro-
posed for more general computer vision applications (such
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as image classification; LeCun et al., 2015), are a class of
DL architectures that have shown tremendous success in
a broad variety of Earth observation applications, includ-
ing land cover and land use classifications (e.g. from multi-
spectral time series; Campos-Taberner et al., 2020), image
processing (e.g. speckle reduction in SAR images; Dalsasso
et al., 2022), and the estimation of geophysical and biophys-
ical parameters (e.g. forest height estimation; Lang et al.,
2022). In recent years, machine learning has been applied to
various kinds of image data from polar areas. For example,
Loebel et al. (2022, 2023) monitored calving-front motion at
sub-seasonal resolutions for 23 Greenlandic outlet glaciers
using a U-Net architecture (Ronneberger et al., 2015) applied
to multi-spectral Landsat-8 imagery data. Baumhoer et al.
(2019) automatically extracted Antarctic glaciers and ice
shelf fronts from Sentinel-1 imagery using a U-Net architec-
ture, creating a dense time series for the Antarctic coastline to
assess calving-front changes. Mohajerani et al. (2021) used
a fully convolutional neural network to automatically delin-
eate glacier grounding lines in differential interferometric
SAR data. They applied their approach to more than 20 000
interferograms along the Getz Ice Shelf in West Antarctica
and demonstrated that grounding zones are 1 order of mag-
nitude wider than previously expected. Beside satellite im-
agery, airborne and ground-based radar images from ice-
penetrating radar systems have been extensively studied, and
new insights have been achieved through the application of
machine learning approaches in recent years. Liu-Schiaffini
et al. (2022) propose a deep learning model based on con-
volutional neural networks and continuous conditional ran-
dom fields (CCRFs) to automate ice bed identification. They
applied their approach to High Capability Airborne Radar
Sounder (HiCARS) radargrams, successfully capturing the
global ice bed geometry and identifying fine-grained basal
details (even in areas with complex and rough ice bed con-
ditions). Kamangir et al. (2018) presented a deep hybrid
wavelet network for detecting ice surface and bottom bound-
aries, comparing it with other edge detection approaches by
employing the NASA Operation IceBridge Mission data set.
Dong et al. (2022) designed a neural network fusion, called
EisNet, to extract not only bedrock but also internal layers
from radiostratigraphic data. EisNet is composed of three
coupled deep neural networks based on U-Net architecture.
Other applications of machine learning deal with the seg-
mentation of different structures in radargrams. For example,
García et al. (2021) developed an automatic analysis tech-
nique based on W-Net (Xia and Kulis, 2017), a fully convolu-
tional autoencoder, to distinguish floating ice over ice shelves
from grounded ice in coastal areas using radargrams recorded
with the second version of the Multichannel Coherent Radar
Depth Sounder (MCoRDS2). Another segmentation scheme
for segmenting radargrams into englacial layers, bedrock,
basal units, and noise-limited regions (such as the echo-
free zone; EFZ) was proposed by Donini et al. (2022). This
scheme is based on a U-Net architecture with attention gates

and the Atrous Spatial Pyramid Pooling (ASPP) module.
Their focus was on the identification and mapping of basal
layers and basal units, and the network was successfully ap-
plied to two data sets acquired in North Greenland and West
Antarctica using the MCoRDS3 data set. A very similar ap-
proach was developed by Cai et al. (2020), which used bi-
lateral filtering to reduce noise and deep residual learning
(He et al., 2016) and employed the ASPP module to classify
free space, internal layers, bedrock, and noise (including the
EFZ region). This approach was applied to MCoRDS and
MCoRDS2 radar images acquired between 2009 and 2011
in Antarctica. Finally, Ghosh and Bovolo (2022) constructed
the TransSounder, a hybrid TransUNet–TransFuse architec-
tural framework, to systematically characterize different sub-
surface targets; they compared it with other state-of-the-art
frameworks using a MCoRDS radar depth sounder data set.
All the above-mentioned machine learning (ML) approaches
use images or 2D data sets as input; thus, they differ from
classical 1D echoes or waveforms detected by satellite al-
timetry. However, machine learning has also been applied in
various other studies regarding waveform analysis. Müller et
al. (2017) analysed altimetry data from the Arctic to detect
open water within sea ice cover using unsupervised cluster-
ing (i.e. k-medoids) of radar echoes to subdivide the wave-
forms based on different characteristics and subsequently
classify them via k-nearest neighbours. Lee et al. (2016)
used random forests to detect cracks between ice floes to
improve the estimation of sea ice thickness. Random forests
were also used by Shen et al. (2017b, a) to classify sea ice
types based on waveform data. These studies focus on the
classification of waveforms to detect different surface types.
However, the regression task of accurately estimating sur-
face elevation has been barely addressed. Fayad et al. (2021)
used DL for the detection of surface heights using space-
borne laser altimeter data from the Global Ecosystem Dy-
namics Investigation (GEDI) mission (Dubayah et al., 2020).
Fayad et al. (2021) used two ConvNets: a 1D ConvNet for
the individual waveforms and another ConvNet for reshaping
it into a 2D representation to constrain biophysical parame-
ters, such as canopy height and wood volume. Their results
confirm that ConvNets can be used to extract useful infor-
mation from lidar waveforms and that they perform compa-
rably to classical yet complex and expensive random forest
methodologies. Furthermore, Fayad et al. (2021) found that
the 1D representation of the waveform produced slightly less
accurate results than its 2D counterpart; this was the case
for both single and multi-parameter outputs (e.g. estimations
of canopy height and wood volume occurring at the same
time). They attribute this to the larger gradient around infor-
mation peaks, such as those for vegetation or ground return,
in the 2D representation of the waveform. As the data set
contains peaks and the aim is to detect these peaks, the filters
of the 2D ConvNet model are better adapted to recognize sig-
nal content concentrated in small areas with high signal con-
trast (Fayad et al., 2021). However, over ice sheets, we deal
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with only one prominent return waveform, which is an inte-
grated signal originating from a large footprint with a diame-
ter of roughly 15 km (including contributions from the upper
snow/firn layer up to a depth of less than 10 m). Therefore,
signal gradients are not as large, and single or multi-peak
waveforms usually only occur in very complex terrains. Fur-
thermore, the noise level of a single radar waveform is much
higher than that of a lidar waveform, resulting in noise peaks
on top of the gentle signal. In addition, the radar waveforms
consist of only 128 samples, compared to the 1444 samples
in the GEDI waveform. This would lead to small image sizes
of 12× 12 pixels for a 2D representation of a single wave-
form, including some padding, and requires fewer convolu-
tional layers than the 1D approach if pooling layers or strided
convolutional layers are inserted to reduce the number of pa-
rameters that need to be learnt. Furthermore, our application,
developed for satellite radar altimetry, is also very differ-
ent from typical applications of 2D DL approaches, such as
layer/feature detection or classification within images (radar-
grams) recorded by radar depth sounders. These systems can
penetrate up to 4 km of ice and thus are capable of providing
detailed information on internal structures, bed rock, basal
features within the recorded radargrams. Here, 2D ConvNets
are used to capture spatially correlated signals in the along-
track direction. Since the receive range window of a satel-
lite radar altimeter is adjusted by the onboard tracker to fol-
low the terrain, consecutive waveforms are not necessarily
aligned and may jump within the radar range window, espe-
cially when the satellite samples changing, undulating sur-
faces (such as ice sheets). This can lead to erroneous results
when using a 2D ConvNet that captures spatially correlated
signals. However, over the open ocean or in coastal-altimetry
applications, a 2D approach could be promising. Since peak
detection, image classification, and spatially correlated layer
detection are not the objectives of our approach, we decided
that a 1D representation of the ConvNet is sufficient to ac-
complish our task of accurately retracking the beginning of
the leading edge of a single waveform. In the following, we
use single waveforms from CryoSat-2 and represent them as
sequential data using a 1D ConvNet that applies a series of
processing layers (in particular, convolutions with learnt ker-
nels along the time dimension of the waveform) to automati-
cally extract features and agglomerate information. The out-
put of the network is the retracked range that corresponds
to the snow/firn surface. In order to engage supervised ma-
chine learning for processing satellite radar altimeter wave-
forms, a large data set with a known range is needed. In
contrast to Fayad et al. (2021), who trained their models on
a subset of GEDI waveforms in which ground truth mea-
surements existed, a ground-truth-based learning approach
cannot be achieved here. The area covered by airborne or
ground-borne soundings of the ice surface using laser scan-
ners or Global Navigation Satellite System (GNSS) traverses
is orders of magnitudes smaller than that covered by satellite
measurements. Space-borne laser altimetry, such as ICESat-

2, is, in our opinion, not suitable as a test data set in a DL ap-
proach aimed at improving radar-derived elevation measure-
ments. The reasons for this are the very different footprints
of the two systems. While the ICESat-2 laser points cover
areas of less than 0.02 km2, satellite radar altimeters illumi-
nate large areas of up to 10 km2, meaning that the two are
not spatially aligned and cannot be directly compared with
each other. Additionally, large-scale topographic undulation
and surface slopes not only influence the waveform shape but
also require a slope correction in the post-processing to repo-
sition the radar elevation measurement to its point of clos-
est approach. As this correction cannot be extracted from the
waveform shape itself, a direct comparison between laser- or
GNSS-derived surface elevation and radar-derived elevation
as a ground truth for a DL approach is not possible. Instead,
we make use of simulated waveforms to create a large syn-
thetic reference data set for training and testing the new Con-
vNet retracker. To represent the satellite altimeter waveforms
as accurately as possible, we take into account the local sur-
face topography over the ice sheet. This way, we can create
essentially an infinite number of training samples for neural
network learning. After the training phase, we apply the new
ConvNet retracker to measured CryoSat-2 waveforms and
derive elevation and elevation change estimates, which we
compare with ICESat-2-derived elevation change data prod-
ucts. The remainder of this paper is structured as follows. In
Sect. 2, we first present our approach to simulating wave-
forms, followed by a detailed description of the ConvNet
used. We also provide a brief overview of other retrackers
and summarize the satellite altimeter data and our approach
to estimating rates of elevation change. Section 3 details the
performance of the new AWI-ICENet1 model using simu-
lated waveforms and subsequently presents results from real
satellite altimeter data recorded at selected sites and across
the ice sheet. In Sect. 4, we discuss the results achieved with
AWI-ICENet1 using simulated data and then compare them
to results from other retrackers. Finally, the estimates of el-
evation change rates are evaluated and compared with those
from ICESat-2.

2 Material and methods

2.1 Simulated waveforms

For our approach to successfully develop a DL retracker ca-
pable of minimizing the effects of variations in backscatter
and radar speckle on range measurements, a good reference
data set is essential. We defined the following criteria for our
reference data set that the simulated waveforms must meet:

– Observed CryoSat-2 LRM waveforms must be repre-
sented as accurately as possible.

– There must be large variability in the waveform shapes.
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– Large numbers of waveforms are required for optimal
training results.

To meet the criteria and ensure a good training result, several
features must be included in the simulation:

– representations of different real topographic situations

– different bulk attenuation rates (to mimic the volume
scattering component)

– addition of Gaussian noise to each waveform (to mimic
radar speckle)

– addition of a noise floor prior the leading edge

– repositioning of waveforms within the range window to
account for tracker gate variations

– inclusion of CryoSat-2 system characteristics (Ku-band
frequency (wavelength), antenna gain pattern, and range
resolution)

We randomly selected 1000 locations within the LRM zone
limits of Antarctica, as shown in Fig. 1. At each location,
a reference surface echo Prs is simulated using the classical
radar equation integrated over the illuminated surface area
(Eq. 1; Brown, 1977), which is expressed as

Prs(t)=
Ptλ

2

(4π)3

∫
A

σ 0
S (θ)G(θ)

R4 dA, (1)

where λ= c/fc represents wavelength, c represents the
speed of light, fc = 13.5 GHz represents the Ku-band cen-
tre frequency, Pt represents transit power, σ 0

S (θ) represents
the backscatter cross-section, and R represents the range
from the radar to the surface element dA. For simplicity,
σ 0
S (θ)= 10 dB is chosen to be homogeneous and without any

angular dependency within the radar footprint, and the an-
tenna gain pattern G(θ) is defined as an elliptical 2D Gaus-
sian function as follows:

Gθalθac =G0 exp

(
−

[
θ2

al

β2
al
+
θ2

ac

β2
ac

])
, (2)

where θac = tan(Rx(x,y)/Rz(x,y)) and θal =

tan(Ry(x,y)/Rz(x,y)) represent the look angles and
βal = θal3 db/

√
4log(2) and βac = θac3 db/

√
4log(2) rep-

resent the constants. Centred at each location (x,y),
Rz(x,y)= hsat−hs(x,y) is estimated using a mean satellite
altitude hsat of 730 km, and hs(x,y) is derived from a
high-resolution interpolated sub-grid (20 m pixel resolution)
pertaining to the input digital elevation model (DEM). For
the input DEM, we used a slightly smoothed version (kernel
size of 3 km) of the Reference Elevation Model of Antarctica
(REMA) DEM (Howat et al., 2019) with a pixel resolution
of 1 km to mirror the effect of an integrated signal within the

pulse-limited footprint. Each 2D range pattern, correspond-

ing to R(x,y)=
√
Rx(x,y)2+Ry(x,y)2+Rz(x,y)2, cov-

ers the radar footprint and has dimensions of 30 km× 30 km,
re-sampled to a 20 m pixel resolution. For the elliptical
2D Gaussian antenna pattern, we used an antenna beam
width θal3 db of 1.3° and a θac3 db value of 1.15°, as given by
Wingham et al. (2006). To mimic tracker gate variations
and ensure the network does not always retrack at the same
incremental position, we fractional shifted Prs randomly
within the range gate while updating the reference range
epoch.

In the next step, we added different volume contributions,
following the approach of Legrésy and Rémy (1997), using
an exponential decay function (Eq. 3), expressed as

V (z)= exp(−r(z)LA/4.342945), (3)

and a homogeneous layered model consisting of 128 layers
with a depth resolution 1Rz of 0.468 m, which corresponds
to the range bin size and the number of range bins for each
observed CryoSat-2 LRM waveform. For simplicity, the loss
factor (LA) accounts for loss contributions due to volume
scattering, absorption, and stratification of the snowpack in
a combined manner. This loss factor, known as the bulk at-
tenuation rate, is adjustable to vary the volume contribution.
The final received power Prv , including surface and volume
contributions, is given by Eq. (4),

Prv =

N−1−rtref∑
i=rtref

PrsV (zi−rtref). (4)

Although the model architecture is simple, it represents the
general effect of absorption and scattering, leading to the
attenuation of radar waves within snow/firn due to differ-
ent physical properties, such as temperature, surface density,
grain size, and layering, as explained by Lacroix et al. (2008)
and Adodo et al. (2018).

In a simplified model performance test, a simulated wave-
form of a flat surface was fitted to observed CryoSat-2 LRM
waveforms by adjusting LA in a minimum least-squares esti-
mator (MLE). Here, we found very high correlations between
measured and fitted waveforms of 0.9 and higher. The test re-
sults for Antarctica and Greenland are shown in Figs. 2 and
A1, where the median of the fitted attenuation rate and the
median of the correlation between fitted and observed models
are shown using a grid with a 5 km× 5 km pixel resolution.
Based on the findings in Fig. 2a, we generated 95 reference
waveforms at each location using an attenuation rate between
1 and 20 dB with a step size of 0.2 dB. Finally, we generated
40 different noisy samples of each of the reference wave-
forms by adding 40 different randomly generated samples of
Gaussian noise. We therefore increased the training data set
to include 3.8 million noisy waveforms (m= 1000×95×40).
9 is expressed as

9i = Prv · εs+ εf, (5)
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Figure 1. Overview of the four selected regions used in the analy-
sis. The dots indicate the randomly selected locations at which the
waveforms are simulated. The light-blue dots represent the loca-
tions used for training (80 %), while the dark-blue dots represent
the locations used for testing the ConvNet (20 %).

where εs represents radar speckle and εf represents a Gaus-
sian noise floor. Both were selected to match the noise of
CryoSat-2 waveforms. We denote the final noisy waveforms
hereafter as (9i)i∈I , where I = {1, . . .,m} represents the in-
dex set of the waveforms. Each waveform consists of 128
range bins, matching the data structure of the satellite al-
timetry waveform product of CryoSat-2. For each of the
noisy waveforms, the actual true surface or reference range is
known and is used as reference for the ConvNet training. A
typical example of the different simulation steps is shown in
Fig. 3, where the observed CryoSat-2 waveform at the same
geographical position (Lake Vostok) is overlaid in blue. LA
was estimated by an MLE to be 1.5 dB m−1. More example
waveforms simulated in different topographic environments
are shown in the Appendix in Figs. A2, A3, and A4.

2.2 AWI-ICENet1

We use a ConvNet frequency f to model the relationship be-
tween a (real or simulated) waveform 9 and the correspond-
ing retracked range r – i.e. the network provides an estimate
(r̂ = f (9)) of the retracked range, which corresponds to the
true surface, based on the provided input data. During train-
ing, only simulated waveforms are used. The network is then
applied to real waveforms during inference.

The ConvNet used is similar to the 1D ConvNet used by
Fayad et al. (2021). It consists of six blocks of stacked convo-
lutional layers along with rectified-linear-unit (ReLU) activa-
tion functions, batch normalization, maximum pooling, and
drop-out layers (with overlapping pooling windows similar
to those used by Krizhevsky et al., 2012). This differs from
the approach of Fayad et al. (2021), who used strided convo-
lutional layers instead of pooling layers to reduce the num-
ber of parameters that need to be learnt. In our network de-
sign, batch normalization is applied after activation, whereas
in the network used by Fayad et al. (2021), this occurs the
other way around. The final feature layer is flattened and pro-
cessed by a fully connected layer with 128 units. Since the
waveforms consist of 1D input data, all layers and operations
are 1D as well. Figure 4 shows an overview of the network
architecture.

The cost function L is a standard mean-squared-error
(MSE) loss between the true and estimated ranges of the sim-
ulated waveform. The MSE is calculated as follows:

MSE=
1
|B|

∑
(r,9)∈B

(r − f (9))2, (6)

where B ⊂DTr is the batch, i.e. a subset of the training set
DTr.

The network is implemented in TensorFlow and trained for
25 epochs with a batch size of 128 using an Adam optimizer
(Kingma and Ba, 2014) with level-2 (L2) regularization.

We split the available training data into five different folds
and perform five independent runs, using four folds as train-
ing data DTr and the fifth fold as test data DTe. Performance
is averaged over these five runs. Model performance is as-
sessed via the MSE,

MSE=
1
|DTe|

∑
(r,9)∈DTe

(r − f (9))2, (7)

the mean absolute error (MAE),

MAE=
1
|DTe|

∑
(r,9)∈DTe

|r − f (9)| , (8)

and the root-mean-squared error (RMSE),

RMSE=

√√√√ 1
|DTe|

∑
(r,9)∈DTe

|r − f (9)|2. (9)

2.3 Satellite altimetry data

In this study, we use CryoSat-2 Level 1B products (including
measured waveforms) and Level 2I products (including range
estimates by the ESA retracker) from the Baseline-E Low
Resolution Mode (LRM) provided by the European Space
Agency (ESA). We make use of the ICE1 and ICE2 retracker
solutions given in the Level 2I product and, following Helm
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Figure 2. Results of the test in which a flat-surface waveform model was fitted to real CryoSat-2 waveforms by adjusting the attenuation
LA as the only parameter. (a) Gridded median of the attenuation rate estimated by an MLE fit. (b) Median of the correlation between the
observed and fitted waveforms.

et al. (2014), apply the TFMRA and the newly developed
AWI-ICENet1 retracker to the Level 1B waveform product.
ICE1 is based on a threshold-centre-of-gravity (TCOG) re-
tracker (Wingham et al., 1986; Davis, 1997), while ICE2,
the University College London (UCL) land ice retracker, fits
a Brown model (Brown, 1977) adapted for CryoSat-2. To
analyse the performance of AWI-ICENet1 in comparison to
the other three retrackers, we use the “ATL06.006” ICESat-
2 data product provided by NASA (Smith et al., 2023). We
use data from all six beams within the time range from Jan-
uary 2019 to December 2021. Instead of using the quality
flag given in the ATL06.006 product, we filter the data based
on version 2 of the REMA (an Antarctic elevation model),
using a 1 km pixel resolution (Howat et al., 2022), and ver-
sion 4.1 of the ArcticDEM mosaic (a high-resolution, high-
quality digital surface model of the Arctic), using a 500 m
pixel resolution (Porter et al., 2023). All data points with
a difference larger than ± 100 m are excluded from further
processing.

2.4 Elevation change and empirical corrections for the
effects of time-variable radar penetration

Surface elevation change (SEC) processing, as applied by
various groups, uses different strategies to minimize the
effect of radar penetration. In most cases, the backscatter
and/or additional waveform shape parameters (such as the
leading-edge width (LEW) and trailing-edge slope (TES)),

estimated by the ICE2 retracker introduced by Legresy et al.
(2005) and Frappart et al. (2016), are used. These wave-
form parameters are not provided by other retrackers, such
as the offset-centre-of-gravity (OCOG) retracker from Wing-
ham et al. (1986), the threshold-centre-of-gravity (TCOG)
retracker from Davis (1997), or the threshold first-maximum
retracker algorithm (TFMRA) from Helm et al. (2014). Here,
we make use of the LEW and backscatter from the Level 2I
ICE2 and ICE1, respectively, provided by the ESA LRM.
The decision to use the backscatter from ICE1 for all retrack-
ers is based on the lower sensitivity of the OCOG amplitude
to speckle noise, which results in the backscatter of succes-
sive waveforms being less noisy while preserving large-scale
and time-dependent fluctuations. After retracking, the geo-
referenced surface elevation is determined for each of the re-
tracking approaches using orbital information, such as infor-
mation on altitude, latitude, and longitude, along with addi-
tional geophysical corrections included in the ESA products.
In addition, the refined slope correction (Roemer et al., 2007)
is applied to relocate the echo to its point of closest approach.
This results in a large point cloud of georeferenced elevation
measurements for each of the retrackers. Li et al. (2022) de-
veloped the leading-edge point-based (LEPTA) method, an
improved version of the relocation slope correction which
includes points in the underlying DEM that contribute to
the rise in the leading edge. Their results show an improved
cross-point error (CPE) between CryoSat-2 and ICESat-2
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Figure 3. An example of the different simulation steps for a typi-
cal waveform over Lake Vostok. The blue line denotes the observed
CryoSat-2 LRM waveform, and the grey line represents the simu-
lated surface (SS) waveform based on Eq. (1). The red line repre-
sents the simulated waveform with volume scattering (SS + VS),
based on Eq. (3), while the black line depicts the final simulated
waveform, which includes surface and volume scattering as well as
noise (SS + VS + N), as given in Eq. (5). The lower panel repre-
sents the 2D elevation model as well as scaled Prs , which is mainly
controlled by the Gaussian antenna pattern.

compared to the method of Roemer et al. (2007). However, as
we only consider intra-mission cross-point errors and apply
the same slope correction to all retracker solutions, the slope
correction method does not play a role in our CPE analysis.

The interpolated elevation anomaly product and rates of
elevation change (dh/dt) are generated using a slightly dif-
ferent approach, as described in McMillan et al. (2016),
Schröder et al. (2019), and Nilsson et al. (2022). For each
pixel with a size of 1 km× 1 km, we collect all georeferenced
data points within a variable distance ranging from 500 to
2500 m (step width: 500 m) and correct for topography using
a bilinear interpolation of the REMA DEM and/or Arctic-

DEM, rather than fitting a linear or quadratic surface – an
approach used by McMillan et al. (2016), Schröder et al.
(2019), and Nilsson et al. (2022). The variable search ra-
dius is enlarged stepwise until a threshold number of points
is reached. This threshold is defined to cover at least 75 %
of the selected time period (nmonths) and meet the following
criteria – for CryoSat-2, it corresponds to nmonths · 6, and for
ICESat-2, due to the higher data coverage resulting from six
beams and less along-track point spacing, it corresponds to
nmonths · 48. This kind of processing allows us to minimize
uncertainties due to unresolved topography within the search
radius while maintaining enough data points for linear re-
gression by keeping the search radius as low as possible. Pro-
cessing costs for pixels with very dense data coverage in the
interior of Antarctica are kept low by selecting a small radius
(and thus fewer data points). At the same time, fewer unob-
served pixels remain in areas of coarse data coverage as the
search radius can be enlarged up to 2500 m. We then estimate
rates of elevation change using linear regression for each
pixel with sufficient data coverage (with the criteria being
that max(time)−min(time)> 50% of selected time period
and npoints > nmonths), without using additional information,
e.g. LEW, the TES, backscatter, or seasonal components. The
residuals are averaged to monthly residuals per pixel. Both
gridded products – the trend and the monthly residual grids –
are finally interpolated using inverse distance weighting with
a variable radius to form the final interpolated grids with a
5 km posting. Furthermore, the backscatter and LEW infor-
mation are processed in the same way, i.e. without any trend
or topographic correction. We calculate different variants of
corrections for transient-penetration effects using empirical
linear relations between 1h and LEW; 1h and backscat-
ter; or 1h, LEW, and backscatter. Instead of performing this
in the context of multi-parameter fitting, as in Flament and
Rémy (2012), Simonsen and Sørensen (2017), and Schröder
et al. (2019), we apply it to spatially interpolated monthly
anomalies in 1h, LEW, and backscatter, following the ap-
proach of Nilsson et al. (2022). We assume that changes in
the electromagnetic properties of the ice sheet surface are
driven by atmospheric processes that affect temperature and
surface density at the kilometre scale, which may explain
the time-varying elevation anomalies (hereafter referred to
as 1h), as shown by Lacroix et al., 2008. Our approach of
applying the correction to averaged, interpolated products
reduces the high uncertainty in single waveform parameter
estimates. This is reflected in the high correlations between
1h and anomalies in LEW and backscatter, as presented in
Figs. A5, A6, A7, and A8 for Greenland and Antarctica. Our
final product contains four monthly elevation estimates for
each of the four retracker solutions used to investigate 1h
and derive dh/dt . These are compared with those derived by
ICESat-2 using the same processing strategy. The estimates
are as follows:

– 1h and dh/dt without any correction
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Figure 4. A ConvNet is used to map an individual waveform to its corresponding range that correlates with the actual surface. We use standard
combinations of convolutions, ReLU, batch normalization, maximum pooling, and drop-out layers. The final feature layer is flattened and
used as input to a fully connected layer.

– LEW-corrected 1h and dh/dt

– Backscatter-corrected 1h and dh/dt

– LEW- and backscatter-corrected 1h and dh/dt .

3 Results

To evaluate the performance of the new AWI-ICENet1 re-
tracker, different tests are conducted, which are summarized
and structured as follows. First, AWI-ICENet1 is evaluated
using statistical metrics based on the simulated test data set,
such as the MSE. Learning curve andK-fold cross-validation
statistics are shown. Second, the simulated data set is re-
tracked using the TFMRA from Helm et al. (2014) and com-
pared to data from AWI-ICENet1. Third, the new retracker is
applied to CryoSat-2 LRM data, and a monthly cross-point-
error analysis is carried out in four selected regions of in-
terest (ROIs) in Antarctica to assess the retracker’s ability
to provide reliable elevation estimates in areas with vary-
ing surface topography and bulk attenuation rates. Fourth,
the monthly cross-point-error analysis is carried out across
the LRM zone using all four retrackers (AWI-ICENet1, the
TFMRA, and the ESA products ICE1 and ICE2). To assess
the retracker’s performance in terms of its ability to minimize
transient-penetration effects, the monthly elevation anomaly
product is evaluated within the ROIs and spatially across the
whole LRM zone of Antarctica and Greenland. Finally, em-
pirical corrections are applied to reduce time-variable pene-
tration bias for all retrackers and are evaluated.

3.1 AWI-ICENet1 results for simulated waveforms

We evaluated the ConvNet performance using the MAE,
MSE, and RMSE – as given in Eqs. (7), (8), and (9) – and by

Figure 5. Training loss evolution of the AWI-ICENet1 ConvNet.

Table 1. K-fold cross-validation results.

K-fold MSE (m) RMSE (m) MAE (m)

1 0.070 0.056 0.042
2 0.075 0.060 0.047
3 0.070 0.056 0.047
4 0.070 0.056 0.047
5 0.094 0.066 0.047

Mean 0.076 0.059 0.046

examining the learning curve of the MSE for both the train-
ing and test data sets. The learning curve of our final model
is shown in Fig. 5. Here, the MSE of the training and test
data gradually decreases and reaches a constant plateau after
approximately 10 epochs. To assess whether the model archi-
tecture provides similar metrics for different training and test
data, we applied a 5-fold cross-validation method, meaning
that the same input data set is split into five different parts us-
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Figure 6. Examples of simulated waveforms for (a) low LA and
(b) high LA. The initial noise-free waveform is indicated by the red
line, and added noise is indicated by the black line. The reference
range is displayed as a vertical bar in red, and the TFMRA- and
AWI-ICENet1-retracked ranges are superimposed in grey and blue,
respectively. The insets show a zoomed-in view of the leading edge,
where the retracking takes place.

ing an 80/20 split factor for training and testing. The results
of the different folds are listed in Table 1. They show nearly
identical values, indicating consistent, repeatable learning in-
dependent of the training data set. Our final model, which
was a hold-out model with an RMSE of 0.056 m and an MAE
of 0.042 m, was considered for application to real data and
further analysis.

To evaluate the performance of the retracker, we esti-
mated the difference (1R = Rref−RRT) between the re-
tracked range (RRT) and the reference range (Rref). In ad-
dition, we applied the TFMRA to the same set of simulated
waveforms and estimated 1R as well. In Fig. 7, the mean
values of 1R for AWI-ICENet1 and the TFMRA are pre-
sented. The statistics were calculated for all locations across
Antarctica, subdivided into bins of bulk attenuation rates.
Here, the influence of high volume scatter due to low LA
on range retrieval is clearly shown. For low LA, we ob-
served only a small offset (< 0.03 m) in the AWI-ICENet1-
retracked surface elevation compared to the true surface. In

Figure 7. Comparison of the mean 1R with respect to the bulk
attenuation rate between AWI-ICENet1 and the TFMRA.

contrast, 1R pertaining to the TFMRA forms a kind of ex-
ponential function, with differences of up to −0.5 m for low
LA, as presented in Fig. 7.

As a performance test, we ran the retracking on one of
the CPU and GPU compute nodes of the high-performance
cluster at the Alfred Wegener Institute, Helmholtz Centre for
Polar and Marine Research. In addition to the TFMRA, we
applied the TCOG retracker and an adapted version of the
functional fit of the ICE2 retracker, as described in Legresy
et al. (2005). To estimate the leading-edge width (LEW)
based on the TFMRA and the TCOG retracker, we ran the re-
tracking for different threshold levels (THLs), ranging from
5 % to 80 %. For each THL, a retracked position (RT) is
determined. The LEW is the inverse of the linear regres-
sion coefficient and is estimated for each waveform as fol-
lows: LEW= 1/m, where THL corresponds to m ·RT+ n.
Results of the performance test are shown in Table 2.

3.2 AWI-ICENet1 results for observed waveforms

In this section, the final AWI-ICENet1 retracker is applied
to the entire CryoSat-2 time series. For each of the ESA
Level 1B 20 Hz waveforms, a range is retracked and com-
bined with precise orbit information (e.g. information on lat-
itude, longitude, and altitude) to form a point cloud of geo-
referenced surface elevations. The cross-point-error analy-
sis is carried out on precise orbits. To derive elevation and
elevation change products for further applications, a slope-
corrected point cloud data set is generated using relocation
slope correction, as described by Roemer et al. (2007).

3.2.1 Cross-point-error analysis

To avoid time-dependent differences due to changes in radar
volume scattering, our accuracy measure for the individ-
ual solutions is based on monthly cross-point-error (CPE)
analysis across the entire Antarctic ice sheet. A CPE is de-
fined as the elevation difference between ascending and de-
scending tracks at cross points (CPs). In total, more than
3 million CPs from 130 months are used. We filter outliers
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Table 2. Results of the performance test for different retrackers. Retracking was applied to 1 million waveforms.

AWI-ICENet1 TFMRA /TFMRA and LEW TCOG /TCOG and LEW ICE2

Processing time on the CPU (s) 233 31/207 13/134 153
Processing time on the GPU (s) 56 30/204 13/130 149

using the following criterion: |CPE|> 10 m. Finally, a grid
with a 5 km× 5 km pixel resolution, based on the mean and
standard deviation (SD), is calculated from all CPEs. Fig-
ures 8 and 9 show the time evolution of the median and SD
of the CPEs for four selected regions, which are shown in
Fig. 1. In the Box1 area (Fig. 8a), we find a significant neg-
ative CPE for the TFMRA and both ESA retrackers, with
the largest CPE corresponding to the ESA ICE2 retracker.
AWI-ICENet1 has a very low CPE and performs best in this
area. In Box2, the picture is similar, but the CPE lies within
the positive range, with the ESA ICE2 retracker once again
showing the highest CPE (Fig. 8b). The SD, displayed in
panels (a) and (b) of Fig. 9, also shows exceptionally high
values for the ESA ICE2 retracker. The other retrackers have
similar SDs, around 20 cm, in Box1 and Box2. Next, we con-
sider two regions with specific topographic settings (both ar-
eas are shown in Fig. 1): the Vostok region, characterized by
a very flat terrain with minimal surface undulations, and the
“Recovery” region, which is more complex and has steeper
surface slopes of up to 1° and medium-scale topographic un-
dulations. The results for the median CPE are presented in
Fig. 8c and d. For both areas, the median CPE is lower than
for the two box areas, with the range peaking at 20–30 cm.
Again, the ESA ICE2 retracker shows the highest CPE across
the entire time period for the Vostok and Recovery areas.
The new AWI-ICENet1, the TFMRA, and the ESA ICE1 re-
tracker have median and SD CPE values of a similar order of
magnitude, with only slight differences. Temporal variability
is higher in the Recovery area than in the Vostok region.

The strong differences in surface characteristics also be-
come evident when using the SD of the CPEs for comparison.
In the Recovery area, the SD of the CPEs ranges from about
0.5–1.5 m, roughly 3 times higher than that in the Vostok area
and the two box areas. In all cases, the trends in the median
and SD of the CPEs have been rather stable over the years,
with a few exceptions. In the Box2 area, we find a decrease in
the median CPE for the ESA ICE2 retracker from 2018 on-
wards. Additionally, some incremental changes (a few cen-
timetres in size) are observed by the ESA ICE1 retracker and
TFMRA, while AWI-ICENet1 remains constant over time.
The time series of the SD of the CPEs also show generally
stable trends, with a few exceptions: in Box1 and Vostok, we
find a peak in all retrackers except the ESA ICE2 retracker,
whereas the trend in the median for Box2 is not reflected in
the SD. The high temporal variability in the SDs of the CPEs
in the Recovery area prevents us from analysing trends, but
all retrackers show variability of a similar magnitude.

Figure 8. Time series of the median cross-point errors for different
areas. Cross-point errors are determined at a monthly resolution for
each region.

In the next step, we broaden the view and discuss the CPEs
over the entire ice sheet. Figure 10 displays the time series of
the SD of the CPEs for the complete LRM zone of Antarc-
tica, covering the 12-year observational time period of the
CryoSat-2 era. Here, AWI-ICENet1 and the ESA ICE1 re-
tracker are similar in terms of the SD of the CPEs, whereas
the TFMRA exhibits considerably higher SD across the en-
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Figure 9. Time series of the standard deviation of cross-point errors
for different areas. Cross-point errors are determined at a monthly
resolution for each region.

tire ice sheet. The ESA ICE2 retracker has a particularly high
SD – almost twice as large as that of the other two. The tem-
poral variability is rather low and shows no trends for any
of the four retracker solutions. The pan-Antarctic gridded
median and SD of the CPEs are shown in Figs. 11 and 12.
The results reveal that the crossover difference is reduced by
roughly a factor of 4 to 5 for ICE1 and the TFMRA com-
pared to ICE2 (note the different value range in panel (c) of
Fig. 11). However, there are remaining CPEs with alternating
signs, up to ±0.3 m, across Antarctica, including a promi-
nent pattern in the interior of East Antarctica, which is close
to the polar gap. This pattern, discussed below, is entirely
eliminated with AWI-ICENet1, as displayed in panel (a) of
Fig. 11. AWI-ICENet1 also exhibits a low median CPE with
AWI-ICENet1 can be also seen close to the ice divides north

Figure 10. Time series of the standard deviation of cross-point er-
rors across the LRM zone in Antarctica. Cross-point errors are de-
termined at a monthly resolution.

of Dome Fuji (indicated by F in Fig. 1), in southern Dron-
ning Maud Land (D), in the topographically complex areas
of the Siple Coast (S), and in the drainage area of the Amery
Ice Shelf (A). The SDs of the CPEs shown in Fig. 12a, b,
and d are very similar for AWI-ICENet1, the ESA ICE1 re-
tracker, and the TFMRA, respectively, and are a factor of 4 to
5 smaller than those for the ESA ICE2 retracker (Fig. 12c).
In general, the lowest values are found in the flat interior, and
the highest values are found in the sloped areas with complex
topography. This is consistent with our findings for the four
test areas, where the highest SD of the CPEs is observed in
the Recovery area with the roughest topography.

3.2.2 Transient penetration

In this section, we analyse the time-dependent variability in
1h, which has been widely discussed in the literature as cor-
responding to transient penetration or penetration bias due
to changes in firn properties (e.g. Davis and Zwally (1993),
Michel et al. (2014), and Slater et al. (2019)) for various re-
trackers. To this end, in Fig. 13, we present 1h and its stan-
dard deviation, SD(1h), for all retrackers and across the en-
tire CryoSat-2 time period for the Lake Vostok region, a re-
gion that has exhibited a stable surface height over the last
decade (Richter et al., 2014). Except for AWI-ICENet1, all
retrackers show strong variability, with the ESA ICE2 re-
tracker exhibiting the largest range (up to 0.8 m). The tem-
poral variability in the ESA ICE1 and ICE2 retrackers and
the TFMRA are correlated, although the ESA ICE1 retracker
and TFMRA exhibit lower magnitudes compared to the ESA
ICE2 retracker. The new AWI-ICENet1 exhibits1h amount-
ing to only a few centimetres, with minor temporal variabil-
ity and a slight increase from 2021 onwards. The SD of the
elevation anomalies (Fig. 13b) is largest for the ESA ICE2
retracker, while the ESA ICE1 retracker and TFMRA exhibit
similar SD values, significantly lower than those exhibited
by the ESA ICE2 retracker, although the temporal evolution
has the same form as that pertaining to the ESA ICE2 re-
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Figure 11. Spatial distribution of the median of the cross-point errors across the LRM zone in Antarctica for all four retrackers. Cross-point
errors are determined at a monthly resolution for the time period from January 2011 to December 2022. The median is determined for each
5 km× 5 km pixel. Please note that panel (c) has a different range for the colour bar compared to the other three panels.

tracker. AWI-ICENet1 exhibits not only low 1h but also
low SD(1h). Figure 14 presents the1h and SD(1h) values
for a 5000 km2 high-elevation area on the North Greenland
plateau (79° N, 45° W). Large sudden increases of more than
1.0 m for the ESA ICE2 retracker are observed in July 2012
and August 2018. Here, the TFMRA and ESA ICE1 retracker
also experience an increase of 0.3 m, whereas AWI-ICENet1
stays at the same level. Both events can be related to unusual
heat waves transporting warm air to high elevations, resulting
in surface melt conditions, as reported by the Danish Me-
teorological Institute (DMI) portal. In all other months, the
anomalies are correlated and follow a similar trend but with

strong differences in the observed magnitudes, with AWI-
ICENet1 showing the smallest values and the ESA ICE2 re-
tracker showing the highest values. For the SD of the ele-
vation anomalies (Fig. 14b), we observe the same pattern as
that for the Vostok area, with the lowest values correspond-
ing to AWI-ICENet1 and the highest values corresponding
to the ESA ICE2 retracker. In the following, we will discuss
how this relates to the findings of other studies and continue
inspecting the spatial distribution of 1h.

Figure 15 presents the spatial distribution of SD(1h).
Here, the standard deviation is calculated for each pixel
(5 km posting). The ESA ICE1 retracker and TFMRA have a
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Figure 12. Spatial distribution of the standard deviation of cross-point errors across the LRM zone in Antarctica for all four retrackers.
Cross-point errors are determined at a monthly resolution for the time period from January 2011 to December 2022. The standard deviation
is determined for each 5 km× 5 km pixel.

close spatial distribution and magnitude, with the largest ele-
vation anomaly observed along the Siple Coast (S in Fig. 1)
and the drainage basins in Queen Elizabeth Land feeding
the Ronne Ice Shelf (Q in Fig. 1). For the ESA ICE2 re-
tracker, the SD of elevation anomalies exceeds 30 cm in an
extensive area. The lowest SD of the elevation anomalies is
found for AWI-ICENet1, where the largest values are also
found in West Antarctica. However, SD(1h) for nearly all
of East Antarctica is below 5 cm, whereas for the ESA ICE1
retracker and TFMRA, SD(1h) ranges from 8–25 cm.

3.2.3 Empirical correction of transient penetration
compared to AWI-ICENet1

Flament and Rémy (2012), Simonsen and Sørensen (2017),
Schröder et al. (2019), and Nilsson et al. (2022) used
an empirical relation between the elevation anomalies and
backscatter, LEW, and/or the TES to partly reduce the
transient-penetration effect. Here, we make use of the same
correction, largely following Nilsson et al. (2022). Specifi-
cally, we apply the correction to all retrackers, using LEW
and backscatter for the Vostok area and LEW only for the
North Greenland area, which aligns with the findings of Si-
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Figure 13. Time-dependent mean value (a) and standard devia-
tion (b) of the elevation anomalies pertaining to the Vostok region.
The elevation anomalies are based on grid with a 5 km× 5 km pixel
resolution, derived from the spatially interpolated monthly residuals
of the elevation trend estimation.

Figure 14. Time-dependent mean value (a) and standard devia-
tion (b) of the elevation anomalies pertaining to the North Green-
land region. The elevation anomalies are based on grids with a
5 km× 5 km pixel resolution, derived from the spatially interpolated
monthly residuals of the elevation trend estimation.

monsen and Sørensen (2017). Results for Vostok and North
Greenland are shown in Figs. 16 and 17, respectively. In both
cases, 1h is strongly reduced for all retrackers, with ex-
ception of AWI-ICENet1. The largest reduction is observed

for the ESA ICE2 retracker, but it still shows the largest
remaining 1h, exceeding the values for AWI-ICENet1 by
a factor of 2 or higher. The TFMRA and ESA ICE1 re-
tracker are similar and closer to AWI-ICENet1 but still show
larger magnitudes. The SD of 1h is reduced for all retrack-
ers, with the least improvement observed for AWI-ICENet1.
However, our new retracker shows the smallest SD, as pre-
sented in Fig. 16b. In North Greenland, the sudden posi-
tive elevation increase, resulting from a change in the domi-
nant scattering regime caused by the melt events in the sum-
mer of 2012 and 2018, is strongly suppressed. The differ-
ent solutions are now correlated over the years. The small-
est remaining 1h is observed for AWI-ICENet1, followed
by the TFMRA and the ESA ICE1 and ICE2 retrackers. For
North Greenland, the TFMRA and ESA ICE1 retracker show
larger negative and positive deviations from AWI-ICENet1
in the winters of 2013/2014 and 2017/2018, respectively, as
shown in Fig. 17a. Moreover, 1h in North Greenland is
more variable than in Vostok, reaching values of 0.1 m for
AWI-ICENet1. Around Vostok, only small perturbations of
< 3 cm are observed with AWI-ICENet1, reflecting the low-
accumulation regime in East Antarctica. Figure 18 presents
the spatial distribution of the SD of the elevation anomalies
corrected with LEW and backscatter. Again, the ESA ICE2
retracker shows the largest anomalies, followed by the ESA
ICE1 retracker and the TFMRA. SD(1h) is reduced to 4–
10 cm for the TFMRA and ESA ICE1 retracker for the ma-
jority of the East Antarctic Plateau. For AWI-ICENet1, only
a minor reduction in SD(1h) could be achieved, with values
amounting to less than 4 cm for the majority of East Antarc-
tica. It is worth mentioning that even the corrected TFMRA
in Fig. 18d still shows larger values than the uncorrected
AWI-ICENet1 in Fig. 15a. To investigate the extent to which
the applied correction mitigates the transient penetration for
each retracker, we sort the SD(1h) values of the uncorrected
and corrected 1h within the LRM zone into bins with a size
of 0.02 m, as shown in Fig. 19. The cumulative frequency
in Fig. 19a shows that approximately 80 % of the SD(1h)
values for AWI-ICENet1 are less than 6 cm, whereas this is
true for less than 20 % of said values for the TFMRA and
ESA ICE1 retracker. The ESA ICE2 retracker exhibits val-
ues greater than 15 cm for more than 90 % of the area and
values greater than 30 cm for more than 50 % of the area. Af-
ter correction, as presented in Fig. 19b, 60 % of the area for
the TFMRA and ESA ICE1 retracker shows values of less
than 6 cm. While the effect of the applied correction is sig-
nificant for all retrackers except AWI-ICENet1, it is not able
to minimize the transient-penetration bias to the same order
of magnitude as AWI-ICENet1. Since AWI-ICENet1 experi-
ences only a small reduction in SD(1h), we conclude that
most of the transient-penetration bias is already corrected by
the retracker. Similar results are obtained for the Greenland
Ice Sheet but with larger magnitudes of SD(1h) in general.
Corresponding figures illustrating the spatial distribution of
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Figure 15. Spatial distribution of the standard deviation of the elevation anomalies across the LRM zone in Antarctica for all four retrackers.
The elevation anomalies are based on grids with a 5 km× 5 km pixel resolution, derived from the spatially interpolated monthly residuals
of the elevation trend estimation. The standard deviation is determined for each pixel across the full time period from January 2011 to
December 2022.

SD(1h) and the cumulative distribution are presented in the
Appendix in Figs. A11, A12, and A13.

4 Discussion

4.1 Assessment of AWI-ICENet1 for simulated
waveforms

Several waveform models have been developed to study the
effects of physical parameters on waveform shape and their
impact on retracked surface height, such as those by Rid-

ley and Partington (1988), Femenias et al. (1993), Legrésy
and Rémy (1997), Adams and Brown (1998), and Arthern
et al. (2001). Martin et al. (1983) showed that the shape of
the waveform’s echo is affected by large-scale surface un-
dulations. The surface slope has a large effect on the width
of the leading edge (Femenias et al., 1993). Femenias et al.
(1993) also showed that the error in the range retrieval due
to volume backscatter can be up to 50 cm and mainly affects
the trailing edge of the echo. Small-scale roughness can ac-
count for±2 cm of the height bias. Our waveform model cap-
tures large-scale undulations and surface slope because we
use a subset of the REMA as input for each simulated wave-
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Figure 16. Time-dependent mean value (a) and standard devia-
tion (b) of the corrected elevation anomaly pertaining to the Vos-
tok region. The elevation anomalies are based on grids with a
5 km× 5 km pixel resolution, derived from the spatially interpo-
lated monthly residuals of the elevation trend estimation that were
corrected for transient penetration using LEW and backscatter.

Figure 17. Time-dependent mean value (a) and standard devia-
tion (b) of the corrected elevation anomaly pertaining to a region in
North Greenland. The elevation anomalies are based on grids with
a 5 km× 5 km pixel resolution, derived from the spatially interpo-
lated monthly residuals of the elevation trend estimation that were
corrected for transient penetration using LEW only.

form. We do not consider macro roughness (metre-scale sas-
trugi) and small-scale roughness (centimetre-scale ripples) as
these are not the main sources of error in height estimates.

The sub-surface signal can be attenuated by various physical
processes and parameters (e.g. absorption losses, scattering
from ice grains, and multiple reflections within the snowpack
caused by the stratification of the sub-surface due to den-
sity contrasts (Ridley and Partington, 1988; Femenias et al.,
1993; Legrésy and Rémy, 1997)). In our model, we do not
resolve the various parameters but consider their combined
attenuation effect as an overall or bulk attenuation rate that
changes the waveform. In Sect. 3.1, simulated sample wave-
forms for high and low LA are shown in Fig. 6. In addition
to the significant difference in the TES, the broadening of the
LEW for low LA is striking and reflects the observations of
Femenias et al. (1993). This leads to incorrect estimates of
TFMRA-retracked surface elevation as the retracked range is
estimated to be 25 % of the leading edge (Helm et al., 2014).
As a result, the retracked range is estimated within the first
metre of the snowpack, depending on the width of the leading
edge, rather than at the true surface, which is shown in Fig. 7.
In contrast, AWI-ICENet1 strongly suppresses this penetra-
tion effect and positions the retracked range much closer to
the true surface, making it less sensitive to errors caused by
changes in the volume scattering contribution. Because AWI-
ICENet1 has only been trained across the LRM zone, it may
not be optimally trained for the very complex regions near the
ice sheet margins. This could lead to larger errors when ap-
plied to pseudo-low-resolution-mode (PLRM) data included
in the ESA Baseline-E data product. If AWI-ICENet1 were to
be used for other missions (such as Envisat, SARAL/AltiKa,
or Sentinel-3 (PLRM)), new simulations and training would
be required to accurately represent mission-specific sensor
characteristics, such as centre frequency, bandwidth, and an-
tenna gain pattern.

4.2 Assessment of AWI-ICENet1 for satellite altimetry
data

4.2.1 Cross-point-error analysis

In Sect. 3.2.1, CPE results were presented as the pan-
Antarctic gridded median and SD values of the CPEs
(Figs. 11 and 12). A prominent feature in the central part
of East Antarctica (around the pole gap) was identified as a
static crossover pattern. This pattern was described by Ar-
mitage et al. (2014) as the result of an isotropic dependence
of the extinction coefficient on the angle between the radar
polarization and wind-induced properties of the firn. In re-
sponse to the Armitage et al. (2014) results, Box1 and Box2
were selected to investigate whether the crossover pattern is
static over time and can be reduced using AWI-ICENet1. We
have shown that the results for this area reveal a reduction in
the CPE of about a factor of 4 for ICE1 and the TFMRA com-
pared to ICE2 (note the different range of values in panel (c)
of Fig. 11). A similar observation was made by Helm et al.
(2014), in which the TFMRA showed slightly better results
than the ESA ICE1 retracker. This finding is confirmed here
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Figure 18. Spatial distribution of the standard deviation of the corrected elevation anomaly across the LRM zone in Antarctica for all four
retrackers. The elevation anomalies are based on grids with a 5 km× 5 km pixel resolution, derived from the spatially interpolated monthly
residuals of the elevation trend estimation that were corrected using correlations with leading-edge width and backscatter. The standard
deviation is determined for each pixel across the full time period from January 2011 to December 2022.

as well. Moreover, the pattern is completely eliminated when
using AWI-ICENet1, as displayed in panel (a) of Fig. 11. We
conclude that the new AWI-ICENet1 retracker significantly
suppresses the influence of the anisotropic dependence of the
extinction coefficient and wind-driven directional anisotropy
of the ice sheet surface and firn on surface height measure-
ments, as described by Legresy et al. (1999). These results
are consistent with those of Arthern et al. (2001), who found
that the extinction coefficient (or, as we refer to it, the bulk at-
tenuation rate) decorrelates between ascending and descend-
ing tracks. Because AWI-ICENet1 is able to minimize the

effect of the bulk attenuation rate on range measurements, it
is also able to remove the directional effect from ice sheet
height measurements.

4.2.2 Transient penetration

Time-dependent elevation anomalies measured by radar
satellite altimetry make up a composite signal of ice dy-
namical processes, changes in surface mass balance (SMB),
changes in the firn compaction rate, and time-dependent
radar penetration. In areas with low accumulation rates, such
as the majority of the vast East Antarctic Ice Sheet, the latter
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Figure 19. Cumulative histogram (with a bin size of 0.02 m) il-
lustrating the standard deviation of the elevation anomalies across
the LRM zone in Antarctica for all four retrackers. (a) Uncor-
rected and (b) corrected h anomalies using correlations with LEW
and backscatter. The elevation anomalies are based on grids with a
5 km× 5 km pixel resolution, derived from the spatially interpolated
monthly residuals of the elevation trend estimation. The standard
deviation is determined for each pixel across the full time period
from January 2011 to December 2022.

can surpass SMB and firn compaction anomalies by 1 order
of magnitude. To reliably estimate volume and mass changes,
it is very important to correct for penetration bias as true ele-
vation changes are only driven by changes in SMB, firn com-
paction, and ice dynamics. In Sect. 3.2.2, time-dependent
variability in the elevation anomalies across the Lake Vos-
tok area was presented. All retrackers usually used over
ice sheets show surface height undulations of a couple of
decimetres in areas known to be stable over recent decades
(Richter et al., 2014). Similar findings for this area have
been discussed in the literature regarding CryoSat-2 and En-
visat, with methods proposed to partly suppress the penetra-
tion bias. As these undulations are driven by time-dependent
changes in firn properties, a widely accepted method involves
using the correlation between 1h and backscatter and/or the
waveform parameters (LEW and the TES), which are also
affected by firn properties and thus change over time.

We applied this correction to all retrackers discussed in
Sect. 3.2.2 and demonstrated its effectiveness. However, it
is still unclear how much penetration bias contributes to the
measured anomaly and how effectively the applied correc-
tions can mitigate this bias. To address this issue, we compare
our results with ICESat-2 observations and focus on the time
period from January 2019 to December 2021, when both mis-
sion were in operation. Although ICESat-2 is a green-laser
altimeter, a negligible penetration bias in dry snow can be
assumed (Studinger et al., 2024). This is supported by and il-
lustrated in Fig. 20, which shows the1h values observed by
ICESat-2 in the given time period. In approximately 90 % of
the area, the SD of1h is less than 0.04 m, indicating that for
most of the area there is little variation in penetration, SMB,
and/or firn compaction. Only in the Amundsen Sea Embay-
ment (ASE) and along the Siple Coast in West Antarctica are
h anomalies of more than 0.1 m found. The latter could in-
dicate a dynamic thickening signal from the stagnant Kamb
Ice Stream (Nield et al., 2016). The higher variability ob-
served in the ASE can be explained by the extreme precip-
itation events that occurred in this area during the winters
of 2019 and 2020, as reported by Davison et al. (2023). In
Fig. 21, we compare the cumulative frequency of SD(1h)
with ICESat-2 with regard to the uncorrected and corrected
data in panels (a) and (b), respectively. AWI-ICENet1 al-
ready shows very close agreement with ICESat-2, even with-
out any corrections, with only slight improvements observed
when corrections are applied. However, for the TFMRA and
ESA ICE1 retracker, the applied correction is very effective,
although remaining signals are still present. The correction
is not able to reduce SD(1h) to less than 4 cm, with only
30 % of the area for the TFMRA and ESA ICE1 retracker
meeting this criterion (compared to 60 % for ICESat-2 and
AWI-ICENet1). Our results illustrate that while backscatter
and LEW corrections, even when applied over a relatively
short time span of 3 years, significantly improve the data,
they are not able to fully correct for erroneous signal contri-
butions due to radar penetration. For longer time series, as
shown in Fig. 19, the effect of the correction on ice-sheet-
wide observations is even smaller.

4.2.3 Sudden changes in scattering properties and their
effect on elevation change

Nilsson et al. (2015, 2016), McMillan et al. (2016), and
Simonsen and Sørensen (2017) discussed the unusual melt
event that occurred across the Greenland Ice Sheet in
July 2012 and analysed its impact on CryoSat-2 obser-
vations. Nilsson et al. (2015) reported improved perfor-
mance using a 20 % threshold retracker for LRM data, which
showed reduced sensitivity to changes in near-surface scat-
tering properties. This result is in close agreement with the
findings of Helm et al. (2014). On the other hand, McMil-
lan et al. (2016) introduced a step function to mitigate the
observed elevation step. This procedure however, is not ap-
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Figure 20. ICESat-2-derived spatial distribution of the standard de-
viation of the elevation anomalies across the LRM zone in Antarc-
tica. The elevation anomalies are based on grids with a 5 km× 5 km
pixel resolution, derived from the spatially interpolated monthly
residuals of the elevation trend estimation. The standard deviation is
determined for each pixel across the time period from January 2019
to December 2021.

plicable as a general approach as it cannot account for mul-
tiple melt events, which can be expected in future. Using
the “LRM_L2” data from the ESA, Simonsen and Sørensen
(2017) studied the impact of different waveform parameters
(LEW and backscatter) in correcting for scattering properties
in CryoSat-2 observations for the time span from Novem-
ber 2010 to November 2014. Their findings suggest that
LEW correction is the most effective approach for the LRM
zone. They also found that some bias in temporal changes
is not entirely removed, which aligns with our results for
the ESA ICE1 and ICE2 retrackers. In order to evaluate
whether AWI-ICENet1 is capable of handling sudden scat-
tering changes, we applied dh/dt processing to all retrack-
ers for the time span from January 2011 to December 2014,
covering nearly the same period investigated by Simonsen
and Sørensen (2017). In Fig. 22, uncorrected dh/dt values
are shown, and in Fig. A17, dh/dt values corrected using
LEW and backscatter are shown. The same unusual ele-
vation increase, with mean rates of 0.1–0.2 m yr−1, is ob-
served for the ESA ICE1 retracker and TFMRA across large
parts of the highly elevated area. The ESA ICE2 retracker
shows rates of > 0.25 m yr−1 for almost the entire LRM
zone. Only the southeastern part experiences surface lower-
ing. In contrast, AWI-ICENet1-derived dh/dt ranges from
-0.05 to 0.05 m yr−1 and does not seem affected by the

Figure 21. Cumulative histogram (with a bin size of 0.02 m) il-
lustrating the standard deviation of the elevation anomalies across
the LRM zone in Antarctica for all four retrackers and ICESat-2.
(a) Uncorrected and (b) corrected h anomalies using correlations
with LEW and backscatter. The elevation anomalies are based on
grids with a 5 km× 5 km pixel resolution, derived from the spa-
tially interpolated monthly residuals of the elevation trend estima-
tion. The standard deviation is determined for each pixel across the
time period from January 2019 to December 2021.

change in scattering characteristics due to the surface melt
event. When compared to the corrected dh/dt estimates, we
find the best agreement with the ESA ICE1 retracker and
TFMRA. In agreement with Simonsen and Sørensen (2017),
we find that the corrected TFMRA and the ESA ICE1 and
ICE2 retrackers still show some remaining signal. The ap-
plication of a low-threshold retracker, as suggested by Nils-
son et al. (2015), strongly reduces sensitivity to scattering
changes, but it still needs to be combined with waveform pa-
rameter corrections to provide reliable results. Only AWI-
ICENet1 incorporates most of the correction directly within
the retracking process. The differences between uncorrected
and corrected dV/dt estimates are within the uncertainty of
8 km3 yr−1, as listed in Table 3. AWI-ICENet1 is in close
agreement with the LEW estimates from the ESA ICE1 re-
tracker. These have been found to match best with surface el-
evation changes measured by lidar during the Operation Ice-
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Figure 22. Greenland-wide dh/dt estimates from four retrackers for
the period from January 2011 to December 2013, which includes
the July melt event of 2012.

Bridge campaigns, as presented by Simonsen and Sørensen
(2017), and agree well with our corrected TFMRA estimates.

4.2.4 Comparison of elevation change estimates with
ICESat-2 data

To further assess the performance of the retrackers, we con-
duct a comparison between elevation change (dh/dt) and
ICESat-2 data for the time span from January 2019 to De-
cember 2021. The difference in elevation change (dh/dt
for CryoSat-2 – dh/dt for ICESat-2), i.e. the dh/dt differ-
ence, is displayed in Fig. 23 for each retracker individu-
ally. Again, the patterns for the ESA ICE1 retracker and
TFMRA are similar spatially as well as in terms of magni-
tude. The ESA ICE2 retracker deviates the most from the
ICESat-2 elevation change. The new AWI-ICENet1 shows
deviations of less than ±0.1 m yr−1 from ICESat-2 over ap-
proximately 90 % of the entire area. Table 4 lists estimated
volume changes (dV/dt) observed in the LRM zone for the
time span from January 2019 to December 2021 for ICESat-
2 and all retrackers that include the applied corrections for
both ice sheets. In Antarctica, the difference between ap-
plying and not applying the correction is tremendously high

for ICE2, ranging from 84 to 276 km3 yr−1, followed by the
TFMRA (a range of 72 km3 yr−1) and the ESA ICE1 re-
tracker (a range of 56 km3 yr−1). AWI-ICENet1 shows the
smallest range, only 9 km3 yr−1, indicating that most of the
corrections are already covered by the retracker itself. The
results also show the necessity of applying the corrections to
all retrackers except AWI-ICENet1; otherwise, dV/dt and,
consequently, mass balance estimates are unreliable, particu-
larly for East Antarctica. The uncorrected estimates are prone
to errors which are strongly related to elevation anomalies
originating from changes in the electromagnetic properties
of the upper layers of the snow/firn pack. In Greenland, the
same conclusion can be drawn. Here, the spread of dV/dt
is smaller. The spread is 41 km3 yr−1 for the ESA ICE2 re-
tracker, 8 km3 yr−1 for the ESA ICE1 retracker, 6 km3 yr−1

for the TFMRA, and only 4 km3 yr−1 for AWI-ICENet1. In
all cases, the uncertainty in the estimates could be reduced
using the combined correction of LEW and backscatter. The
smallest spread between the different retracker solutions is
also found using LEW and backscatter corrections applied
across Antarctica and Greenland, respectively. Interestingly,
as shown in Figs. 15, 18, A11, and A12, none of the cor-
rections applied to the ESA ICE1 and ICE2 retrackers and
the TFMRA are capable of reducing 1h as effectively as
AWI-ICENet1. This is particularly evident for Greenland, as
shown in Table 4, where none of the dV/dt estimates reach
values of 5 km3 yr−1, as observed by ICESat-2. For Green-
land and Antarctica, AWI-ICENet1 also reveals the smallest
offsets compared to ICESat-2; in both cases, the difference
in dV/dt is less than 20 km3 yr−1, where ICESat-2 tends to
show larger values (compared to those displayed in panel (a)
of Figs. 23, 24, A15, and A16). This small (< 1 cm yr−1)
difference in dh/dt compared to ICESat-2 is most likely a
residual signal due to radar penetration and thus not related
to any ICESat-2 mission bias, as observed for the prede-
cessor mission ICESat-1 (NSIDC, 2021). Sea level trends
computed from ICESat-2 observations agree with indepen-
dent measurements from radar altimetry and tide gauges, as
shown by Buzzanga et al. (2021), and do not indicate any
trend bias (at least over oceans). In Antarctica, the best match
with AWI-ICENet1 is found for the TFMRA with LEW and
backscatter corrections applied. In Figs. A5, A6, A7, and
A8, the correlations between the elevation anomalies and
LEW, as well as those between the elevation anomalies and
backscatter, are shown. For AWI-ICENet1, the correlations
are lower than for the other three retrackers, but this is ex-
pected since the h anomalies are already strongly suppressed
by AWI-ICENet1, which should lead to much lower corre-
lations with backscatter or LEW. In particular, the correc-
tion with backscatter needs to be carefully checked as it can
introduce errors which most likely originate from errors in
the power scaling factors applied to the Level 1B LRM data,
as reported by the ESA (Exprivia, 2021). This issue caused
the backscatter computed at Level 1 to differ between the
Baseline-D and Baseline-E products, resulting in a jump in
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Table 3. Volume change dV/dt estimates for Greenland for the period from January 2011 to December 2014, derived using different
retrackers and corrections. All values are given in km3 yr−1.

Correction AWI-ICENet1 ICE1 ICE2 TFMRA

None −74± 7 −42± 13 156± 27 −43± 14
LEW −70± 8 −64± 12 60± 20 −78± 13
Backscatter −73± 7 −39± 12 169± 25 −35± 13
LEW and backscatter −67± 7 −57± 11 72± 19 −73± 12

backscatter in August 2019 when the Baseline-E product was
operational (Exprivia, 2021). The issue was solved in the re-
processed Baseline-E data. In our processing, we used this
reprocessed Baseline-E data and thus do not expect any is-
sues with the backscatter.

4.2.5 Computational performance

Unlike many other machine learning applications used in
remote sensing, AWI-ICENet1 was not designed to replace
manual labour or save time but to improve observation
quality. In fact, our computational-performance test results,
shown in Table 2, highlight that AWI-ICENet1 requires
more processing time than conventional empirical retracking
methods. In particular, AWI-ICENet1 requires about 8 times
more computing time than the TFMRA and around 18 times
more than the TCOG retracker, both of which are cheap em-
pirical retracking methods with low computing costs. How-
ever, if the estimation of the LEW is also taken into ac-
count in the TCOG retracker and TFMRA, the difference
in processing time compared to that of the AWI-ICENet1
is considerably reduced. Therefore, we do not consider the
higher computational cost of AWI-ICENet1 to be a signifi-
cant drawback for its use, regardless of the computing infras-
tructure. Compared to more complicated waveform-fitting
methods based on analytical descriptions of the waveform,
such as classical ocean retrackers (e.g. the maximum likeli-
hood estimators MLE3 and MLE4 (Amarouche et al., 2004;
Thibaut et al., 2010), adaptive versions of MLE3 and MLE4
(Thibaut et al., 2021), SAMOSA+ (Dinardo et al., 2018),
and SAMOSA++ (Dinardo et al., 2021)), ConvNet-based
approaches are expected to help significantly reduce pro-
cessing costs. Reprocessing campaigns could benefit from
neural-network-based approaches. However, for each of the
aforementioned the analytical retrackers, a specific ConvNet
model that best represents the analytical solution would have
to be trained in advance with a considerable number of wave-
forms covering the entire spectrum of possible waveforms.

5 Conclusions

We conclude that the use of AWI-ICENet1, a new retracker
for ice altimetry based on a convolutional network, provides
better performance in deriving ice-sheet-wide elevation prod-

ucts than currently used retrackers, such as the TFMRA or
the ESA Level-2 ICE1 and ICE2 products. Across all ter-
rain types, the performance of AWI-ICENet1 in terms of the
CPE is similar to that of the ESA Level-2 ICE1 product, the
highest-precision retracker. The main improvement with our
new approach is the large reduction in sensitivity to transient
signal penetration due to temporal changes in near-surface
scattering properties of the firn in comparison to other ap-
proaches. The transient-penetration bias, which can be on the
order of several decimetres, is reduced to a few centimetres
by AWI-ICENet1. AWI-ICENet1 can handle abrupt changes
in the prevailing scattering mechanism due to surface melt,
such as those that occurred across Greenland in July 2012,
as well as temperature-induced changes in the bulk attenua-
tion rate of the upper firn layers, which are mainly observed
as a seasonal signal in East Antarctica. The contribution of
transient penetration to the measured elevation anomaly is
greatly reduced compared to that of equivalent products, even
when it is compared to empirically corrected data using a cor-
relation between elevation changes and changes in backscat-
ter or waveform shape parameters, such as LEW. This results
in a much more accurate sampling of true elevation changes
due to changes in SMB or firn compaction, and estimates
agree well with ICESat-2-derived estimates that are not sus-
ceptible to transient penetration. Using the new retracking
method for CryoSat-2 LRM data, we determine the volume
change in the LRM zone of the Antarctic and Greenland ice
sheets for the period from January 2019 to December 2021
to be 84±13 and−24±7 km3 yr−1, respectively. This agrees
well with ICESat-2 estimates obtained across both ice sheets
during the same period (96±6 and 5±6 km3 yr−1). The im-
provements in our new retracking approach reduce the need
for correlation corrections in post-processing, which can in-
troduce additional bias as a result of anomalous backscatter
variations caused by different processing baselines. In addi-
tion, empirical corrections are sensitive to the length of the
time series used to apply the correction. The new retracking
method provides higher intrinsic accuracy in the measured
surface elevation and thus lower uncertainty in derived prod-
ucts, such as elevation change and volume change estimates.
This will lead to an improved understanding of the response
of ice sheets to climate change, especially with respect to
areas of low elevation change, such as the East Antarctic
Plateau, where high measurement accuracy is required to
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Table 4. Volume change dV/dt estimates for Greenland (GRE) and Antarctica (ANT) for the period from January 2019 to December 2021,
derived using different retrackers compared to ICESat-2. All values are given in km3 yr−1.

Area Correction ICESat-2 AWI-ICENet1 ESA ICE1 ESA ICE2 TFMRA

ANT

None

96± 6

93± 14 159± 23 276± 57 162± 26
LEW 87± 13 130± 21 136± 45 117± 23
Backscatter 85± 13 112± 18 143± 42 100± 20
LEW and backscatter 84± 13 103± 17 84± 37 90± 19

GRE

None

5± 6

−24± 7 −48± 10 −88± 17 −45± 11
LEW −27± 7 −40± 11 −47± 18 −47± 13
Backscatter −23± 7 −41± 10 −74± 19 −41± 12
LEW and backscatter −24± 7 −40± 10 −52± 17 −45± 11

Figure 23. Antarctic-wide dh/dt difference from ICESat-2 for four retrackers for the period from January 2019 to December 2021.
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Figure 24. Greenland-wide dh/dt difference from ICESat-2 for
four retrackers for the period from January 2019 to December 2021.

separate true elevation change from noise originating from
transient radar penetration.

In the future, AWI-ICENet1 should also be applied to
pulse-limited altimetry products (LRM and PLRM) from
past (Envisat, ERS-1, and ERS-2), present (Sentinel-3A,
Sentinel-3B, and SARAL/AltiKa), and future Copernicus
Polar Ice and Snow Topography Altimeter (CRISTAL) al-
timetry missions to extend the time series and realize a
consistent elevation change product with the fewest possi-
ble penetration-biased estimates. Furthermore, extending the
waveform simulator to SAR waveforms would be highly
valuable for applying a similar approach to CRISTAL and
Sentinel-3 SAR data.
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Appendix A

Figure A1. Results of the test in which a flat-surface waveform model was fitted to real CryoSat-2 waveforms by adjusting the attenuation
LA as the only parameter. (a) Gridded median of the attenuation rate estimated by an MLE fit. (b) Median of the correlation between the
observed and fitted waveforms.

Figure A2. Example of the different simulation steps for a typical waveform around the North Greenland Eemian Ice Drilling (NEEM) ice
core site in Greenland. The blue line depicts the observed CryoSat-2 LRM waveform, and the grey line represents the simulated surface
waveform based on Eq. (1). The red line indicates the simulated waveform with volume scattering, based on Eq. (3), while the black line
displays the final simulated waveform, which includes surface and volume scattering as well as noise, as given in Eq. (5). The lower panel
represents the 2D elevation model as well as scaled Prs , which is mainly controlled by the Gaussian antenna pattern.
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Figure A3. Example of the different simulation steps for a typi-
cal waveform in the Amery drainage basin (region A in Fig. 1).
The blue line depicts the observed CryoSat-2 LRM waveform, and
the grey line represents the simulated surface waveform based on
Eq. (1). The red line shows the simulated waveform with volume
scattering, based on Eq. (3), while the black line displays the final
simulated waveform, which includes surface and volume scattering
as well as noise, as given in Eq. (5). The lower panel represents the
2D elevation model as well as scaled Prs , which is mainly controlled
by the Gaussian antenna pattern.

Figure A4. Example of the different simulation steps for a typical
waveform in the Recovery area (see Fig. 1). The blue line depicts
the observed CryoSat-2 LRM waveform, and the grey line repre-
sents the simulated surface waveform based on Eq. (1). The red line
depicts the simulated waveform with volume scattering, based on
Eq. (3), while the black line displays the final simulated waveform,
which includes surface and volume scattering as well as noise, as
given in Eq. (5). The lower panel represents the 2D elevation model
as well as scaled Prs , which is mainly controlled by the Gaussian
antenna pattern.
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Figure A5. Correlation between elevation anomalies and LEW for different retrackers across Antarctica. The correlation is based on the full
time series from January 2011 to December 2022.
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Figure A6. Correlation between elevation anomalies and backscatter for different retrackers across Antarctica. The correlation is based on
the full time series from January 2011 to December 2022.
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Figure A7. Correlation between elevation anomalies and LEW for
different retrackers across Greenland. The correlation is based on
the full time series from January 2011 to December 2022.

Figure A8. Correlation between elevation anomalies and backscat-
ter for different retrackers across Greenland. The correlation is
based on the full time series from January 2011 to December 2022.
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Figure A9. Time series of the standard deviation of cross-point er-
rors for a region in North Greenland. Cross-point errors are deter-
mined at a monthly resolution.

Figure A10. Time series of the standard deviation of cross-point
errors for the LRM zone in Greenland. Cross-point errors are deter-
mined at a monthly resolution.

Figure A11. Spatial distribution of the standard deviation of the
elevation anomalies across the LRM zone in Greenland for all
four retrackers. The elevation anomalies are based on grids with a
5 km× 5 km pixel resolution, derived from the spatially interpolated
monthly residuals of the elevation trend estimation. The standard
deviation is determined for each pixel across the full time period
from January 2011 to December 2022.
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Figure A12. Spatial distribution of the standard deviation of the
corrected elevation anomaly across the LRM zone in Greenland for
all four retrackers. The elevation anomalies are based on grids with
a 5 km× 5 km pixel resolution, derived from the spatially interpo-
lated monthly residuals of the elevation trend estimation that were
corrected using correlations with leading-edge width and backscat-
ter. The standard deviation is determined for each pixel across the
full time period from January 2011 to December 2022.

Figure A13. Cumulative histogram (with a bin size of 0.02 m) il-
lustrating the standard deviation of the elevation anomalies across
the LRM zone in Greenland for all four retrackers. (a) Uncor-
rected and (b) corrected h anomalies using correlations with LEW
and backscatter. The elevation anomalies are based on grids with a
5 km× 5 km pixel resolution, derived from the spatially interpolated
monthly residuals of the elevation trend estimation. The standard
deviation is determined for each pixel across the full time period
from January 2011 to December 2022.
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Figure A14. ICESat-2-derived spatial distribution of the standard deviation of the elevation anomalies across the LRM zone in Greenland.
The elevation anomalies are based on grids with a 5 km× 5 km pixel resolution, derived from the spatially interpolated monthly residuals
of the elevation trend estimation. The standard deviation is determined for each pixel across the time period from January 2019 to Decem-
ber 2021.

Figure A15. Antarctic-wide dh/dt difference from ICESat-2 for four retrackers for the period from January 2019 to December 2021,
including LEW and backscatter correction.
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Figure A16. Greenland-wide dh/dt difference from ICESat-2 for
four retrackers for the period from January 2019 to December 2021,
including LEW and backscatter correction.

Figure A17. Greenland-wide dh/dt estimates, including correc-
tions for LEW and backscatter, for four retrackers for the period
from January 2011 to December 2014, which includes the July melt
event of 2012.
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Data availability. The complete simulated reference data set, el-
evation change grids, and monthly elevation anomalies were up-
loaded to the World Data Center PANGAEA and can be found in
Helm (2024) at https://doi.org/10.1594/PANGAEA.964596.
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