Articles | Volume 18, issue 1
https://doi.org/10.5194/tc-18-363-2024
https://doi.org/10.5194/tc-18-363-2024
Research article
 | 
26 Jan 2024
Research article |  | 26 Jan 2024

The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model

Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann

Related authors

Multi-Source Synthesis, Harmonization, and Inventory of Critical Infrastructure and Human-Impacted Areas in Permafrost Regions of Alaska (SIRIUS)
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-393,https://doi.org/10.5194/essd-2023-393, 2024
Revised manuscript under review for ESSD
Short summary
Recent ground thermo-hydrological changes in a southern Tibetan endorheic catchment and implications for lake level changes
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023,https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023,https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Investigating the thermal state of permafrost with Bayesian inverse modeling of heat transfer
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023,https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Simulated methane emissions from Arctic ponds are highly sensitive to warming
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023,https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary

Related subject area

Discipline: Frozen ground | Subject: Frozen Ground
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024,https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
EGUsphere, https://doi.org/10.5194/egusphere-2024-68,https://doi.org/10.5194/egusphere-2024-68, 2024
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Post-Little Ice Age rock wall permafrost evolution in Norway
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023,https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary

Cited articles

Allard, M., Wang, B., and Pilon, J. A.: Recent Cooling along the Southern Shore of Hudson Strait, Quebec, Canada, Documented from Permafrost Temperature Measurements, Arct. Alp. Res., 27, 157–166, 1995. a
Allard, M., Sarrazin, D., and L'Herault, E.: Borehole and near-surface ground temperatures in northeastern Canada, v1.5 (1988–2019), Nordicana D8, https://doi.org/10.5885/45291SL-34F28A9491014AFD, 2020. a
Allen, D. M., Michel, F. A., and Judge, A. S.: The permafrost regime in the Mackenzie Delta, Beaufort Sea region, N.W.T. and its significance to the reconstruction of the palaeoclimatic history, J. Quaternary Sci., 3, 3–13, https://doi.org/10.1002/jqs.3390030103, 1988. a
Andrews, J., Davis, P., and Wright, C.: Little Ice Age permanent snowcover in the eastern Canadian Arctic: Extent mapped from Landsat-1 satellite imagery, Geograf. Annal. Ser. A, 58, 71–81, 1976. a
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015. a
Download
Short summary
Using a model that can simulate the evolution of Arctic permafrost over centuries to millennia, we find that post-industrialization permafrost warming has three "hotspots" in NE Canada, N Alaska, and W Siberia. The extent of near-surface permafrost has decreased substantially since 1850, with the largest area losses occurring in the last 50 years. The simulations also show that volcanic eruptions have in some cases counteracted the loss of near-surface permafrost for a few decades.