Articles | Volume 18, issue 1
https://doi.org/10.5194/tc-18-363-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-18-363-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer
CORRESPONDING AUTHOR
Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Jan Nitzbon
Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Paleoclimate Dynamics Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
Brian Groenke
Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Department of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany
Lisa-Marie Assmann
Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Thomas Schneider von Deimling
Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Simone Maria Stuenzi
Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
Sebastian Westermann
Department of Geosciences, University of Oslo, Oslo, Norway
Related authors
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data, 16, 3719–3753, https://doi.org/10.5194/essd-16-3719-2024, https://doi.org/10.5194/essd-16-3719-2024, 2024
Short summary
Short summary
Arctic warming, leading to permafrost degradation, poses primary threats to infrastructure and secondary ecological hazards from possible infrastructure failure. Our study created a comprehensive Alaska inventory combining various data sources with which we improved infrastructure classification and data on contaminated sites. This resource is presented as a GeoPackage allowing planning of infrastructure damage and possible implications for Arctic communities facing permafrost challenges.
Daniel Kwakye, Sabrina Marx, Benjamin Herfort, Moritz Langer, and Sven Lautenbach
AGILE GIScience Ser., 5, 34, https://doi.org/10.5194/agile-giss-5-34-2024, https://doi.org/10.5194/agile-giss-5-34-2024, 2024
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023, https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Short summary
This study presents a new model scheme for simulating ice segregation and thaw consolidation in permafrost environments, depending on ground properties and climatic forcing. It is embedded in the CryoGrid community model, a land surface model for the terrestrial cryosphere. We describe the model physics and functionalities, followed by a model validation and a sensitivity study of controlling factors.
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023, https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Short summary
It is now well known from long-term temperature measurements that Arctic permafrost, i.e., ground that remains continuously frozen for at least 2 years, is warming in response to climate change. Temperature, however, only tells half of the story. In this study, we use computer modeling to better understand how the thawing and freezing of water in the ground affects the way permafrost responds to climate change and what temperature trends can and cannot tell us about how permafrost is changing.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021, https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary
Short summary
It is important to understand how permafrost landscapes respond to climate changes because their thaw can contribute to global warming. We investigate how a common permafrost morphology degrades using both field observations of the surface elevation and numerical modeling. We show that numerical models accounting for topographic changes related to permafrost degradation can reproduce the observed changes in nature and help us understand how parameters such as snow influence this phenomenon.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28, https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
Declining sea ice, larger waves, and increasing air temperatures are contributing to a rapidly eroding Arctic coastline. We simulate water levels using wind speed and direction, which are used with wave height, wave period, and sea surface temperature to drive an erosion model of a partially frozen cliff and beach. This provides a first step to include Arctic erosion in larger-scale earth system models. Simulated cumulative retreat rates agree within the same order of magnitude as observations.
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere, 15, 1399–1422, https://doi.org/10.5194/tc-15-1399-2021, https://doi.org/10.5194/tc-15-1399-2021, 2021
Short summary
Short summary
We used a numerical model to investigate how small-scale landscape heterogeneities affect permafrost thaw under climate-warming scenarios. Our results show that representing small-scale heterogeneities in the model can decide whether a landscape is water-logged or well-drained in the future. This in turn affects how fast permafrost thaws under warming. Our research emphasizes the importance of considering small-scale processes in model assessments of permafrost thaw under climate change.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Jan Nitzbon, Moritz Langer, Sebastian Westermann, Léo Martin, Kjetil Schanke Aas, and Julia Boike
The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019, https://doi.org/10.5194/tc-13-1089-2019, 2019
Short summary
Short summary
We studied the stability of ice wedges (massive bodies of ground ice in permafrost) under recent climatic conditions in the Lena River delta of northern Siberia. For this we used a novel modelling approach that takes into account lateral transport of heat, water, and snow and the subsidence of the ground surface due to melting of ground ice. We found that wetter conditions have a destabilizing effect on the ice wedges and associated our simulation results with observations from the study area.
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Kjetil S. Aas, Léo Martin, Jan Nitzbon, Moritz Langer, Julia Boike, Hanna Lee, Terje K. Berntsen, and Sebastian Westermann
The Cryosphere, 13, 591–609, https://doi.org/10.5194/tc-13-591-2019, https://doi.org/10.5194/tc-13-591-2019, 2019
Short summary
Short summary
Many permafrost landscapes contain large amounts of excess ground ice, which gives rise to small-scale elevation differences. This results in lateral fluxes of snow, water, and heat, which we investigate and show how it can be accounted for in large-scale models. Using a novel model technique which can account for these differences, we are able to model both the current state of permafrost and how these landscapes change as permafrost thaws, in a way that could not previously be achieved.
Isabelle Gouttevin, Moritz Langer, Henning Löwe, Julia Boike, Martin Proksch, and Martin Schneebeli
The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, https://doi.org/10.5194/tc-12-3693-2018, 2018
Short summary
Short summary
Snow insulates the ground from the cold air in the Arctic winter, majorly affecting permafrost. This insulation depends on snow characteristics and is poorly quantified. Here, we characterize it at a carbon-rich permafrost site, using a recent technique that retrieves the 3-D structure of snow and its thermal properties. We adapt a snowpack model enabling the simulation of this insulation over a whole winter. We estimate that local snow variations induce up to a 6 °C spread in soil temperatures.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Robin Benjamin Zweigel, Avirmed Dashtseren, Khurelbaatar Temuujin, Anarmaa Sharkhuu, Clare Webster, Hanna Lee, and Sebastian Westermann
Biogeosciences, 21, 5059–5077, https://doi.org/10.5194/bg-21-5059-2024, https://doi.org/10.5194/bg-21-5059-2024, 2024
Short summary
Short summary
Intense grazing at grassland sites removes vegetation, reduces the snow cover, and inhibits litter layers from forming. Grazed sites generally have a larger annual ground surface temperature amplitude than ungrazed sites, but the net effect depends on effects in the transitional seasons. Our results also suggest that seasonal use of pastures can reduce ground temperatures, which can be a strategy to protect currently degrading grassland permafrost.
Sigrid Trier Kjær, Sebastian Westermann, Nora Nedkvitne, and Peter Dörsch
Biogeosciences, 21, 4723–4737, https://doi.org/10.5194/bg-21-4723-2024, https://doi.org/10.5194/bg-21-4723-2024, 2024
Short summary
Short summary
Permafrost peatlands are thawing due to climate change, releasing large quantities of carbon that degrades upon thawing and is released as CO2, CH4 or dissolved organic carbon (DOC). We incubated thawed Norwegian permafrost peat plateaus and thermokarst pond sediment found next to permafrost for up to 350 d to measure carbon loss. CO2 production was initially the highest, whereas CH4 production increased over time. The largest carbon loss was measured at the top of the peat plateau core as DOC.
Juditha Aga, Livia Piermattei, Luc Girod, Kristoffer Aalstad, Trond Eiken, Andreas Kääb, and Sebastian Westermann
Earth Surf. Dynam., 12, 1049–1070, https://doi.org/10.5194/esurf-12-1049-2024, https://doi.org/10.5194/esurf-12-1049-2024, 2024
Short summary
Short summary
Coastal rock cliffs on Svalbard are considered to be fairly stable; however, long-term trends in coastal-retreat rates remain unknown. This study examines changes in the coastline position along Brøggerhalvøya, Svalbard, using aerial images from 1970, 1990, 2010, and 2021. Our analysis shows that coastal-retreat rates accelerate during the period 2010–2021, which coincides with increasing storminess and retreating sea ice.
Soraya Kaiser, Julia Boike, Guido Grosse, and Moritz Langer
Earth Syst. Sci. Data, 16, 3719–3753, https://doi.org/10.5194/essd-16-3719-2024, https://doi.org/10.5194/essd-16-3719-2024, 2024
Short summary
Short summary
Arctic warming, leading to permafrost degradation, poses primary threats to infrastructure and secondary ecological hazards from possible infrastructure failure. Our study created a comprehensive Alaska inventory combining various data sources with which we improved infrastructure classification and data on contaminated sites. This resource is presented as a GeoPackage allowing planning of infrastructure damage and possible implications for Arctic communities facing permafrost challenges.
Daniel Kwakye, Sabrina Marx, Benjamin Herfort, Moritz Langer, and Sven Lautenbach
AGILE GIScience Ser., 5, 34, https://doi.org/10.5194/agile-giss-5-34-2024, https://doi.org/10.5194/agile-giss-5-34-2024, 2024
Marco Mazzolini, Kristoffer Aalstad, Esteban Alonso-González, Sebastian Westermann, and Désirée Treichler
EGUsphere, https://doi.org/10.5194/egusphere-2024-1404, https://doi.org/10.5194/egusphere-2024-1404, 2024
Short summary
Short summary
In this work, we use the satellite laser altimeter ICESat-2 to retrieve snow depth in areas where snow amounts are still poorly estimated despite the high societal importance. We explore how to update snow models with these observations through algorithms that spatially propagate the information beyond the narrow satellite profiles. The positive results show the potential of this approach for improving snow simulations, both in terms of average snow depth and spatial distribution.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Esteban Alonso-González, Kristoffer Aalstad, Norbert Pirk, Marco Mazzolini, Désirée Treichler, Paul Leclercq, Sebastian Westermann, Juan Ignacio López-Moreno, and Simon Gascoin
Hydrol. Earth Syst. Sci., 27, 4637–4659, https://doi.org/10.5194/hess-27-4637-2023, https://doi.org/10.5194/hess-27-4637-2023, 2023
Short summary
Short summary
Here we explore how to improve hyper-resolution (5 m) distributed snowpack simulations using sparse observations, which do not provide information from all the areas of the simulation domain. We propose a new way of propagating information throughout the simulations adapted to the hyper-resolution, which could also be used to improve simulations of other nature. The method has been implemented in an open-source data assimilation tool that is readily accessible to everyone.
Anatoly O. Sinitsyn, Sara Bazin, Rasmus Benestad, Bernd Etzelmüller, Ketil Isaksen, Hanne Kvitsand, Julia Lutz, Andrea L. Popp, Lena Rubensdotter, and Sebastian Westermann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2950, https://doi.org/10.5194/egusphere-2023-2950, 2023
Preprint archived
Short summary
Short summary
This study looked at under the ground on Svalbard, an archipelago close to the North Pole. We found something very surprising – there is water under the all year around frozen soil. This was not known before. This water could be used for drinking if we manage it carefully. This is important because getting clean drinking water is very difficult in Svalbard, and other Arctic places. Also, because the climate is getting warmer, there might be even more water underground in the future.
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
Juditha Aga, Julia Boike, Moritz Langer, Thomas Ingeman-Nielsen, and Sebastian Westermann
The Cryosphere, 17, 4179–4206, https://doi.org/10.5194/tc-17-4179-2023, https://doi.org/10.5194/tc-17-4179-2023, 2023
Short summary
Short summary
This study presents a new model scheme for simulating ice segregation and thaw consolidation in permafrost environments, depending on ground properties and climatic forcing. It is embedded in the CryoGrid community model, a land surface model for the terrestrial cryosphere. We describe the model physics and functionalities, followed by a model validation and a sensitivity study of controlling factors.
Matan Ben-Asher, Florence Magnin, Sebastian Westermann, Josué Bock, Emmanuel Malet, Johan Berthet, Ludovic Ravanel, and Philip Deline
Earth Surf. Dynam., 11, 899–915, https://doi.org/10.5194/esurf-11-899-2023, https://doi.org/10.5194/esurf-11-899-2023, 2023
Short summary
Short summary
Quantitative knowledge of water availability on high mountain rock slopes is very limited. We use a numerical model and field measurements to estimate the water balance at a steep rock wall site. We show that snowmelt is the main source of water at elevations >3600 m and that snowpack hydrology and sublimation are key factors. The new information presented here can be used to improve the understanding of thermal, hydrogeological, and mechanical processes on steep mountain rock slopes.
Brian Groenke, Moritz Langer, Jan Nitzbon, Sebastian Westermann, Guillermo Gallego, and Julia Boike
The Cryosphere, 17, 3505–3533, https://doi.org/10.5194/tc-17-3505-2023, https://doi.org/10.5194/tc-17-3505-2023, 2023
Short summary
Short summary
It is now well known from long-term temperature measurements that Arctic permafrost, i.e., ground that remains continuously frozen for at least 2 years, is warming in response to climate change. Temperature, however, only tells half of the story. In this study, we use computer modeling to better understand how the thawing and freezing of water in the ground affects the way permafrost responds to climate change and what temperature trends can and cannot tell us about how permafrost is changing.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Zoé Rehder, Thomas Kleinen, Lars Kutzbach, Victor Stepanenko, Moritz Langer, and Victor Brovkin
Biogeosciences, 20, 2837–2855, https://doi.org/10.5194/bg-20-2837-2023, https://doi.org/10.5194/bg-20-2837-2023, 2023
Short summary
Short summary
We use a new model to investigate how methane emissions from Arctic ponds change with warming. We find that emissions increase substantially. Under annual temperatures 5 °C above present temperatures, pond methane emissions are more than 3 times higher than now. Most of this increase is caused by an increase in plant productivity as plants provide the substrate microbes used to produce methane. We conclude that vegetation changes need to be included in predictions of pond methane emissions.
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
Norbert Pirk, Kristoffer Aalstad, Yeliz A. Yilmaz, Astrid Vatne, Andrea L. Popp, Peter Horvath, Anders Bryn, Ane Victoria Vollsnes, Sebastian Westermann, Terje Koren Berntsen, Frode Stordal, and Lena Merete Tallaksen
Biogeosciences, 20, 2031–2047, https://doi.org/10.5194/bg-20-2031-2023, https://doi.org/10.5194/bg-20-2031-2023, 2023
Short summary
Short summary
We measured the land–atmosphere exchange of CO2 and water vapor in alpine Norway over 3 years. The extremely snow-rich conditions in 2020 reduced the total annual evapotranspiration to 50 % and reduced the growing-season carbon assimilation to turn the ecosystem from a moderate annual carbon sink to an even stronger source. Our analysis suggests that snow cover anomalies are driving the most consequential short-term responses in this ecosystem’s functioning.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Sebastian Westermann, Thomas Ingeman-Nielsen, Johanna Scheer, Kristoffer Aalstad, Juditha Aga, Nitin Chaudhary, Bernd Etzelmüller, Simon Filhol, Andreas Kääb, Cas Renette, Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Robin B. Zweigel, Léo Martin, Sarah Morard, Matan Ben-Asher, Michael Angelopoulos, Julia Boike, Brian Groenke, Frederieke Miesner, Jan Nitzbon, Paul Overduin, Simone M. Stuenzi, and Moritz Langer
Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, https://doi.org/10.5194/gmd-16-2607-2023, 2023
Short summary
Short summary
The CryoGrid community model is a new tool for simulating ground temperatures and the water and ice balance in cold regions. It is a modular design, which makes it possible to test different schemes to simulate, for example, permafrost ground in an efficient way. The model contains tools to simulate frozen and unfrozen ground, snow, glaciers, and other massive ice bodies, as well as water bodies.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Cas Renette, Kristoffer Aalstad, Juditha Aga, Robin Benjamin Zweigel, Bernd Etzelmüller, Karianne Staalesen Lilleøren, Ketil Isaksen, and Sebastian Westermann
Earth Surf. Dynam., 11, 33–50, https://doi.org/10.5194/esurf-11-33-2023, https://doi.org/10.5194/esurf-11-33-2023, 2023
Short summary
Short summary
One of the reasons for lower ground temperatures in coarse, blocky terrain is a low or varying soil moisture content, which most permafrost modelling studies did not take into account. We used the CryoGrid community model to successfully simulate this effect and found markedly lower temperatures in well-drained, blocky deposits compared to other set-ups. The inclusion of this drainage effect is another step towards a better model representation of blocky mountain terrain in permafrost regions.
Norbert Pirk, Kristoffer Aalstad, Sebastian Westermann, Astrid Vatne, Alouette van Hove, Lena Merete Tallaksen, Massimo Cassiani, and Gabriel Katul
Atmos. Meas. Tech., 15, 7293–7314, https://doi.org/10.5194/amt-15-7293-2022, https://doi.org/10.5194/amt-15-7293-2022, 2022
Short summary
Short summary
In this study, we show how sparse and noisy drone measurements can be combined with an ensemble of turbulence-resolving wind simulations to estimate uncertainty-aware surface energy exchange. We demonstrate the feasibility of this drone data assimilation framework in a series of synthetic and real-world experiments. This new framework can, in future, be applied to estimate energy and gas exchange in heterogeneous landscapes more representatively than conventional methods.
Femke van Geffen, Birgit Heim, Frederic Brieger, Rongwei Geng, Iuliia A. Shevtsova, Luise Schulte, Simone M. Stuenzi, Nadine Bernhardt, Elena I. Troeva, Luidmila A. Pestryakova, Evgenii S. Zakharov, Bringfried Pflug, Ulrike Herzschuh, and Stefan Kruse
Earth Syst. Sci. Data, 14, 4967–4994, https://doi.org/10.5194/essd-14-4967-2022, https://doi.org/10.5194/essd-14-4967-2022, 2022
Short summary
Short summary
SiDroForest is an attempt to remedy data scarcity regarding vegetation data in the circumpolar region, whilst providing adjusted and labeled data for machine learning and upscaling practices. SiDroForest contains four datasets that include SfM point clouds, individually labeled trees, synthetic tree crowns and labeled Sentinel-2 patches that provide insights into the vegetation composition and forest structure of two important vegetation transition zones in Siberia, Russia.
Juri Palmtag, Jaroslav Obu, Peter Kuhry, Andreas Richter, Matthias B. Siewert, Niels Weiss, Sebastian Westermann, and Gustaf Hugelius
Earth Syst. Sci. Data, 14, 4095–4110, https://doi.org/10.5194/essd-14-4095-2022, https://doi.org/10.5194/essd-14-4095-2022, 2022
Short summary
Short summary
The northern permafrost region covers 22 % of the Northern Hemisphere and holds almost twice as much carbon as the atmosphere. This paper presents data from 651 soil pedons encompassing more than 6500 samples from 16 different study areas across the northern permafrost region. We use this dataset together with ESA's global land cover dataset to estimate soil organic carbon and total nitrogen storage up to 300 cm soil depth, with estimated values of 813 Pg for carbon and 55 Pg for nitrogen.
Jan Nitzbon, Damir Gadylyaev, Steffen Schlüter, John Maximilian Köhne, Guido Grosse, and Julia Boike
The Cryosphere, 16, 3507–3515, https://doi.org/10.5194/tc-16-3507-2022, https://doi.org/10.5194/tc-16-3507-2022, 2022
Short summary
Short summary
The microstructure of permafrost soils contains clues to its formation and its preconditioning to future change. We used X-ray computed tomography (CT) to measure the composition of a permafrost drill core from Siberia. By combining CT with laboratory measurements, we determined the the proportions of pore ice, excess ice, minerals, organic matter, and gas contained in the core at an unprecedented resolution. Our work demonstrates the potential of CT to study permafrost properties and processes.
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022, https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Short summary
The Arctic has large areas of small mounds that are caused by ice lifting up the soil. Snow blown by wind gathers in hollows next to these mounds, insulating them in winter. The hollows tend to be wetter, and thus the soil absorbs more heat in summer. The warm wet soil in the hollows decomposes, releasing methane. We have made a model of this, and we have tested how it behaves and whether it looks like sites in Scandinavia and Siberia. Sometimes we get more methane than a model without mounds.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Sarah E. Chadburn, Eleanor J. Burke, Angela V. Gallego-Sala, Noah D. Smith, M. Syndonia Bret-Harte, Dan J. Charman, Julia Drewer, Colin W. Edgar, Eugenie S. Euskirchen, Krzysztof Fortuniak, Yao Gao, Mahdi Nakhavali, Włodzimierz Pawlak, Edward A. G. Schuur, and Sebastian Westermann
Geosci. Model Dev., 15, 1633–1657, https://doi.org/10.5194/gmd-15-1633-2022, https://doi.org/10.5194/gmd-15-1633-2022, 2022
Short summary
Short summary
We present a new method to include peatlands in an Earth system model (ESM). Peatlands store huge amounts of carbon that accumulates very slowly but that can be rapidly destabilised, emitting greenhouse gases. Our model captures the dynamic nature of peat by simulating the change in surface height and physical properties of the soil as carbon is added or decomposed. Thus, we model, for the first time in an ESM, peat dynamics and its threshold behaviours that can lead to destabilisation.
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Greg E. Bodeker, Jan Nitzbon, Jordis S. Tradowsky, Stefanie Kremser, Alexander Schwertheim, and Jared Lewis
Earth Syst. Sci. Data, 13, 3885–3906, https://doi.org/10.5194/essd-13-3885-2021, https://doi.org/10.5194/essd-13-3885-2021, 2021
Short summary
Short summary
Ozone in Earth's atmosphere has undergone significant changes since first measured systematically from space in the late 1970s. The purpose of the paper is to present a new, spatially filled, global total column ozone climate data record spanning from October 1978 to December 2016. The database is compiled from measurements from 17 different satellite-based instruments where offsets and drifts between the instruments have been corrected using ground-based measurements.
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021, https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary
Short summary
It is important to understand how permafrost landscapes respond to climate changes because their thaw can contribute to global warming. We investigate how a common permafrost morphology degrades using both field observations of the surface elevation and numerical modeling. We show that numerical models accounting for topographic changes related to permafrost degradation can reproduce the observed changes in nature and help us understand how parameters such as snow influence this phenomenon.
Iuliia Shevtsova, Ulrike Herzschuh, Birgit Heim, Luise Schulte, Simone Stünzi, Luidmila A. Pestryakova, Evgeniy S. Zakharov, and Stefan Kruse
Biogeosciences, 18, 3343–3366, https://doi.org/10.5194/bg-18-3343-2021, https://doi.org/10.5194/bg-18-3343-2021, 2021
Short summary
Short summary
In the light of climate changes in subarctic regions, notable general increase in above-ground biomass for the past 15 years (2000 to 2017) was estimated along a tundra–taiga gradient of central Chukotka (Russian Far East). The greatest increase occurred in the northern taiga in the areas of larch closed-canopy forest expansion with Cajander larch as a main contributor. For the estimations, we used field data (taxa-separated plant biomass, 2018) and upscaled it based on Landsat satellite data.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Rebecca Rolph, Pier Paul Overduin, Thomas Ravens, Hugues Lantuit, and Moritz Langer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-28, https://doi.org/10.5194/gmd-2021-28, 2021
Revised manuscript not accepted
Short summary
Short summary
Declining sea ice, larger waves, and increasing air temperatures are contributing to a rapidly eroding Arctic coastline. We simulate water levels using wind speed and direction, which are used with wave height, wave period, and sea surface temperature to drive an erosion model of a partially frozen cliff and beach. This provides a first step to include Arctic erosion in larger-scale earth system models. Simulated cumulative retreat rates agree within the same order of magnitude as observations.
Jan Nitzbon, Moritz Langer, Léo C. P. Martin, Sebastian Westermann, Thomas Schneider von Deimling, and Julia Boike
The Cryosphere, 15, 1399–1422, https://doi.org/10.5194/tc-15-1399-2021, https://doi.org/10.5194/tc-15-1399-2021, 2021
Short summary
Short summary
We used a numerical model to investigate how small-scale landscape heterogeneities affect permafrost thaw under climate-warming scenarios. Our results show that representing small-scale heterogeneities in the model can decide whether a landscape is water-logged or well-drained in the future. This in turn affects how fast permafrost thaws under warming. Our research emphasizes the importance of considering small-scale processes in model assessments of permafrost thaw under climate change.
Simone Maria Stuenzi, Julia Boike, William Cable, Ulrike Herzschuh, Stefan Kruse, Luidmila A. Pestryakova, Thomas Schneider von Deimling, Sebastian Westermann, Evgenii S. Zakharov, and Moritz Langer
Biogeosciences, 18, 343–365, https://doi.org/10.5194/bg-18-343-2021, https://doi.org/10.5194/bg-18-343-2021, 2021
Short summary
Short summary
Boreal forests in eastern Siberia are an essential component of global climate patterns. We use a physically based model and field measurements to study the interactions between forests, permanently frozen ground and the atmosphere. We find that forests exert a strong control on the thermal state of permafrost through changing snow cover dynamics and altering the surface energy balance, through absorbing most of the incoming solar radiation and suppressing below-canopy turbulent fluxes.
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020, https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Short summary
A sub-grid representation of excess ground ice in the Community Land Model (CLM) is developed as novel progress in modeling permafrost thaw and its impacts under the warming climate. The modeled permafrost degradation with sub-grid excess ice follows the pathway that continuous permafrost transforms into discontinuous permafrost before it disappears, including surface subsidence and talik formation, which are highly permafrost-relevant landscape changes excluded from most land models.
Jaroslav Obu, Sebastian Westermann, Gonçalo Vieira, Andrey Abramov, Megan Ruby Balks, Annett Bartsch, Filip Hrbáček, Andreas Kääb, and Miguel Ramos
The Cryosphere, 14, 497–519, https://doi.org/10.5194/tc-14-497-2020, https://doi.org/10.5194/tc-14-497-2020, 2020
Short summary
Short summary
Little is known about permafrost in the Antarctic outside of the few research stations. We used a simple equilibrium permafrost model to estimate permafrost temperatures in the whole Antarctic. The lowest permafrost temperature on Earth is −36 °C in the Queen Elizabeth Range in the Transantarctic Mountains. Temperatures are commonly between −23 and −18 °C in mountainous areas rising above the Antarctic Ice Sheet, between −14 and −8 °C in coastal areas, and up to 0 °C on the Antarctic Peninsula.
Joel Fiddes, Kristoffer Aalstad, and Sebastian Westermann
Hydrol. Earth Syst. Sci., 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, https://doi.org/10.5194/hess-23-4717-2019, 2019
Short summary
Short summary
In this paper we address one of the big challenges in snow hydrology, namely the accurate simulation of the seasonal snowpack in ungauged regions. We do this by assimilating satellite observations of snow cover into a modelling framework. Importantly (and a novelty of the paper), we include a clustering approach that permits highly efficient ensemble simulations. Efficiency gains and dependency on purely global datasets, means that this method can be applied over large areas anywhere on Earth.
Florence Magnin, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, Paula Hilger, and Reginald L. Hermanns
Earth Surf. Dynam., 7, 1019–1040, https://doi.org/10.5194/esurf-7-1019-2019, https://doi.org/10.5194/esurf-7-1019-2019, 2019
Short summary
Short summary
This study proposes the first permafrost (i.e. ground with temperature permanently < 0 °C) map covering the steep rock slopes of Norway. It was created by using rock temperature data collected at the near surface of 25 rock walls spread across the country between 2010 and 2018. The map shows that permafrost mostly exists above 1300–1400 m a.s.l. in southern Norway and close to sea level in northern Norway. The results have strong potential for the study of rock wall sliding and failure.
Lei Cai, Hanna Lee, Sebastian Westermann, and Kjetil Schanke Aas
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-230, https://doi.org/10.5194/tc-2019-230, 2019
Preprint withdrawn
Short summary
Short summary
We develop a sub-grid representation of excess ground ice in the Community Land Model (CLM) by adding three landunits to the original CLM sub-grid hierarchy, in order to prescribe three different excess ice conditions in one grid cell. Single-grid simulations verify the potential of the model development on better projecting excess ice melt in a warming climate. Global simulations recommend the proper way of applying the model development with the existing excess ice dataset.
Jan Nitzbon, Moritz Langer, Sebastian Westermann, Léo Martin, Kjetil Schanke Aas, and Julia Boike
The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019, https://doi.org/10.5194/tc-13-1089-2019, 2019
Short summary
Short summary
We studied the stability of ice wedges (massive bodies of ground ice in permafrost) under recent climatic conditions in the Lena River delta of northern Siberia. For this we used a novel modelling approach that takes into account lateral transport of heat, water, and snow and the subsidence of the ground surface due to melting of ground ice. We found that wetter conditions have a destabilizing effect on the ice wedges and associated our simulation results with observations from the study area.
Julia Boike, Jan Nitzbon, Katharina Anders, Mikhail Grigoriev, Dmitry Bolshiyanov, Moritz Langer, Stephan Lange, Niko Bornemann, Anne Morgenstern, Peter Schreiber, Christian Wille, Sarah Chadburn, Isabelle Gouttevin, Eleanor Burke, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 261–299, https://doi.org/10.5194/essd-11-261-2019, https://doi.org/10.5194/essd-11-261-2019, 2019
Short summary
Short summary
Long-term observational data are available from the Samoylov research site in northern Siberia, where meteorological parameters, energy balance, and subsurface observations have been recorded since 1998. This paper presents the temporal data set produced between 2002 and 2017, explaining the instrumentation, calibration, processing, and data quality control. Furthermore, we present a merged dataset of the parameters, which were measured from 1998 onwards.
David Holl, Christian Wille, Torsten Sachs, Peter Schreiber, Benjamin R. K. Runkle, Lutz Beckebanze, Moritz Langer, Julia Boike, Eva-Maria Pfeiffer, Irina Fedorova, Dimitry Y. Bolshianov, Mikhail N. Grigoriev, and Lars Kutzbach
Earth Syst. Sci. Data, 11, 221–240, https://doi.org/10.5194/essd-11-221-2019, https://doi.org/10.5194/essd-11-221-2019, 2019
Short summary
Short summary
We present a multi-annual time series of land–atmosphere carbon dioxide fluxes measured in situ with the eddy covariance technique in the Siberian Arctic. In arctic permafrost regions, climate–carbon feedbacks are amplified. Therefore, increased efforts to better represent these regions in global climate models have been made in recent years. Up to now, the available database of in situ measurements from the Arctic was biased towards Alaska and records from the Eurasian Arctic were scarce.
Kjetil S. Aas, Léo Martin, Jan Nitzbon, Moritz Langer, Julia Boike, Hanna Lee, Terje K. Berntsen, and Sebastian Westermann
The Cryosphere, 13, 591–609, https://doi.org/10.5194/tc-13-591-2019, https://doi.org/10.5194/tc-13-591-2019, 2019
Short summary
Short summary
Many permafrost landscapes contain large amounts of excess ground ice, which gives rise to small-scale elevation differences. This results in lateral fluxes of snow, water, and heat, which we investigate and show how it can be accounted for in large-scale models. Using a novel model technique which can account for these differences, we are able to model both the current state of permafrost and how these landscapes change as permafrost thaws, in a way that could not previously be achieved.
Thomas Schneider von Deimling, Thomas Kleinen, Gustaf Hugelius, Christian Knoblauch, Christian Beer, and Victor Brovkin
Clim. Past, 14, 2011–2036, https://doi.org/10.5194/cp-14-2011-2018, https://doi.org/10.5194/cp-14-2011-2018, 2018
Short summary
Short summary
Past cold ice age temperatures and the subsequent warming towards the Holocene had large consequences for soil organic carbon (SOC) stored in perennially frozen grounds. Using an Earth system model we show how the spread in areas affected by permafrost have changed under deglacial warming, along with changes in SOC accumulation. Our model simulations suggest phases of circum-Arctic permafrost SOC gain and losses, with a net increase in SOC between the last glacial maximum and the pre-industrial.
Isabelle Gouttevin, Moritz Langer, Henning Löwe, Julia Boike, Martin Proksch, and Martin Schneebeli
The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, https://doi.org/10.5194/tc-12-3693-2018, 2018
Short summary
Short summary
Snow insulates the ground from the cold air in the Arctic winter, majorly affecting permafrost. This insulation depends on snow characteristics and is poorly quantified. Here, we characterize it at a carbon-rich permafrost site, using a recent technique that retrieves the 3-D structure of snow and its thermal properties. We adapt a snowpack model enabling the simulation of this insulation over a whole winter. We estimate that local snow variations induce up to a 6 °C spread in soil temperatures.
Julia Boike, Inge Juszak, Stephan Lange, Sarah Chadburn, Eleanor Burke, Pier Paul Overduin, Kurt Roth, Olaf Ippisch, Niko Bornemann, Lielle Stern, Isabelle Gouttevin, Ernst Hauber, and Sebastian Westermann
Earth Syst. Sci. Data, 10, 355–390, https://doi.org/10.5194/essd-10-355-2018, https://doi.org/10.5194/essd-10-355-2018, 2018
Short summary
Short summary
A 20-year data record from the Bayelva site at Ny-Ålesund, Svalbard, is presented on meteorology, energy balance components, surface and subsurface observations. This paper presents the data set, instrumentation, calibration, processing and data quality control. The data show that mean annual, summer and winter soil temperature data from shallow to deeper depths have been warming over the period of record, indicating the degradation and loss of permafrost at this site.
Kristoffer Aalstad, Sebastian Westermann, Thomas Vikhamar Schuler, Julia Boike, and Laurent Bertino
The Cryosphere, 12, 247–270, https://doi.org/10.5194/tc-12-247-2018, https://doi.org/10.5194/tc-12-247-2018, 2018
Short summary
Short summary
We demonstrate how snow cover data from satellites can be used to constrain estimates of snow distributions at sites in the Arctic. In this effort, we make use of data assimilation to combine the information contained in the snow cover data with a simple snow model. By comparing our snow distribution estimates to independent observations, we find that this method performs favorably. Being modular, this method could be applied to other areas as a component of a larger reanalysis system.
Sarah E. Chadburn, Gerhard Krinner, Philipp Porada, Annett Bartsch, Christian Beer, Luca Belelli Marchesini, Julia Boike, Altug Ekici, Bo Elberling, Thomas Friborg, Gustaf Hugelius, Margareta Johansson, Peter Kuhry, Lars Kutzbach, Moritz Langer, Magnus Lund, Frans-Jan W. Parmentier, Shushi Peng, Ko Van Huissteden, Tao Wang, Sebastian Westermann, Dan Zhu, and Eleanor J. Burke
Biogeosciences, 14, 5143–5169, https://doi.org/10.5194/bg-14-5143-2017, https://doi.org/10.5194/bg-14-5143-2017, 2017
Short summary
Short summary
Earth system models (ESMs) are our main tools for understanding future climate. The Arctic is important for the future carbon cycle, particularly due to the large carbon stocks in permafrost. We evaluated the performance of the land component of three major ESMs at Arctic tundra sites, focusing on the fluxes and stocks of carbon.
We show that the next steps for model improvement are to better represent vegetation dynamics, to include mosses and to improve below-ground carbon cycle processes.
Sebastian Westermann, Maria Peter, Moritz Langer, Georg Schwamborn, Lutz Schirrmeister, Bernd Etzelmüller, and Julia Boike
The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, https://doi.org/10.5194/tc-11-1441-2017, 2017
Short summary
Short summary
We demonstrate a remote-sensing-based scheme estimating the evolution of ground temperature and active layer thickness by means of a ground thermal model. A comparison to in situ observations from the Lena River delta in Siberia indicates that the model is generally capable of reproducing the annual temperature regime and seasonal thawing of the ground. The approach could hence be a first step towards remote detection of ground thermal conditions in permafrost areas.
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017, https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Short summary
Waterbodies are abundant in Arctic permafrost lowlands. Most waterbodies are ponds with a surface area smaller than 100 x 100 m. The Permafrost Region Pond and Lake Database (PeRL) for the first time maps ponds as small as 10 x 10 m. PeRL maps can be used to document changes both by comparing them to historical and future imagery. The distribution of waterbodies in the Arctic is important to know in order to manage resources in the Arctic and to improve climate predictions in the Arctic.
Amund F. Borge, Sebastian Westermann, Ingvild Solheim, and Bernd Etzelmüller
The Cryosphere, 11, 1–16, https://doi.org/10.5194/tc-11-1-2017, https://doi.org/10.5194/tc-11-1-2017, 2017
Short summary
Short summary
Palsas and peat plateaus are permafrost landforms in subarctic mires which constitute sensitive ecosystems with strong significance for vegetation, wildlife, hydrology and carbon cycle. We have systematically mapped the occurrence of palsas and peat plateaus in northern Norway by interpretation of aerial images from the 1950s until today. The results show that about half of the area of palsas and peat plateaus has disappeared due to lateral erosion and melting of ground ice in the last 50 years.
Kjersti Gisnås, Sebastian Westermann, Thomas Vikhamar Schuler, Kjetil Melvold, and Bernd Etzelmüller
The Cryosphere, 10, 1201–1215, https://doi.org/10.5194/tc-10-1201-2016, https://doi.org/10.5194/tc-10-1201-2016, 2016
Short summary
Short summary
In wind exposed areas snow redistribution results in large spatial variability in ground temperatures. In these areas, the ground temperature of a grid cell must be determined based on the distribution, and not the average, of snow depths. We employ distribution functions of snow in a regional permafrost model, showing highly improved representation of ground temperatures. By including snow distributions, we find the permafrost area to be nearly twice as large as what is modelled without.
S. Westermann, M. Langer, J. Boike, M. Heikenfeld, M. Peter, B. Etzelmüller, and G. Krinner
Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, https://doi.org/10.5194/gmd-9-523-2016, 2016
Short summary
Short summary
Thawing of permafrost is governed by a complex interplay of different processes, of which only conductive heat transfer is taken into account in most model studies. We present a new land-surface scheme designed for permafrost applications, CryoGrid 3, which constitutes a flexible platform to explore new parameterizations for a range of permafrost processes.
S. Westermann, T. I. Østby, K. Gisnås, T. V. Schuler, and B. Etzelmüller
The Cryosphere, 9, 1303–1319, https://doi.org/10.5194/tc-9-1303-2015, https://doi.org/10.5194/tc-9-1303-2015, 2015
Short summary
Short summary
We use remotely sensed land surface temperature and land cover in conjunction with air temperature and snowfall from a reanalysis product as input for a simple permafrost model. The scheme is applied to the permafrost regions bordering the North Atlantic. A comparison with ground temperatures in boreholes suggests a modeling accuracy of 2 to 2.5 °C.
T. Schneider von Deimling, G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, and J. Boike
Biogeosciences, 12, 3469–3488, https://doi.org/10.5194/bg-12-3469-2015, https://doi.org/10.5194/bg-12-3469-2015, 2015
Short summary
Short summary
We have modelled the carbon release from thawing permafrost soils under various scenarios of future warming. Our results suggests that up to about 140Pg of carbon could be released under strong warming by end of the century. We have shown that abrupt thaw processes under thermokarst lakes can unlock large amounts of perennially frozen carbon stored in deep deposits (which extend many metres into the soil).
S. Westermann, B. Elberling, S. Højlund Pedersen, M. Stendel, B. U. Hansen, and G. E. Liston
The Cryosphere, 9, 719–735, https://doi.org/10.5194/tc-9-719-2015, https://doi.org/10.5194/tc-9-719-2015, 2015
Short summary
Short summary
The development of ground temperatures in permafrost areas is influenced by many factors varying on different spatial and temporal scales. We present numerical simulations of ground temperatures for the Zackenberg valley in NE Greenland, which take into account the spatial variability of snow depths, surface and ground properties at a scale of 10m. The ensemble of the model grid cells suggests a spatial variability of annual average ground temperatures of up to 5°C.
M. Langer, S. Westermann, K. Walter Anthony, K. Wischnewski, and J. Boike
Biogeosciences, 12, 977–990, https://doi.org/10.5194/bg-12-977-2015, https://doi.org/10.5194/bg-12-977-2015, 2015
Short summary
Short summary
Methane production rates of Arctic ponds during the freezing period within a typical tundra landscape in northern Siberia are presented. Production rates were inferred by inverse modeling based on measured methane concentrations in the ice cover. Results revealed marked differences in early winter methane production among ponds showing different stages of shore degradation. This suggests that shore erosion can increase methane production of Arctic ponds by 2 to 3 orders of magnitude.
J. Lüers, S. Westermann, K. Piel, and J. Boike
Biogeosciences, 11, 6307–6322, https://doi.org/10.5194/bg-11-6307-2014, https://doi.org/10.5194/bg-11-6307-2014, 2014
K. Gisnås, S. Westermann, T. V. Schuler, T. Litherland, K. Isaksen, J. Boike, and B. Etzelmüller
The Cryosphere, 8, 2063–2074, https://doi.org/10.5194/tc-8-2063-2014, https://doi.org/10.5194/tc-8-2063-2014, 2014
M. Eby, A. J. Weaver, K. Alexander, K. Zickfeld, A. Abe-Ouchi, A. A. Cimatoribus, E. Crespin, S. S. Drijfhout, N. R. Edwards, A. V. Eliseev, G. Feulner, T. Fichefet, C. E. Forest, H. Goosse, P. B. Holden, F. Joos, M. Kawamiya, D. Kicklighter, H. Kienert, K. Matsumoto, I. I. Mokhov, E. Monier, S. M. Olsen, J. O. P. Pedersen, M. Perrette, G. Philippon-Berthier, A. Ridgwell, A. Schlosser, T. Schneider von Deimling, G. Shaffer, R. S. Smith, R. Spahni, A. P. Sokolov, M. Steinacher, K. Tachiiri, K. Tokos, M. Yoshimori, N. Zeng, and F. Zhao
Clim. Past, 9, 1111–1140, https://doi.org/10.5194/cp-9-1111-2013, https://doi.org/10.5194/cp-9-1111-2013, 2013
S. Westermann, T. V. Schuler, K. Gisnås, and B. Etzelmüller
The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, https://doi.org/10.5194/tc-7-719-2013, 2013
Related subject area
Discipline: Frozen ground | Subject: Frozen Ground
Effect of surficial geology mapping scale on modelled ground ice in Canadian Shield terrain
Spectral Induced Polarization survey for the estimation of hydrogeological parameters in an active rock glacier
InSAR-measured permafrost degradation of palsa peatlands in northern Sweden
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Post-Little Ice Age rock wall permafrost evolution in Norway
Modelling rock glacier ice content based on InSAR-derived velocity, Khumbu and Lhotse valleys, Nepal
The temperature-dependent shear strength of ice-filled joints in rock mass considering the effect of joint roughness, opening and shear rates
Significant underestimation of peatland permafrost along the Labrador Sea coastline in northern Canada
Estimation of stream water components and residence time in a permafrost catchment in the central Tibetan Plateau using long-term water stable isotopic data
Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites
Long-term analysis of cryoseismic events and associated ground thermal stress in Adventdalen, Svalbard
Seismic physics-based characterization of permafrost sites using surface waves
Three in one: GPS-IR measurements of ground surface elevation changes, soil moisture, and snow depth at a permafrost site in the northeastern Qinghai–Tibet Plateau
Surface temperatures and their influence on the permafrost thermal regime in high-Arctic rock walls on Svalbard
Consequences of permafrost degradation for Arctic infrastructure – bridging the model gap between regional and engineering scales
Passive seismic recording of cryoseisms in Adventdalen, Svalbard
Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model
Ground ice, organic carbon and soluble cations in tundra permafrost soils and sediments near a Laurentide ice divide in the Slave Geological Province, Northwest Territories, Canada
The ERA5-Land soil temperature bias in permafrost regions
Brief Communication: The reliability of gas extraction techniques for analysing CH4 and N2O compositions in gas trapped in permafrost ice wedges
Geochemical signatures of pingo ice and its origin in Grøndalen, west Spitsbergen
Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites
Permafrost variability over the Northern Hemisphere based on the MERRA-2 reanalysis
Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps
New ground ice maps for Canada using a paleogeographic modelling approach
Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada)
Characteristics and fate of isolated permafrost patches in coastal Labrador, Canada
Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls
Microtopographic control on the ground thermal regime in ice wedge polygons
H. Brendan O'Neill, Stephen A. Wolfe, Caroline Duchesne, and Ryan J. H. Parker
The Cryosphere, 18, 2979–2990, https://doi.org/10.5194/tc-18-2979-2024, https://doi.org/10.5194/tc-18-2979-2024, 2024
Short summary
Short summary
Maps that show ground ice in permafrost at circumpolar or hemispherical scales offer only general depictions of broad patterns in ice content. In this paper, we show that using more detailed surficial geology in a ground ice computer model significantly improves the depiction of ground ice and makes the mapping useful for assessments of the effects of permafrost thaw and for reconnaissance planning of infrastructure routing.
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1444, https://doi.org/10.5194/egusphere-2024-1444, 2024
Short summary
Short summary
We quantify hydrogeological properties in an active rock glacier by using electrical conductivity and induced polarization in an imaging framework and we used geophysical monitoring to track tracer test injections. The water content is spatially variable, and the water can move rapidly with a velocity in the range of cm/s through the active layer of the rock glacier. Hydrogeological parameters were linked to kinematic data to investigate the role of water content on rock glacier movement.
Samuel Valman, Matthias B. Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabé de la Barreda-Bautista, Andrew Sowter, and Sofie Sjögersten
The Cryosphere, 18, 1773–1790, https://doi.org/10.5194/tc-18-1773-2024, https://doi.org/10.5194/tc-18-1773-2024, 2024
Short summary
Short summary
Climate warming is thawing permafrost that makes up palsa (frost mound) peatlands, risking ecosystem collapse and carbon release as methane. We measure this regional degradation using radar satellite technology to examine ground elevation changes and show how terrain roughness measurements can be used to estimate local permafrost damage. We find that over half of Sweden's largest palsa peatlands are degrading, with the worse impacts to the north linked to increased winter precipitation.
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023, https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Short summary
Frozen saline pore water, left over from post-glacial marine ingression, was found in shallow permafrost in a Svalbard fjord valley. This suggests that freezing occurred immediately after marine regression due to isostatic rebound. We conducted top-down freezing simulations, which confirmed that with Early to mid-Holocene temperatures (e.g. −4 °C), freezing could progress down to 20–40 m within 200 years. This, in turn, could inhibit flow through the sediment, therefore preserving saline fluids.
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023, https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Short summary
For the first time, suitable environments for palsas and peat plateaus were modeled for the whole Northern Hemisphere. The hotspots of occurrences were in northern Europe, western Siberia, and subarctic Canada. Climate change was predicted to cause almost complete loss of the studied landforms by the late century. Our predictions filled knowledge gaps in the distribution of the landforms, and they can be utilized in estimation of the pace and impacts of the climate change over northern regions.
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023, https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary
Short summary
We assess spatio-temporal permafrost variations in selected rock walls in Norway over the last 120 years. Ground temperature is modelled using the two-dimensional ground heat flux model CryoGrid 2D along nine profiles. Permafrost probably occurs at most sites. All simulations show increasing ground temperature from the 1980s. Our simulations show that rock wall permafrost with a temperature of −1 °C at 20 m depth could thaw at this depth within 50 years.
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
Shibing Huang, Haowei Cai, Zekun Xin, and Gang Liu
The Cryosphere, 17, 1205–1223, https://doi.org/10.5194/tc-17-1205-2023, https://doi.org/10.5194/tc-17-1205-2023, 2023
Short summary
Short summary
In this study, the warming degradation mechanism of ice-filled joints is revealed, and the effect of temperature, normal stress, shear rate and joint opening on the shear strength of rough ice-filled joints is investigated. The shear rupture modes include shear cracking of joint ice and debonding of the ice–rock interface, which is related to the above factors. The bonding strength of the ice–rock interface is larger than the shear strength of joint ice when the temperature is below −1 ℃.
Yifeng Wang, Robert G. Way, Jordan Beer, Anika Forget, Rosamond Tutton, and Meredith C. Purcell
The Cryosphere, 17, 63–78, https://doi.org/10.5194/tc-17-63-2023, https://doi.org/10.5194/tc-17-63-2023, 2023
Short summary
Short summary
Peatland permafrost in northeastern Canada has been misrepresented by models, leading to significant underestimates of peatland permafrost and permafrost distribution along the Labrador Sea coastline. Our multi-stage, multi-mapper, consensus-based inventorying process, supported by field- and imagery-based validation efforts, identifies peatland permafrost complexes all along the coast. The highest density of complexes is found to the south of the current sporadic discontinuous permafrost limit.
Shaoyong Wang, Xiaobo He, Shichang Kang, Hui Fu, and Xiaofeng Hong
The Cryosphere, 16, 5023–5040, https://doi.org/10.5194/tc-16-5023-2022, https://doi.org/10.5194/tc-16-5023-2022, 2022
Short summary
Short summary
This study used the sine-wave exponential model and long-term water stable isotopic data to estimate water mean residence time (MRT) and its influencing factors in a high-altitude permafrost catchment (5300 m a.s.l.) in the central Tibetan Plateau (TP). MRT for stream and supra-permafrost water was estimated at 100 and 255 d, respectively. Climate and vegetation factors affected the MRT of stream and supra-permafrost water mainly by changing the thickness of the permafrost active layer.
Bin Cao, Gabriele Arduini, and Ervin Zsoter
The Cryosphere, 16, 2701–2708, https://doi.org/10.5194/tc-16-2701-2022, https://doi.org/10.5194/tc-16-2701-2022, 2022
Short summary
Short summary
We implemented a new multi-layer snow scheme in the land surface scheme of ERA5-Land with revised snow densification parameterizations. The revised HTESSEL improved the representation of soil temperature in permafrost regions compared to ERA5-Land; in particular, warm bias in winter was significantly reduced, and the resulting modeled near-surface permafrost extent was improved.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Rowan Romeyn, Alfred Hanssen, and Andreas Köhler
The Cryosphere, 16, 2025–2050, https://doi.org/10.5194/tc-16-2025-2022, https://doi.org/10.5194/tc-16-2025-2022, 2022
Short summary
Short summary
We have investigated a long-term record of ground vibrations, recorded by a seismic array installed in Adventdalen, Svalbard. This record contains a large number of
frost quakes, a type of ground shaking that can be produced by cracks that form as the ground cools rapidly. We use underground temperatures measured in a nearby borehole to model forces of thermal expansion and contraction that can cause these cracks. We also use the seismic measurements to estimate where these cracks occurred.
Hongwei Liu, Pooneh Maghoul, and Ahmed Shalaby
The Cryosphere, 16, 1157–1180, https://doi.org/10.5194/tc-16-1157-2022, https://doi.org/10.5194/tc-16-1157-2022, 2022
Short summary
Short summary
The knowledge of physical and mechanical properties of permafrost and its location is critical for the management of permafrost-related geohazards. Here, we developed a hybrid inverse and multiphase poromechanical approach to quantitatively estimate the physical and mechanical properties of a permafrost site. Our study demonstrates the potential of surface wave techniques coupled with our proposed data-processing algorithm to characterize a permafrost site more accurately.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Juditha Undine Schmidt, Bernd Etzelmüller, Thomas Vikhamar Schuler, Florence Magnin, Julia Boike, Moritz Langer, and Sebastian Westermann
The Cryosphere, 15, 2491–2509, https://doi.org/10.5194/tc-15-2491-2021, https://doi.org/10.5194/tc-15-2491-2021, 2021
Short summary
Short summary
This study presents rock surface temperatures (RSTs) of steep high-Arctic rock walls on Svalbard from 2016 to 2020. The field data show that coastal cliffs are characterized by warmer RSTs than inland locations during winter seasons. By running model simulations, we analyze factors leading to that effect, calculate the surface energy balance and simulate different future scenarios. Both field data and model results can contribute to a further understanding of RST in high-Arctic rock walls.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Rowan Romeyn, Alfred Hanssen, Bent Ole Ruud, Helene Meling Stemland, and Tor Arne Johansen
The Cryosphere, 15, 283–302, https://doi.org/10.5194/tc-15-283-2021, https://doi.org/10.5194/tc-15-283-2021, 2021
Short summary
Short summary
A series of unusual ground motion signatures were identified in geophone recordings at a frost polygon site in Adventdalen on Svalbard. By analysing where the ground motion originated in time and space, we are able to classify them as cryoseisms, also known as frost quakes, a ground-cracking phenomenon that occurs as a result of freezing processes. The waves travelling through the ground produced by these frost quakes also allow us to measure the structure of the permafrost in the near surface.
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020, https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Short summary
A sub-grid representation of excess ground ice in the Community Land Model (CLM) is developed as novel progress in modeling permafrost thaw and its impacts under the warming climate. The modeled permafrost degradation with sub-grid excess ice follows the pathway that continuous permafrost transforms into discontinuous permafrost before it disappears, including surface subsidence and talik formation, which are highly permafrost-relevant landscape changes excluded from most land models.
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
Bin Cao, Stephan Gruber, Donghai Zheng, and Xin Li
The Cryosphere, 14, 2581–2595, https://doi.org/10.5194/tc-14-2581-2020, https://doi.org/10.5194/tc-14-2581-2020, 2020
Short summary
Short summary
This study reports that ERA5-Land (ERA5L) soil temperature bias in permafrost regions correlates with the bias in air temperature and with maximum snow height. While global reanalyses are important drivers for permafrost study, ERA5L soil data are not well suited for directly informing permafrost research decision making due to their warm bias in winter. To address this, future soil temperature products in reanalyses will require permafrost-specific alterations to their land surface models.
Ji-Woong Yang, Jinho Ahn, Go Iwahana, Sangyoung Han, Kyungmin Kim, and Alexander Fedorov
The Cryosphere, 14, 1311–1324, https://doi.org/10.5194/tc-14-1311-2020, https://doi.org/10.5194/tc-14-1311-2020, 2020
Short summary
Short summary
Thawing permafrost may lead to decomposition of soil carbon and nitrogen and emission of greenhouse gases. Thus, methane and nitrous oxide compositions in ground ice may provide information on their production mechanisms in permafrost. We test conventional wet and dry extraction methods. We find that both methods extract gas from the easily extractable parts of the ice and yield similar results for mixing ratios. However, both techniques are unable to fully extract gas from the ice.
Nikita Demidov, Sebastian Wetterich, Sergey Verkulich, Aleksey Ekaykin, Hanno Meyer, Mikhail Anisimov, Lutz Schirrmeister, Vasily Demidov, and Andrew J. Hodson
The Cryosphere, 13, 3155–3169, https://doi.org/10.5194/tc-13-3155-2019, https://doi.org/10.5194/tc-13-3155-2019, 2019
Short summary
Short summary
As Norwegian geologist Liestøl (1996) recognised,
in connection with formation of pingos there are a great many unsolved questions. Drillings and temperature measurements through the pingo mound and also through the surrounding permafrost are needed before the problems can be better understood. To shed light on pingo formation here we present the results of first drilling of pingo on Spitsbergen together with results of detailed hydrochemical and stable-isotope studies of massive-ice samples.
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Short summary
We present a long-term multisite electrical resistivity tomography monitoring network (more than 1000 datasets recorded from six mountain permafrost sites). Despite harsh and remote measurement conditions, the datasets are of good quality and show consistent spatio-temporal variations yielding significant added value to point-scale borehole information. Observed long-term trends are similar for all permafrost sites, showing ongoing permafrost thaw and ground ice loss due to climatic conditions.
Jing Tao, Randal D. Koster, Rolf H. Reichle, Barton A. Forman, Yuan Xue, Richard H. Chen, and Mahta Moghaddam
The Cryosphere, 13, 2087–2110, https://doi.org/10.5194/tc-13-2087-2019, https://doi.org/10.5194/tc-13-2087-2019, 2019
Short summary
Short summary
The active layer thickness (ALT) in middle-to-high northern latitudes from 1980 to 2017 was produced at 81 km2 resolution by a global land surface model (NASA's CLSM) with forcing fields from a reanalysis data set, MERRA-2. The simulated permafrost distribution and ALTs agree reasonably well with an observation-based map and in situ measurements, respectively. The accumulated above-freezing air temperature and maximum snow water equivalent explain most of the year-to-year variability of ALT.
Robert Kenner, Jeannette Noetzli, Martin Hoelzle, Hugo Raetzo, and Marcia Phillips
The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, https://doi.org/10.5194/tc-13-1925-2019, 2019
Short summary
Short summary
A new permafrost mapping method distinguishes between ice-poor and ice-rich permafrost. The approach was tested for the entire Swiss Alps and highlights the dominating influence of the factors elevation and solar radiation on the distribution of ice-poor permafrost. Our method enabled the indication of mean annual ground temperatures and the cartographic representation of permafrost-free belts, which are bounded above by ice-poor permafrost and below by permafrost-containing excess ice.
H. Brendan O'Neill, Stephen A. Wolfe, and Caroline Duchesne
The Cryosphere, 13, 753–773, https://doi.org/10.5194/tc-13-753-2019, https://doi.org/10.5194/tc-13-753-2019, 2019
Short summary
Short summary
In this paper, we present new models to depict ground ice in permafrost in Canada, incorporating knowledge from recent studies. The model outputs we present reproduce observed regional ground ice conditions and are generally comparable with previous mapping. However, our results are more detailed and more accurately reflect ground ice conditions in many regions. The new mapping is an important step toward understanding terrain response to permafrost degradation in Canada.
Stephanie Coulombe, Daniel Fortier, Denis Lacelle, Mikhail Kanevskiy, and Yuri Shur
The Cryosphere, 13, 97–111, https://doi.org/10.5194/tc-13-97-2019, https://doi.org/10.5194/tc-13-97-2019, 2019
Short summary
Short summary
This study provides a detailed description of relict glacier ice preserved in the permafrost of Bylot Island (Nunavut). We demonstrate that the 18O composition (-34.0 0.4 ‰) of the ice is consistent with the late Pleistocene age ice in the Barnes Ice Cap. As most of the glaciated Arctic landscapes are still strongly determined by their glacial legacy, the melting of these large ice bodies could have significant impacts on permafrost geosystem landscape dynamics and ecosystems.
Robert G. Way, Antoni G. Lewkowicz, and Yu Zhang
The Cryosphere, 12, 2667–2688, https://doi.org/10.5194/tc-12-2667-2018, https://doi.org/10.5194/tc-12-2667-2018, 2018
Short summary
Short summary
Isolated patches of permafrost in southeast Labrador are among the southernmost lowland permafrost features in Canada. Local characteristics at six sites were investigated from Cartwright, NL (~ 54° N) to Blanc-Sablon, QC (~ 51° N). Annual ground temperatures varied from −0.7 °C to −2.3 °C with permafrost thicknesses of 1.7–12 m. Ground temperatures modelled for two sites showed permafrost disappearing at the southern site by 2060 and persistence beyond 2100 at the northern site only for RCP2.6.
Zeze Ran and Gengnian Liu
The Cryosphere, 12, 2327–2340, https://doi.org/10.5194/tc-12-2327-2018, https://doi.org/10.5194/tc-12-2327-2018, 2018
Short summary
Short summary
This article provides the first rock glacier inventory of Daxue Shan, south- eastern Tibetan Plateau. This study provides important data for exploring the relation between maritime periglacial environments and the development of rock glaciers on the south-eastern Tibetan Plateau (TP). It may also highlight the characteristics typical of rock glaciers found in a maritime setting.
Charles J. Abolt, Michael H. Young, Adam L. Atchley, and Dylan R. Harp
The Cryosphere, 12, 1957–1968, https://doi.org/10.5194/tc-12-1957-2018, https://doi.org/10.5194/tc-12-1957-2018, 2018
Short summary
Short summary
We investigate the relationship between ice wedge polygon topography and near-surface ground temperature using a combination of field work and numerical modeling. We analyze a year-long record of ground temperature across a low-centered polygon, then demonstrate that lower rims and deeper troughs promote warmer conditions in the ice wedge in winter. This finding implies that ice wedge cracking and growth, which are driven by cold conditions, can be impeded by rim erosion or trough subsidence.
Cited articles
Allard, M., Wang, B., and Pilon, J. A.: Recent Cooling along the Southern Shore of Hudson Strait, Quebec, Canada, Documented from Permafrost Temperature Measurements, Arct. Alp. Res., 27, 157–166, 1995. a
Allard, M., Sarrazin, D., and L'Herault, E.: Borehole and near-surface ground temperatures in northeastern Canada, v1.5 (1988–2019), Nordicana D8, https://doi.org/10.5885/45291SL-34F28A9491014AFD, 2020. a
Allen, D. M., Michel, F. A., and Judge, A. S.: The permafrost regime in the Mackenzie Delta, Beaufort Sea region, N.W.T. and its significance to the reconstruction of the palaeoclimatic history, J. Quaternary Sci., 3, 3–13, https://doi.org/10.1002/jqs.3390030103, 1988. a
Andrews, J., Davis, P., and Wright, C.: Little Ice Age permanent snowcover in the eastern Canadian Arctic: Extent mapped from Landsat-1 satellite imagery, Geograf. Annal. Ser. A, 58, 71–81, 1976. a
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J., Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci. Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015. a
Barber, V. A., Juday, G. P., Finney, B. P., and Wilmking, M.: Reconstruction of Summer Temperatures in Interior Alaska from Tree-Ring Proxies: Evidence for Changing Synoptic Climate Regimes, Climatic Change, 63, 91–120, https://doi.org/10.1023/B:CLIM.0000018501.98266.55, 2004. a
Beringer, J., Lynch, A. H., Chapin III, F. S., Mack, M., and Bonan, G. B.: The representation of arctic soils in the land surface model: the importance of mosses, J. Climate, 14, 3324–3335, 2001. a
Bird, B. W., Abbott, M. B., Finney, B. P., and Kutchko, B.: A 2000 year varve-based climate record from the central Brooks Range, Alaska, J. Paleolimnol., 41, 25–41, https://doi.org/10.1007/s10933-008-9262-y, 2009. a
Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D., Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T., Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn, I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale, Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019. a
Casulli, V. and Zanolli, P.: A Nested Newton-Type Algorithm for Finite Volume Methods Solving Richards' Equation in Mixed Form, SIAM J. Sci. Comput., 32, 2255–2273, https://doi.org/10.1137/100786320, 2010. a
Chadburn, S. E., Burke, E. J., Cox, P. M., Friedlingstein, P., Hugelius, G., and Westermann, S.: An observation-based constraint on permafrost loss as a function of global warming, Nat. Clim. Change, 7, 340–344, https://doi.org/10.1038/nclimate3262, 2017. a
Chouinard, C., Fortier, R., and Mareschal, J.-C.: Recent climate variations in the subarctic inferred from three borehole temperature profiles in northern Quebec, Canada, Earth Planet. Sc. Lett., 263, 355–369, https://doi.org/10.1016/j.epsl.2007.09.017, 2007. a, b
Cosenza, P., Guérin, R., and Tabbagh, A.: Relationship between thermal conductivity and water content of soils using numerical modelling, European J. Soil Sci., 54, 581–588, https://doi.org/10.1046/j.1365-2389.2003.00539.x, 2003. a
Crichton, K. A., Roche, D. M., Krinner, G., and Chappellaz, J.: A simplified permafrost-carbon model for long-term climate studies with the CLIMBER-2 coupled earth system model, Geosci. Model Dev., 7, 3111–3134, https://doi.org/10.5194/gmd-7-3111-2014, 2014. a
Davies, J. H.: Global map of solid Earth surface heat flow, Geochem. Geophy. Geosy., 14, 4608–4622, https://doi.org/10.1002/ggge.20271, 2013. a, b, c
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a, b
Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., and Hauck, C.: Simulating high-latitude permafrost regions by the JSBACH terrestrial ecosystem model, Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, 2014. a
Faroux, S., Kaptué Tchuenté, A. T., Roujean, J.-L., Masson, V., Martin, E., and Le Moigne, P.: ECOCLIMAP-II/Europe: a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models, Geosci. Model Dev., 6, 563–582, https://doi.org/10.5194/gmd-6-563-2013, 2013. a, b
Fiddes, J., Aalstad, K., and Westermann, S.: Hyper-resolution ensemble-based snow reanalysis in mountain regions using clustering, Hydrol. Earth Syst. Sci., 23, 4717–4736, https://doi.org/10.5194/hess-23-4717-2019, 2019. a
Fisher, J. P., Estop-Aragonés, C., Thierry, A., Charman, D. J., Wolfe, S. A., Hartley, I. P., Murton, J. B., Williams, M., and Phoenix, G. K.: The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest, Glob. Change Biol., 22, 3127–3140, https://doi.org/10.1111/gcb.13248, 2016. a
Fontana, F., Trishchenko, A., Luo, Y., Khlopenkov, K., Nussbaumer, S., and Wunderle, S.: Perennial snow and ice variations (2000–2008) in the Arctic circumpolar land area from satellite observations, J. Geophys. Res.-Earth, 115, F04020, https://doi.org/10.1029/2010JF001664, 2010. a
French, H. M. and Millar, S. W.: Permafrost at the time of the Last Glacial Maximum (LGM) in North America, Boreas, 43, 667–677, 2014. a
Froese, D. G., Westgate, J. A., Reyes, A. V., Enkin, R. J., and Preece, S. J.: Ancient Permafrost and a Future, Warmer Arctic, Science, 321, 1648–1648, https://doi.org/10.1126/science.1157525, 2008. a
Gouttevin, I., Langer, M., Löwe, H., Boike, J., Proksch, M., and Schneebeli, M.: Observation and modelling of snow at a polygonal tundra permafrost site: spatial variability and thermal implications, The Cryosphere, 12, 3693–3717, https://doi.org/10.5194/tc-12-3693-2018, 2018. a
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012. a, b
Guevara-Murua, A., Williams, C. A., Hendy, E. J., Rust, A. C., and Cashman, K. V.: Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the Unknown ∼1809 eruption?, Clim. Past, 10, 1707–1722, https://doi.org/10.5194/cp-10-1707-2014, 2014. a
Günther, F., Overduin, P. P., Yakshina, I. A., Opel, T., Baranskaya, A. V., and Grigoriev, M. N.: Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction, The Cryosphere, 9, 151–178, https://doi.org/10.5194/tc-9-151-2015, 2015. a
Halsey, L. A., Vitt, D. H., and Zoltai, S. C.: Disequilibrium response of permafrost in boreal continental western Canada to climate change, Climatic Change, 30, 57–73, https://doi.org/10.1007/BF01093225, 1995. a
Harrison, W. D.: Permafrost response to surface temperature change and its implications for the 40,000-year surface temperature history at Prudhoe Bay, Alaska, J. Geophys. Res.-Sol. Ea., 96, 683–695, https://doi.org/10.1029/90JB02004, 1991. a
Heijmans, M. M., Magnússon, R. Í., Lara, M. J., Frost, G. V., Myers-Smith, I. H., van Huissteden, J., Jorgenson, M. T., Fedorov, A. N., Epstein, H. E., Lawrence, D. M., and Limpens, J.: Tundra vegetation change and impacts on permafrost, Nature Reviews Earth Environment, 3, 68–84, https://doi.org/10.1038/s43017-021-00233-0, 2022. a
Hermoso de Mendoza, I., Beltrami, H., MacDougall, A. H., and Mareschal, J.-C.: Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5, Geosci. Model Dev., 13, 1663–1683, https://doi.org/10.5194/gmd-13-1663-2020, 2020. a
Hillel, D.: Environmental soil physics: Fundamentals, applications, and environmental considerations, Elsevier, ISBN 9780123485250, 1998. a
Holloway, J. E. and Lewkowicz, A. G.: Half a century of discontinuous permafrost persistence and degradation in western Canada, Permafrost an d Periglac. Proc., 31, 85–96, https://doi.org/10.1002/ppp.2017, 2020. a
Hugelius, G., Bockheim, J. G., Camill, P., Elberling, B., Grosse, G., Harden, J. W., Johnson, K., Jorgenson, T., Koven, C. D., Kuhry, P., Michaelson, G., Mishra, U., Palmtag, J., Ping, C.-L., O'Donnell, J., Schirrmeister, L., Schuur, E. A. G., Sheng, Y., Smith, L. C., Strauss, J., and Yu, Z.: A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region, Earth Syst. Sci. Data, 5, 393–402, https://doi.org/10.5194/essd-5-393-2013, 2013. a, b, c
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 11, 6573–6593, https://doi.org/10.5194/bg-11-6573-2014, 2014. a
James, M., Lewkowicz, A. G., Smith, S. L., and Miceli, C. M.: Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada, Environ. Res. Lett., 8, 045013, https://doi.org/10.1088/1748-9326/8/4/045013, 2013. a
Jan, A. and Painter, S. L.: Permafrost thermal conditions are sensitive to shifts in snow timing, Environ. Res. Lett., 15, 084026, https://doi.org/10.1088/1748-9326/ab8ec4, 2020. a
Juhls, B., Antonova, S., Angelopoulos, M., Bobrov, N., Grigoriev, M., Langer, M., Maksimov, G., Miesner, F., and Overduin, P. P.: Serpentine (Floating) Ice Channels and their Interaction with Riverbed Permafrost in the Lena River Delta, Russia, Front. Earth Sci., 9, 689941, https://doi.org/10.3389/feart.2021.689941, 2021. a
Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T., and Stephani, E.: Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure, Quaternary Res., 75, 584–596, https://doi.org/10.1016/j.yqres.2010.12.003, 2011. a
Kanevskiy, M., Shur, Y., Jorgenson, T., Brown, D. R., Moskalenko, N., Brown, J., Walker, D. A., Raynolds, M. K., and Buchhorn, M.: Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska, Geomorphology, 297, 20–42, https://doi.org/10.1016/j.geomorph.2017.09.001, 2017. a
Karra, S., Painter, S. L., and Lichtner, P. C.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0), The Cryosphere, 8, 1935–1950, https://doi.org/10.5194/tc-8-1935-2014, 2014. a
Kitover, D. C., Renssen, H., van Balen, R., Vandenberghe, J., and Roche, D. M.: Coupling of VAMPERS within iLOVECLIM: experiments during the LGM and Last Deglaciation, J. Quaternary Sci., 34, 215–227, 2019. a
Kneier, F., Overduin, P. P., Langer, M., Boike, J., and Grigoriev, M. N.: Borehole temperature reconstructions reveal differences in past surface temperature trends for the permafrost in the Laptev Sea region, Russian Arctic, arktos, 4, 1–17, 2018. a
Koopmans, R. W. R. and Miller, R.: Soil Freezing and Soil Water Characteristic Curves, Soil Sci. Soc. Am. J., 30, 680–685, 1966. a
Kraft, B., Jung, M., Körner, M., Koirala, S., and Reichstein, M.: Towards hybrid modeling of the global hydrological cycle, Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, 2022. a
Kurylyk, B. L. and Watanabe, K.: The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils, Adv. Water Resour., 60, 160–177, 2013. a
Lachenbruch, A. H. and Marshall, B. V.: Changing Climate: Geothermal Evidence from Permafrost in the Alaskan Arctic, Science, 234, 689–696, https://doi.org/10.1126/science.234.4777.689, 1986. a
Langer, M., Westermann, S., Heikenfeld, M., Dorn, W., and Boike, J.: Satellite-based modeling of permafrost temperatures in a tundra lowland landscape, Remote Sens. Environ., 135, 12–24, https://doi.org/10.1016/j.rse.2013.03.011, 2013. a, b
Langer, M., Westermann, S., Boike, J., Kirillin, G., Grosse, G., Peng, S., and Krinner, G.: Rapid degradation of permafrost underneath waterbodies in tundra landscapes – toward a representation of thermokarst in land surface models, J. Geophys. Res.-Earth, 121, 2446–2470, 2016. a
Langer, M., Nitzbon, J., and Oehme, A.: CryoGridLite: Model input for pan-Arctic simulations at 1° resolution from 1700 to 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.6619212, 2022a. a
Langer, M., Nitzbon, J., and Oehme, A.: CryoGridLite: Model output of pan-Arctic simulations at 1° resolution from 1700 to 2020, Zenodo [data set], https://doi.org/10.5281/zenodo.6619260, 2022b. a
Langer, M., Nitzbon, J., and Oehme, A.: CryoGridLite: Model code for pan-Arctic simulations at 1° resolution from 1700 to 2020, Zenodo [code], https://doi.org/10.5281/zenodo.6619537, 2022c. a
Lawrence, D. M., Slater, A. G., Romanovsky, V. E., and Nicolsky, D. J.: Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter, J. Geophys. Res.-Earth, 113, F02011, https://doi.org/10.1029/2007JF000883, 2008. a
Madadgar, S. and Moradkhani, H.: Improved Bayesian multimodeling: Integration of copulas and Bayesian model averaging, Water Resour. Res., 50, 9586–9603, 2014. a
Martin, L. C. P., Nitzbon, J., Scheer, J., Aas, K. S., Eiken, T., Langer, M., Filhol, S., Etzelmüller, B., and Westermann, S.: Lateral thermokarst patterns in permafrost peat plateaus in northern Norway, The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021, 2021. a
Masson, V., Champeaux, J.-L., Chauvin, F., Meriguet, C., and Lacaze, R.: A Global Database of Land Surface Parameters at 1-km Resolution in Meteorological and Climate Models, J. Climate, 16, 1261–1282, https://doi.org/10.1175/1520-0442(2003)16<1261:AGDOLS>2.0.CO;2, 2003. a, b
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A., Alkama, R., Belamari, S., Barbu, A., Boone, A., Bouyssel, F., Brousseau, P., Brun, E., Calvet, J.-C., Carrer, D., Decharme, B., Delire, C., Donier, S., Essaouini, K., Gibelin, A.-L., Giordani, H., Habets, F., Jidane, M., Kerdraon, G., Kourzeneva, E., Lafaysse, M., Lafont, S., Lebeaupin Brossier, C., Lemonsu, A., Mahfouf, J.-F., Marguinaud, P., Mokhtari, M., Morin, S., Pigeon, G., Salgado, R., Seity, Y., Taillefer, F., Tanguy, G., Tulet, P., Vincendon, B., Vionnet, V., and Voldoire, A.: The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geosci. Model Dev., 6, 929–960, https://doi.org/10.5194/gmd-6-929-2013, 2013. a, b, c, d
Miller, G. H., Geirsdóttir, A., Zhong, Y., Larsen, D. J., Otto-Bliesner, B. L., Holland, M. M., Bailey, D. A., Refsnider, K. A., Lehman, S. J., Southon, J. R., Anderson, C., Björnsson, H., and Thordarson, T.: Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks, Geophys. Res. Lett., 39, L02708, https://doi.org/10.1029/2011GL050168, 2012. a
Murphy, J. M., Booth, B. B., Collins, M., Harris, G. R., Sexton, D. M., and Webb, M. J.: A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles, Philos. T. Roy. Soc. A, 365, 1993–2028, 2007. a
Murton, J. B., Opel, T., Toms, P., Blinov, A., Fuchs, M., Wood, J., Gärtner, A., Merchel, S., Rugel, G., Savvinov, G., and Wetterich, S.: A multimethod dating study of ancient permafrost, Batagay megaslump, east Siberia, Quaternary Res., 105, 1–22, https://doi.org/10.1017/qua.2021.27, 2022. a
Nitzbon, J., Langer, M., Westermann, S., Martin, L., Aas, K. S., and Boike, J.: Pathways of ice-wedge degradation in polygonal tundra under different hydrological conditions, The Cryosphere, 13, 1089–1123, https://doi.org/10.5194/tc-13-1089-2019, 2019. a
Nitzbon, J., Westermann, S., Langer, M., Martin, L. C. P., Strauss, J., Laboor, S., and Boike, J.: Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate, Nat. Commun., 11, 2201, https://doi.org/10.1038/s41467-020-15725-8, 2020. a
Nitzbon, J., Langer, M., Martin, L. C. P., Westermann, S., Schneider von Deimling, T., and Boike, J.: Effects of multi-scale heterogeneity on the simulated evolution of ice-rich permafrost lowlands under a warming climate, The Cryosphere, 15, 1399–1422, https://doi.org/10.5194/tc-15-1399-2021, 2021. a
Nitzbon, J., Krinner, G., Schneider von Deimling, T., Werner, M., and Langer, M.: First Quantification of the Permafrost Heat Sink in the Earth's Climate System, Geophys. Res. Lett., 50, e2022GL102053, https://doi.org/10.1029/2022GL102053, 2023. a
Nyland, K. E., Shiklomanov, N. I., Streletskiy, D. A., Nelson, F. E., Klene, A. E., and Kholodov, A. L.: Long-term Circumpolar Active Layer Monitoring (CALM) program observations in Northern Alaskan tundra, Polar Geogr., 44, 167–185, https://doi.org/10.1080/1088937X.2021.1988000, 2021. a
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller, B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O., Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G., Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D.: Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316, https://doi.org/10.1016/j.earscirev.2019.04.023, 2019. a, b, c, d, e, f, g
Ohara, N., Jones, B. M., Parsekian, A. D., Hinkel, K. M., Yamatani, K., Kanevskiy, M., Rangel, R. C., Breen, A. L., and Bergstedt, H.: A new Stefan equation to characterize the evolution of thermokarst lake and talik geometry, The Cryosphere, 16, 1247–1264, https://doi.org/10.5194/tc-16-1247-2022, 2022. a
Osterkamp, T. E. and Gosink, J. P.: Variations in permafrost thickness in response to changes in paleoclimate, J. Geophys. Res.-Sol. Ea., 96, 4423–4434, https://doi.org/10.1029/90JB02492, 1991. a
Pelletier, J. D., Broxton, P. D., Hazenberg, P., Zeng, X., Troch, P. A., Niu, G.-Y., Williams, Z., Brunke, M. A., and Gochis, D.: A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling, J. Adv. Model. Earth Sy., 8, 41–65, https://doi.org/10.1002/2015MS000526, 2016. a, b, c, d
Péwé, T. L.: Permafrost – and its affects on human activities in arctic and subarctic regions, GeoJournal, 3, 333–344, 1979. a
Phipps, S. J., McGregor, H. V., Gergis, J., Gallant, A. J. E., Neukom, R., Stevenson, S., Ackerley, D., Brown, J. R., Fischer, M. J., and Ommen, T. D. v.: Paleoclimate Data – Model Comparison and the Role of Climate Forcings over the Past 1500 Years, J. Climate, 26, 6915–6936, https://doi.org/10.1175/JCLI-D-12-00108.1, 2013. a, b, c
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., and Laaksonen, A.: The Arctic has warmed nearly four times faster than the globe since 1979, Commun. Earth Environ.t, 3, 2662–4435, https://doi.org/10.1038/s43247-022-00498-3, 2022. a
Romanovsky, V. E., Smith, S. L., and Christiansen, H. H.: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis, Permafrost Periglac. Process., 21, 106–116, https://doi.org/10.1002/ppp.689, 2010. a
Ross, C., Siemens, G., and Beddoe, R.: Initialization of thermal models in cold and warm permafrost, Arct. Sci., 8, 362–394, https://doi.org/10.1139/as-2021-0013, 2021. a
Saito, K., Machiya, H., Iwahana, G., Yokohata, T., and Ohno, H.: Numerical model to simulate long-term soil organic carbon and ground ice budget with permafrost and ice sheets (SOC-ICE-v1.0), Geosci. Model Dev., 14, 521–542, https://doi.org/10.5194/gmd-14-521-2021, 2021. a
Schneider von Deimling, T., Held, H., Ganopolski, A., and Rahmstorf, S.: Climate sensitivity estimated from ensemble simulations of glacial climate, Clim. Dynam., 27, 149–163, 2006. a
Schneider von Deimling, T., Kleinen, T., Hugelius, G., Knoblauch, C., Beer, C., and Brovkin, V.: Long-term deglacial permafrost carbon dynamics in MPI-ESM, Clim. Past, 14, 2011–2036, https://doi.org/10.5194/cp-14-2011-2018, 2018. a
Shiklomanov, N., Streletskiy, D., and Nelson, F.: Northern Hemisphere Component of the Global Circumpolar Active Layer Monitoring (CALM) Program, in: Proceedings of the 10th International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012, Vol. 1, 377–382, 2012. a
Smith, S., Romanovsky, V., Lewkowicz, A., Burn, C., Allard, M., Clow, G., Yoshikawa, K., and Throop, J.: Thermal state of permafrost in North America: a contribution to the international polar year, Permafrost Periglac. Proce., 21, 117–135, https://doi.org/10.1002/ppp.690, 2010. a
Smith, S. L., Throop, J., and Lewkowicz, A. G.: Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada1This article is one of a series of papers published in this CJES Special Issue on the theme of Fundamental and applied research on permafrost in Canada, Can. J. Earth Sci., 49, 914–924, https://doi.org/10.1139/e2012-019, 2012. a
Smith, S. L., O’Neill, H. B., Isaksen, K., Noetzli, J., and Romanovsky, V. E.: The changing thermal state of permafrost, Nature Reviews Earth Environment, 3, 10–23, https://doi.org/10.1038/s43017-021-00240-1, 2022. a, b
Steinert, N. J., González-Rouco, J. F., Vrese, P. d., García-Bustamante, E., Hagemann, S., Melo-Aguilar, C., Jungclaus, J. H., and Lorenz, S. J.: Increasing the Depth of a Land Surface Model. Part II: Temperature Sensitivity to Improved Subsurface Thermodynamics and Associated Permafrost Response, J. Hydrometeorol., 22, 3231–3254, https://doi.org/10.1175/JHM-D-21-0023.1, 2021. a
Strauss, J., Laboor, S., Schirrmeister, L., Fedorov, A. N., Fortier, D., Froese, D., Fuchs, M., Günther, F., Grigoriev, M., Harden, J., Hugelius, G., Jongejans, L. L., Kanevskiy, M., Kholodov, A., Kunitsky, V., Kraev, G., Lozhkin, A., Rivkina, E., Shur, Y., Siegert, C., Spektor, V., Streletskaya, I., Ulrich, M., Vartanyan, S., Veremeeva, A., Anthony, K. W., Wetterich, S., Zimov, N., and Grosse, G.: Circum-Arctic Map of the Yedoma Permafrost Domain, Front. Earth Sci., 9, 758360, https://doi.org/10.3389/feart.2021.758360, 2021. a
Stuenzi, S. M., Kruse, S., Boike, J., Herzschuh, U., Oehme, A., Pestryakova, L. A., Westermann, S., and Langer, M.: Thermohydrological Impact of Forest Disturbances on Ecosystem-Protected Permafrost, J. Geophys. Res.-Biogeo., 127, e2021JG006630, https://doi.org/10.1029/2021JG006630, 2022. a, b, c
Sturm, M. and Liston, G. E.: The snow cover on lakes of the Arctic Coastal Plain of Alaska, U.S.A., J. Glaciol., 49, 370–380, https://doi.org/10.3189/172756503781830539, 2003. a
Sturm, M., Holmgren, J., and Liston, G. E.: A Seasonal Snow Cover Classification System for Local to Global Applications, J. Climate, 8, 1261–1283, https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995. a
Sturm, M., Taras, B., Liston, G. E., Derksen, C., Jonas, T., and Lea, J.: Estimating Snow Water Equivalent Using Snow Depth Data and Climate Classes, J. Hydrometeorol., 11, 1380–1394, https://doi.org/10.1175/2010JHM1202.1, 2010. a, b, c
Swaminathan, C. R. and Voller, V. R.: A general enthalpy method for modeling solidification processes, Metall. Trans. B, 23, 651–664, https://doi.org/10.1007/BF02649725, 1992. a, b, c
Taylor, A. E., Wang, K., Smith, S. L., Burgess, M. M., and Judge, A. S.: Canadian Arctic Permafrost Observatories: Detecting contemporary climate change through inversion of subsurface temperature time series, J. Geophys. Res.-Sol. Ea., 111, B02411, https://doi.org/10.1029/2004JB003208, 2006. a, b
Timmreck, C., Toohey, M., Zanchettin, D., Brönnimann, S., Lundstad, E., and Wilson, R.: The unidentified eruption of 1809: a climatic cold case, Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, 2021. a
Treat, C. C. and Jones, M. C.: Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years, Holocene, 28, 998–1010, https://doi.org/10.1177/0959683617752858, 2018. a
Trishchenko, A. P. and Wang, S.: Variations of climate, surface energy budget, and minimum snow/ice extent over Canadian arctic landmass for 2000–16, J. Climate, 31, 1155–1172, 2018. a
Tsai, V. C. and Ruan, X.: A simple physics-based improvement to the positive degree day model, J. Glaciol., 64, 661–668, 2018. a
Tubini, N., Gruber, S., and Rigon, R.: A method for solving heat transfer with phase change in ice or soil that allows for large time steps while guaranteeing energy conservation, The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021, 2021. a
Turetsky, M. R., Abbott, B. W., Jones, M. C., Anthony, K. W., Olefeldt, D., Schuur, E. A. G., Grosse, G., Kuhry, P., Hugelius, G., Koven, C., Lawrence, D. M., Gibson, C., Sannel, A. B. K., and McGuire, A. D.: Carbon release through abrupt permafrost thaw, Nat. Geosci., 13, 138–143, https://doi.org/10.1038/s41561-019-0526-0, 2020. a
Walvoord, M. A. and Kurylyk, B. L.: Hydrologic impacts of thawing permafrost – A review, Vadose Zone J., 15, vzj2016.01.0010, doi 10.2136/vzj2016.01.0010, 2016. a
West, J. J. and Plug, L. J.: Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice, J. Geophys. Res.-Earth, 113, F01009, https://doi.org/10.1029/2006JF000696, 2008. a
Westermann, S., Boike, J., Langer, M., Schuler, T. V., and Etzelmüller, B.: Modeling the impact of wintertime rain events on the thermal regime of permafrost, The Cryosphere, 5, 945–959, https://doi.org/10.5194/tc-5-945-2011, 2011. a, b
Westermann, S., Schuler, T. V., Gisnås, K., and Etzelmüller, B.: Transient thermal modeling of permafrost conditions in Southern Norway, The Cryosphere, 7, 719–739, https://doi.org/10.5194/tc-7-719-2013, 2013. a
Westermann, S., Langer, M., Boike, J., Heikenfeld, M., Peter, M., Etzelmüller, B., and Krinner, G.: Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3, Geosci. Model Dev., 9, 523–546, https://doi.org/10.5194/gmd-9-523-2016, 2016. a, b
Westermann, S., Peter, M., Langer, M., Schwamborn, G., Schirrmeister, L., Etzelmüller, B., and Boike, J.: Transient modeling of the ground thermal conditions using satellite data in the Lena River delta, Siberia, The Cryosphere, 11, 1441–1463, https://doi.org/10.5194/tc-11-1441-2017, 2017. a
Westermann, S., Ingeman-Nielsen, T., Scheer, J., Aalstad, K., Aga, J., Chaudhary, N., Etzelmüller, B., Filhol, S., Kääb, A., Renette, C., Schmidt, L. S., Schuler, T. V., Zweigel, R. B., Martin, L., Morard, S., Ben-Asher, M., Angelopoulos, M., Boike, J., Groenke, B., Miesner, F., Nitzbon, J., Overduin, P., Stuenzi, S. M., and Langer, M.: The CryoGrid community model (version 1.0) – a multi-physics toolbox for climate-driven simulations in the terrestrial cryosphere, Geosci. Model Dev., 16, 2607–2647, https://doi.org/10.5194/gmd-16-2607-2023, 2023. a, b, c
Willeit, M. and Ganopolski, A.: Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle, Clim. Past, 11, 1165–1180, https://doi.org/10.5194/cp-11-1165-2015, 2015. a, b
Williams, L.: The Little Ice Age Glaciation Level on Baffin Island, Arctic Canada, Palaeogeogr. Palaeoclim. Palaeoecol., 25, 199–207, 1978. a
Zweigel, R. B., Westermann, S., Nitzbon, J., Langer, M., Boike, J., Etzelmüller, B., and Schuler, T. V.: Simulating Snow Redistribution and its Effect on Ground Surface Temperature at a High-Arctic Site on Svalbard, J. Geophys. Res.-Earth, 126, e2020JF005673, https://doi.org/10.1029/2020JF005673, 2021. a
Short summary
Using a model that can simulate the evolution of Arctic permafrost over centuries to millennia, we find that post-industrialization permafrost warming has three "hotspots" in NE Canada, N Alaska, and W Siberia. The extent of near-surface permafrost has decreased substantially since 1850, with the largest area losses occurring in the last 50 years. The simulations also show that volcanic eruptions have in some cases counteracted the loss of near-surface permafrost for a few decades.
Using a model that can simulate the evolution of Arctic permafrost over centuries to millennia,...