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Abstract. Understanding the future evolution of permafrost
requires a better understanding of its climatological past.
This requires permafrost models to efficiently simulate the
thermal dynamics of permafrost over the past centuries to
millennia, taking into account highly uncertain soil and snow
properties. In this study, we present a computationally effi-
cient numerical permafrost model which satisfactorily repro-
duces the current ground temperatures and active layer thick-
nesses of permafrost in the Arctic and their trends over recent
centuries. The performed simulations provide insights into
the evolution of permafrost since the 18th century and show
that permafrost on the North American continent is sub-
ject to early degradation, while permafrost on the Eurasian
continent is relatively stable over the investigated 300-year
period. Permafrost warming since industrialization has oc-
curred primarily in three “hotspot” regions in northeastern
Canada, northern Alaska, and, to a lesser extent, western
Siberia. We find that the extent of areas with a high prob-
ability (p3 m > 0.9) of near-surface permafrost (i.e., 3 m of
permafrost within the upper 10 m of the subsurface) has de-
clined substantially since the early 19th century, with loss
accelerating during the last 50 years. Our simulations fur-
ther indicate that short-term climate cooling due to large vol-
canic eruptions in the Northern Hemisphere in some cases
favors permafrost aggradation within the uppermost 10 m of
the ground, but the effect only lasts for a relatively short pe-
riod of a few decades. Despite some limitations, e.g., with re-

spect to the representation of vegetation, the presented model
shows great potential for further investigation of the clima-
tological past of permafrost, especially in conjunction with
paleoclimate modeling.

1 Introduction

With an estimated area of 12 to 17 million km2 (Gru-
ber, 2012; Chadburn et al., 2017; Obu et al., 2019), per-
mafrost is the largest non-seasonal component of the Earth’s
cryosphere. Permafrost is a characteristic factor of Arctic and
subarctic ecosystems and determines a variety of fundamen-
tal hydrological and biogeochemical processes (Walvoord
and Kurylyk, 2016; Turetsky et al., 2020). The occurrence
and thermal state of permafrost are determined by long-term
local climate history (French and Millar, 2014). In particu-
lar, the thermal state of the deeper soil layers (i.e., in depths
of tens to hundreds of meters) must be considered a legacy
of a past climate (e.g., Lachenbruch and Marshall, 1986;
Allen et al., 1988; Osterkamp and Gosink, 1991; Harrison,
1991; Kneier et al., 2018). Permafrost in some places has
survived substantial changes in climate and sea levels during
past glacial–interglacial cycles (Froese et al., 2008), with the
oldest known permafrost existing for at least 650 000 years
(Murton et al., 2022). The glacial history has a lasting ef-
fect on present-day deep ground temperatures and ground
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ice conditions through climatic and geomorphological pro-
cesses. Cold climatic conditions during the past tens to hun-
dreds of thousands of years, in combination with sedimenta-
tion, led to accumulation of ground ice and organic carbon
at increasing soil depths (Kanevskiy et al., 2017). Although
it is assumed that most of the ground ice and organic ma-
terial occur near the surface (< 3 m) (Hugelius et al., 2014)
deeper reservoirs of organic carbon and ground ice do ex-
ist and control the long-term thaw sensitivity of permafrost
landscapes (West and Plug, 2008). For the Alaskan coastal
plain, Péwé (1979) estimated that pore ice and segregated
ground ice comprise 41 % by volume of the soil at depths
between 3 and 10 m. Ice wedges extend even deeper into
the ground, with very deep and massive deposits of ground
ice and carbon found in the Yedoma deposits of Siberia and
Alaska, reaching depths over 50 m (Kanevskiy et al., 2011;
Strauss et al., 2021). The presence of ground ice and carbon
at greater soil depths demands a better understanding of the
thermal state of deep permafrost and its sensitivity to climatic
changes.

Reconstruction of the climatically induced thermal state
of permafrost at or beyond the depth of zero annual ampli-
tude demands simulation times of centuries to millennia to
achieve a dynamic equilibrium that can be considered largely
unaffected by initial conditions (e.g., Ross et al., 2021). This
requires computationally efficient models, in particular if
large regions represented by many grid cells are to be evalu-
ated. In addition, it is important that such models can operate
with limited and highly uncertain information about thermal
and hydrological ground properties. In particular, groundwa-
ter and ground ice contents are highly uncertain but strongly
affect heat uptake and storage in the ground. Such uncertain-
ties can be addressed with probabilistic approaches such as
parameter ensemble simulations (e.g., Schneider von Deim-
ling et al., 2006; Murphy et al., 2007), which allow simula-
tions to be evaluated with the consideration of plausible pa-
rameter ranges. However, simulations of a large number of
ensemble members require efficient computations and prefer
a small amount of required input data. The same is true for
other probabilistic model applications such as data assimila-
tion and hybrid modeling (e.g., Madadgar and Moradkhani,
2014; Kraft et al., 2022). Furthermore, climate reconstruc-
tions usually provide only large-scale air temperature and
precipitation data, while other near-surface climate variables
such as wind speed, air pressure, specific humidity, and ra-
diation are difficult to obtain, in particular at high temporal
resolution. This severely limits the options for model forcing
and hence process representation (e.g., due to unclosed sur-
face energy and water balances). Simulations targeting the
long-term evolution of deep permafrost therefore impose cer-
tain requirements and constraints on the model used.

Numerous permafrost models are available ranging from
analytical steady-state solutions (e.g., Gruber, 2012; Obu
et al., 2019) to very sophisticated thermo-hydrological nu-
merical models (e.g., Kurylyk and Watanabe, 2013; Karra

et al., 2014; Atchley et al., 2015; Westermann et al., 2023).
The latter usually require an immense computational effort
for experiments spanning hundreds of years and are therefore
typically used for local to regional process studies covering
periods between years and decades. In contrast, pan-Arctic
permafrost simulations, such as those performed with Earth
system models (ESMs), typically comprise several hundreds
of years for historical and future climate projections. Many
land surface schemes from ESMs cannot capture the long-
term thermal evolution of deep permafrost since their rep-
resentation of the ground is often limited beyond the upper
3 to 10 m of the subsurface (Hermoso de Mendoza et al.,
2020; Steinert et al., 2021). To date, there are only few per-
mafrost modeling approaches that focus on paleoclimatic pe-
riods (e.g., Crichton et al., 2014; Willeit and Ganopolski,
2015; Schneider von Deimling et al., 2018; Kitover et al.,
2019; Saito et al., 2021). The ability of such models to per-
form simulations over millennia comes at the price of a very
limited representation of processes and low spatial and tem-
poral resolution.

Here, we present and evaluate a computationally efficient
numerical permafrost model (CryoGridLite) designed to pro-
vide insights into the evolution of the thermal state of per-
mafrost and active layer thickness over many centuries for
the Arctic permafrost region. With the CryoGridLite model,
we aim to bridge the gap between very sophisticated per-
mafrost process models and reduced schemes used for pa-
leoclimatic simulations. Compared to comprehensive pro-
cess models like CryoGrid3 (Westermann et al., 2016) or
the CryoGrid Community Model (Westermann et al., 2023),
CryoGridLite is approximately 3 orders of magnitude faster,
enabling the execution of long-term simulations spanning
hundreds to thousands of years. The enhanced efficiency is
achieved through two key components: (i) the utilization of
an implicit solution scheme and (ii) a streamlined represen-
tation of the underlying processes. Our approach aligns with
the objective of providing plausible ranges of permafrost
states rather than focusing on highly precise results for spe-
cific locations. This is accomplished through the application
of multi-parameter ensemble simulations, which have be-
come feasible due to the substantial enhancements achieved
in computational efficiency. By employing this methodology,
we can capture a broader range of potential permafrost condi-
tions, encompassing the inherent uncertainties and variabil-
ity associated with real-world scenarios. In the simulations
we account for uncertainties in soil parameters such as water
and ice content, as well as uncertainties in snowpack proper-
ties.

Based on observations, we investigate the ability of the
new model to reproduce the current thermal state of per-
mafrost as determined by the climatic evolution over the last
centuries (1700–2020). The required model parameters are
greatly reduced compared to permafrost process models and
are based entirely on pan-Arctic or global datasets. Model
forcing is limited to daily mean surface temperature, precip-
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itation, and geothermal heat flux. Specifically, we evaluate
the applicability and performance of the model to represent
the current permafrost temperatures to a depth of 10 m and
its trend over recent decades based on long-term tempera-
ture records from boreholes. In addition, we use observations
of the thickness of the active layer to evaluate the model’s
ability to reproduce annual freeze–thaw dynamics. In addi-
tion, we apply the model to trace the evolution of Arctic per-
mafrost extent over the past 3 centuries.

2 Methods

CryoGridLite largely adopts schemes and parameterizations
previously implemented and tested in the context of regional
and local permafrost modeling using CryoGrid2 (Wester-
mann et al., 2011; Langer et al., 2013; Westermann et al.,
2017) and CryoGrid3 (Westermann et al., 2016). Cryo-
GridLite consists of (i) a ground module that calculates con-
ductive heat transfer with phase change within the soil and
bedrock and (ii) a dynamic snow scheme to represent the in-
sulating effect of seasonal snow cover. Furthermore, some
data prepossessing is demanded in order to derive gridded
soil stratigraphies and snow parameters by synthesizing dif-
ferent global datasets, as well as to generate offline model
forcings based on global reanalysis data and paleoclimate
simulations.

2.1 Ground heat transfer and phase change

In contrast to its predecessors, CryoGrid2 and CryoGrid3,
CryoGridLite solves the nonlinear heat equation with phase
change in terms of enthalpy density (volumetric enthalpy)
instead of temperature:

∂Hv(T )

∂t
−∇z

[
K(T )∇zT

]
= 0, (1)

where Hv [J m−3] is the volumetric enthalpy as an invert-
ible function of temperature T [K], z [m] is depth along the
vertical axis, t [s] is time, and K(T ) [W m−1 K−1] is the
temperature-dependent thermal conductivity. Equation (1)
can be solved using the iterative backward Euler scheme
given by Swaminathan and Voller (1992):
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where 1t [s] is a constant time step, T [K] is the tempera-
ture, α, β, and γ [J m−3 K−1 s−1] are pre-factors determined
by the temporal invariant grid cell spacing and variable ther-
mal conductivities, and b [J m−3 K−1 s−1] is an optional en-
ergy source term which can be used to apply an external forc-
ing. The index j marks the grid cell number increasing with

depth, and the index i indicates the iteration step. The iter-
ation step i = 0 indicates the state of the previous time step
(t − 1), which is updated to the current time step (t) after
reaching convergence.

At each time step, iteration continues until the temperature
profile matches the inverse enthalpy profile controlled by a
tolerance parameter which we set to 1×10−3 K. The release
and uptake of latent heat during phase change are accounted
for by the derivative of the enthalpy function, dHv

dT . We choose
the form of the enthalpy function to follow the freezing char-
acteristic of pure water (i.e., “free” water; for details, see
Appendix A). This has the benefit of providing a readily
available inverse function (Eq. A3), which is necessary for
the iterative scheme, at the cost of neglecting complex inter-
actions of the freezing characteristic with soil composition,
structure, and chemistry (Koopmans and Miller, 1966). For
each grid cell the ground thermal properties such as thermal
conductivities and heat capacities are calculated based on the
ground composition defined by the volumetric contents of
organics, minerals, pore water, and pore ice (see Sect. 2.2.2).
We note that the thermal properties of excess ground ice are
not considered here but are considered in a companion study
by Nitzbon et al. (2023) using the same model. The upper
boundary condition is defined by an external surface tem-
perature, while the lower boundary condition is defined by a
locally constant geothermal heat flux (Davies, 2013). In rare
cases in which convergence cannot be reached within a max-
imum of 500 iterations, the maximum temperature deviation
is printed out as a warning before the next time step is calcu-
lated. It is, however, important to note that such a temperature
deviation only indicates that the current temperature profile is
not consistent with the enthalpy profile. This deviation does
not affect energy conservation over the total profile but indi-
cates that the distribution of energy within the profile is not
exact.

The numerical performance and stability of the applied im-
plicit method are evaluated in comparison with commonly
used numerical integration methods: Crank–Nicolson and
TRBDF2 (second-order diagonally implicit Runge–Kutta
methods), Radau IIA5 (fifth-order fully implicit tableau
method), Heun (canonical explicit trapezoidal method), and
SSPRK43 (fourth-order stability-preserving explicit Runge–
Kutta method). The test simulations under periodic freeze–
thaw conditions result in a mean absolute error of about
0.014 K for time steps of 24 h. With this acceptable level
of accuracy, the CryoGridLite scheme is about an order
of magnitude faster than the other numerical integration
schemes. More details about the numerical accuracy and per-
formance are provided in Appendix C and by Swaminathan
and Voller (1992). We further note that the implicit time step-
ping scheme employed in this work bears some resemblance
to a recently proposed method (Tubini et al., 2021) which
applies the Newton–Casuli–Zanolli algorithm (Casulli and
Zanolli, 2010) to solve the nonlinear heat equation in en-
thalpy form. The primary advantage of the applied scheme
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is that it is found to be generally stable using daily time steps
while still being energy-conserving. It is furthermore capable
of representing the latent heat effect via a simplified freez-
ing characteristic without requiring the computationally de-
manding task of explicitly tracking the position of freezing
fronts. We note that the implicit solver used is strictly valid
only for phase change within a homogeneous material. How-
ever, we point out that any uncertainties due to natural het-
erogeneities at the surface and in the subsurface on the spa-
tial scales considered are likely to be larger than the errors
introduced by a generalized representation of the heat trans-
fer process. Conservation of energy is the primary concern
for long-term simulation between centuries and millennia.

2.1.1 Snowpack representation

The snowpack is an important factor controlling the ther-
mal state of permafrost and induces large uncertainties in
permafrost modeling in general (Langer et al., 2013; Gout-
tevin et al., 2018; Jan and Painter, 2020). The insulating ef-
fect of the snowpack must therefore be carefully represented,
although very coarse spatial model resolutions and reduced
forcing data limit the ability to simulate complex processes
determining the snow properties. CryoGridLite simulates the
insulative effect of the snowpack using a bulk approach based
on daily snowfall rates and snow properties that are defined
by five climate regions following Sturm et al. (2010). Snow
accumulates on top of the ground domain according to snow-
fall. For this purpose, empty ghost cells on top of the ground
domain are populated by snow with an initial snow density
according to snow depth. The snow depth is updated at the
beginning of each time step as

htsnow =

(
ht−1

snow−1h
t−1
melt+P

t
snow1t

ρwater

ρsnow,min

)
ρtsnow

ρtsnow,snow
ρtsnow,bulk, (4)

where hsnow [m] is the snow depth, 1hmelt [m] is the
change in snow depth due to melting, Psnow [m s−1] is the
snowfall rate, ρwater [kg m−3] is the density water (set to
1000 kg m−3), ρsnow,min is the initial snow density, ρsnow is
the average density of the actual snowpack, and ρsnow,bulk
is the bulk snow density predicted according to Sturm et al.
(1995) as

ρtsnow,bulk = (ρsnow,max− ρsnow,min)(1− e−k1 h
t
snow−k2 d

t

)

+ ρsnow,min, (5)

where ρsnow,max is the maximum snow density, k1 and k2 are
empirical snow densification factors, and d indicates the day
count of the snow season. All snow parameters are set ac-
cording to values introduced by Sturm et al. (2010) defined
by a global map of snow climate zones. The snow density
of each grid cell is scaled so that the average density of the

actual snowpack matches the predicted bulk snow density.
This procedure generates a layered snowpack over time with
the highest densities for old snow layers at the bottom of
the snowpack. Heat transfer and phase change in the snow-
pack are calculated simultaneously with the ground using the
implicit scheme described above. The ablation of the snow
cover is calculated with a positive degree-day approach very
similar to Tsai and Ruan (2018). The snow scheme further
accounts for meltwater infiltration and refreezing similar to
Westermann et al. (2011) using a diagnostic bucket scheme.
The bucket scheme assumes instantaneous meltwater routing
if a maximum water-holding capacity of snow is exceeded.
Water that exceeds a maximum value of water saturation
is routed away so that ponding of meltwater is precluded.
A maximum snow depth is defined by a threshold value
(hsnow,max) which can be used to emulate wind-induced snow
depth limitation as observed, for example, on ice-covered
lakes (Sturm and Liston, 2003) or other wind-exposed parts
of the landscape. The snow scheme is restricted to simulat-
ing seasonal snow by setting snow depth to zero in August
of each simulation year. The build-up of multi-annual snow-
packs is thus precluded. While the assumption of a predomi-
nately seasonal snow cover is true for about 95 % of the Arc-
tic permafrost region (e.g., Fontana et al., 2010; Trishchenko
and Wang, 2018), studies suggest that during the “Little Ice
Age” the Canadian high Arctic islands were more substan-
tially characterized by perennial snowfields (Andrews et al.,
1976) and glaciers (Williams, 1978). It is important to note
that this has implications for the interpretation of the model
results, as the snow scheme used may not fully capture con-
ditions in the very high latitudes and mountainous regions
that may have been affected by year-round snowpacks, ice
fields, or glaciers. Furthermore, the snow scheme used in
this study has limitations in reflecting the local and com-
plex thermal properties of snow. Specifically, the scheme
does not explicitly account for processes such as wind com-
paction and lateral redistribution of snow due to local topo-
graphic variability, nor does it explicitly represent local inter-
actions with vegetation. The empirical parameterization used
accounts only for regional variability in bulk snow density
and its compaction behavior.

2.2 Ground stratigraphies

2.2.1 Subsurface layers and vertical model grid

The ground stratigraphy is represented by six ground lay-
ers characterized by different volume fractions of soil con-
stituents (Fig. 1). Thereby two constant layer boundaries
(zSOC30, zSOC300) are defined according to the soil layers
specified in the Northern Circumpolar Soil Carbon Database
v2 (NCSDv2) (Hugelius et al., 2013). Three spatially vari-
able soil layer boundaries marking the root zone (zR), vadose
zone (zV), and saturated zone (zS) are defined by soil thick-
ness data from the Gridded Global Data Set of Soil Thickness
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Figure 1. Schematic illustration of the applied ground stratigraphy
determined by the volumetric ground constitutes, derived based on
various global datasets. Layer boundaries that control the vertical
distribution of groundwater, ground ice, and snow (marked in red)
are randomly varied to generate a parameter ensemble. This way a
wide range of plausible hydrological conditions is represented by
the performed simulations. See Table 1 for the meaning of the sym-
bols.

(Pelletier et al., 2016) and specifications of the water table
(see Sect. 2.3). Below zS, a bedrock layer extends down to
the end of the vertical model domain.

Regardless of the soil layers described above, the vertical
model domain used for numerical integration is discretized
into about 400 cells from the surface at z= 0 m to a maxi-
mum depth of 550 m. The spacing of the grid cells increases
with depth in an approximately logarithmic fashion, allow-
ing a very high vertical resolution of 0.01 m near the surface,
while the lowest grid cells are 100 m thick. To represent the
temporal accumulation of snow above the ground surface, the
vertical grid contains 200 additional ghost cells that allow the
snow layer to be simulated at a vertical resolution of 0.01 m.

2.2.2 Soil stratigraphy

The vertical distribution of the ground constituents is speci-
fied based on parameterizations used for the SURFEX land

surface and ocean scheme (Masson et al., 2013). The SUR-
FEX parameterization approximates a profile of the organic
soil fraction as

f io =
ρiSOC

(1−φio)ρom
(6)

and a profile of the mineral soil fraction as

f im = 1− f io , (7)

where the index i denotes the ground layers, ρSOC is the soil
organic carbon density, ρom is the pure organic matter density
set to 1300 kg m−3, and φo [kg m−3] is the volumetric poros-
ity of organic soil organic soil decreasing from 0.93 to 0.84
with depth following a power function (see the Supplement
in Masson et al., 2013). Despite the fact that the model does
not include a water balance scheme, we use hydrological soil
parameters (wilting point – θwp, field capacity – θfc) to spec-
ify the vertical water and ice distribution within the ground
(see Sect. 2.3). In this context, the power function used to
scale the organic soil porosity with depth is also applied to
scale the organic soil wilting point (θwp,o) between 0.07 and
0.22 and the organic soil field capacity (θfc,o) between 0.37
and 0.72. The required data on soil organic carbon density
are taken from the NCSDv2 (Hugelius et al., 2013).

The mineral soil porosity (φm), the wilting point (θwp,m),
and the field capacity (θfc,m) were approximated based on the
SURFEX parameterizations as (see Supplement to Masson
et al., 2013)

φm = 0.49− 0.11fsand, (8)

θwp,m = 0.37
√
fclay, (9)

θfc,m = 0.45 (fclay)
0.3496, (10)

with the fractions of sand and clay obtained from the Open-
ECOCLIMAP database (Masson et al., 2003; Faroux et al.,
2013). The combined soil porosities (φ), field capacities
(θfc), wilting points (θwp), volumetric mineral contents (θm),
and volumetric organic contents (θo) are then calculated as
weighted means of the organic and mineral soil fractions:

φi = f ioφ
i
o+ f

i
mφm, (11)

θ ifc = f
i
oθ
i
fc,o+ f

i
mθfc,m, (12)

θ iwp = f
i
oθ
i
wp,o+ f

i
mθwp,m, (13)

θ io = f
i
o (1−φ

i
o), (14)

θ im = f
i
m(1−φm). (15)

The water and ice contents (θw) of the different soil layers are
varied during parameter ensemble simulations (see Sect. 2.3)
within constraints provided by the hydrological parameters
above (see Table 1). The bedrock layer is represented by a
purely mineral soil layer with reduced water and ice content.
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2.2.3 Ground thermal properties

The thermal properties of the subsurface layers (thermal
conductivity and volumetric heat capacity) are parameter-
ized based on their composition following Westermann et al.
(2013). Both volumetric heat capacity and the thermal con-
ductivity are functions of the volumetric fractions of the
ground constituents. The volumetric heat capacity Cv is cal-
culated as a weighted arithmetic mean as

Cv =

N∑
n=1

θn cn, (16)

whereN is the total number of soil constitutes in the mixture,
θn is the volumetric content of the nth soil constituent, and
the volumetric heat capacity of each soil constituent cn is set
according to values provided in Table B1.

The thermal conductivity is approximated using a
quadratic parallel model (Cosenza et al., 2003) as

K =

(
N∑
n=1

θn
√
kn

)2

, (17)

and the thermal conductivity of each soil constituent is set
to values provided in Table B1 in Appendix B. Note that the
thermal conductivity model can be easily replaced by any
other model used to approximate multiphase thermal con-
ductivities of the ground.

2.3 Parameter ensemble simulations

Since CryoGridLite does not have a dedicated hydrology
scheme and because of the low confidence in the available
datasets and parameterizations on groundwater and ground
ice contents at high latitudes, we apply parameter ensemble
simulations to represent a wide range of hydrological condi-
tions. Here, the relevant factors controlling the vertical water
and ice distribution in the ground profile are randomly varied
within realistic ranges. In this way, an ensemble of nens = 50
randomly sampled independent parameter settings is simu-
lated for each model grid cell.

The default groundwater and ground ice content in the sub-
surface is parameterized such that it reflects average hydro-
logical conditions. For this we distinguish four hydrologi-
cally different zones in the subsurface: the root zone (R), the
vadose zone (V), the saturated zone (S), and the bedrock zone
(B) (see Fig. 1). By default (i.e., during model spin-up), the
water content is set halfway between the wilting point and
the field capacity of the respective soil layer(s) in the root
zone and halfway between field capacity and porosity in the
vadose zone. In the saturated zone, the ground layers are al-
ways completely saturated. In addition, we assume a satu-
rated bedrock zone which starts at a depth derived from the
Gridded Global Data Set of Soil Thickness (Pelletier et al.,
2016). Below this depth (zS), the water and ice content is

reduced in favor of an increased mineral content. The de-
fault parameters defining the groundwater and ice contents
are provided in Table 1.

To induce variation in the vertical groundwater and ground
ice distribution, the root zone depth (zR), vadose zone depth
(zV), and saturated zone depth (zS) are drawn from a uni-
form distribution between the minimum and maximum val-
ues given in Table 1. The depth range for the root zone is set
based on field experience from the authors; the depth of the
saturated zone, which corresponds to the overall soil thick-
ness above the bedrock, is varied between the mean and the
maximum soil thickness contained in the respective 1◦ by 1◦

grid cell from the dataset of Pelletier et al. (2016). The border
between the vadose and saturated zone was set to a random
value between zR and zS after these were drawn.

In addition to a variation of the ground ice contents
through the parameters described above, we also vary the
maximum snow height, a threshold value which limits the
height of the snowpack. While the variation of ground ice
contents corresponds mainly to a variation of the (potential)
latent heat content of the ground, the maximum snow height
exerts strong control on the amount of sensible heat stored
in the subsurface. This parameter variation in the model en-
semble accounts for heterogeneities in the micro-scale and
mesoscale topography, which result in highly variable snow-
pack heights in reality (e.g., Zweigel et al., 2021).

We emphasize that the parameter ensemble approach is
limited to representing the variations in the parameters con-
trolling the thermal dynamics of the ground near the surface.
Variations in the thermal properties of the deep soil (bedrock)
resulting from variations in geological conditions and miner-
alogical composition are neglected. For the bedrock layer, we
assume a thermal conductivity composed of an average min-
eral thermal conductivity (3.8 W m−1 K−1) and the thermal
conductivity of the water- and/or ice-saturated pore space,
where the pore space varies between soil porosity and 1 %.
We note that the thermal properties of the subsurface can
have a substantial effect on the ground temperature profile.
The analysis therefore focuses on the thermal state of the up-
per ground (≤ 10 m), where uncertainties in the composition
of the upper ground layer are assumed to have a dispropor-
tionately larger influence. When studying the thermal state in
deeper ground layers, the differences in mineralogy should
be taken into account.

2.4 Climate forcing

The model uses an external climate forcing of daily averages
of surface temperature and precipitation. This greatly sim-
plifies its application to very long time series spanning cen-
turies to millennia. We consider daily mean near-surface air
temperatures to be appropriate first-order estimates of sur-
face temperatures. The snowfall is estimated from total pre-
cipitation that falls when air temperatures are below 0 ◦C.
The applied climate forcing consists of a synthesized time se-
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Table 1. Overview of the parameters which were varied in the parameter ensemble simulations. The parameters were independently drawn
from a uniform distribution between the respective minimum and maximum values. Here, Zmean and Zmax refer to the mean and max soil
thickness, respectively.

Parameter Symbol Spin-up value Ens. min. value Ens. max. value

Maximum snow height hsnow,max 2 m 0.1 m 2 m
Root zone depth zR 0.04 m 0 m 0.2 m

Root zone water content θR
θwp+θfc

2 θwp θfc
Vadose zone depth zV Zmean za

R za
S

Vadose zone water content θV
θfc+φ

2 θfc φ

Saturated zone depth (below is bedrock) zS –b Zmean Zmax
Bedrock zone water contentc θB φ 0 φ

a Needs to be sampled before zV. b Extends down to the end of the model domain, i.e., no bedrock with reduced ice content. c Note that the
remaining pore space is filled with mineral sediment; i.e., effectively the pore space in the bedrock zone is reduced and saturated with ice.

ries of daily mean surface air temperatures and total precip-
itation combining paleoclimate simulations (500–1979 CE)
and reanalysis data (1979–2019). We use paleoclimate sim-
ulations from the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) based on the Climate Sys-
tem Model Mk3Lv.1.2 from which we selected the ensem-
ble including orbital, greenhouse gas, solar, and volcanic
(OGSV) forcing due to its improved capability to repro-
duce climate reconstructions for the Northern Hemisphere
and the inclusion of climate events such as volcanic erup-
tions (Phipps et al., 2013). From the OGSV ensemble we
arbitrarily select an ensemble member (which differ only in
initial conditions) to generate the forcing for our simulations.
For the reanalysis period we applied ERA-Interim data (Dee
et al., 2011). The paleo-simulations were harmonized with
the ERA-Interim baseline data by applying decadal mean
monthly anomalies of temperature and precipitation to the
first decade (1980–1990) of the reanalysis data. The forc-
ing at the lower boundary of the ground domain in 550 m
depth is determined by a local geothermal heat flux accord-
ing to the Global Map of Solid Earth Surface Heat Flow
(Davies, 2013). The spatial resolution of the synthesized cli-
mate forcing data was set to 1 ◦C, demanding spatial har-
monization of the different forcing data. We applied spatial
averaging for the ERA-Interim data (with nominal resolution
of ≈ 80 km) and nearest-neighbor interpolation for CSIRO-
Mk3Lv.1.2 (with nominal resolution of 5.68◦ for longitude
and 3.28◦ for latitude) as well as for the geothermal heat flux
map (with a nominal resolution of 2◦). An overview of the in-
put data used for model forcing and model parameterization
is provided in Table 2.

2.5 Diagnostics

For the model evaluation and analysis of the evolution of
permafrost over the last 3 centuries, we apply different key
diagnostics representing the thermal state of permafrost and
the active layer. For the ground temperatures, we focus on
the mean annual ground temperature in a depth of 10 m

(MAGT10 m), but we take additional depths into account for
the sites at which we compare our model results with bore-
hole measurements. To assess the state and changes in the ac-
tive layer, we diagnose the maximum annual thawed ground
depth [m] within the upper 10 m of the subsurface (TD10 m),
which corresponds to the active layer thickness (ALT) under
stable permafrost conditions.

To assess the circumpolar extent of near-surface per-
mafrost, we establish two criteria to distinguish the pres-
ence or absence of permafrost for a given year and ensem-
ble member. Near-surface permafrost is defined to be absent
if the thawed ground depth exceeds 3 m. Note that this cri-
terion does not exclude the presence of permafrost, particu-
larly in depths exceeding 3 m. The corresponding probability
of near-surface permafrost occurrence is defined as the frac-
tion of ensemble members where the criterion for absence is
not fulfilled.

p3 m =
1
nens

nens∑
i=1

{
0 if TDi10 m > 3m

1 else
(18)

Similarly, we diagnose the occurrence probability of per-
mafrost within the upper 10 m of the subsurface as the frac-
tion of ensemble members where some ground within the
upper 10 m is frozen throughout the entire year.

p10 m =
1
nens

nens∑
i=1

{
0 if TDi10 m = 10m

1 else
(19)

We note that the presence of permafrost according to our di-
agnostics based on the thawed ground depth also implies the
fulfillment of the definition of permafrost-based maximum
annual ground temperature. However, we only consider in-
dividual simulation years instead of 2 consecutive years (as
required by the formal definition) and do not diagnose per-
mafrost presence beyond 10 m depth. Combined, the applied
diagnostics provide a nuanced insight into the dynamic evo-
lution of permafrost conditions over a deeper volume in re-
sponse to short- and long-term climatic changes. While the
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Table 2. Overview of datasets used to force and parameterize CryoGridLite.

Input parameter Dataset Source/reference Comments

Meteorological forcing ERA-Interim Dee et al. (2011) baseline forcing 1979–2019, downsam-
pled to 1◦× 1◦ by spatial averaging

Paleoclimate anomalies CSIRO – Mk3Lv.1.2 Phipps et al. (2013) 500–1979 CE, upsampled to 1◦×1◦ by
nearest-neighbor interpolation

Geothermal heat flux Global Map of Solid Earth Sur-
face Heat Flow

Davies (2013) lower boundary conditions

Volumetric ground composi-
tion, porosity, field capacity

SURFEX Masson et al. (2013,
Supplement)

parameterizations

Soil texture (sand and clay) Open-ECOCLIMAP Masson et al. (2003);
Faroux et al. (2013)

used to derive soil stratigraphies

Soil organic carbon content Northern Circumpolar Soil Car-
bon Database version 2

Hugelius et al. (2013) smallest geospatial coverage

Soil thickness Gridded Global Data Set of
Soil, Regolith and Sediment
Thickness

Pelletier et al. (2016) used to constrain depth to bedrock

Snow properties Global map of snow climate
zones

Sturm et al. (2010) used to determine minimum and max-
imum snow densities, as well as snow
aging parameters

first criterion is often used in global-scale modeling to exam-
ine the impacts of climate warming on the permafrost carbon
pool (e.g., Lawrence et al., 2008), the second criterion al-
lows for the consideration of perennially frozen ground lay-
ers down to a depth of 10 m.

3 Results and discussion

3.1 Model evaluation

3.1.1 Ground temperatures

The ability of the model to reproduce the ground thermal
regime and temperature trends in the Arctic permafrost re-
gion is evaluated using borehole temperature measurements
from the Global Terrestrial Network for Permafrost (GTN-P)
(Biskaborn et al., 2019). The dataset comprises nGTNP = 82
boreholes within our model domain which are located within
n= 47 different grid cells and for which it provides observa-
tions of mean annual ground temperatures (MAGTs) for the
period from 2007 to 2016. For the model–observation com-
parison, the model output is compared at the depth closest to
the measurement depth.

The comparison between observed and modeled average
ground temperatures shows that at most sites (61.7 %) ob-
served MAGT can be reproduced with deviations of up to
±2 K (Fig. 2a), in particular when the model range result-
ing from the parameter ensemble is considered. However,
we note that this relatively good agreement between ob-

servations and model is partly due to a number of bore-
holes showing temperatures at or near 0 ◦C (Fig. 2b). Be-
cause of the phase change of the ground ice and its stabi-
lizing effect on the thermal conditions in the soil, temper-
atures around the freezing point are relatively easy to repro-
duce with the model. Overall, comparison between simulated
and observed MAGT gives a root mean square error (RMSE)
of 2.26 K and a slight warm bias of +0.31 K (Fig. 2b). The
agreement with the borehole temperatures is comparable to
or better than reported in previous modeling studies with a
similar simulation domain (e.g., Ekici et al., 2014; Willeit
and Ganopolski, 2015; Obu et al., 2019). Despite general
agreement between observed and modeled ground tempera-
tures, we emphasize that at single locations the model pre-
dicts positive MAGT, while the observations suggest per-
mafrost to be present (Fig. 2b). The analysis further re-
veals some clear regional differences (Fig. 2a). In lowland
permafrost regions (elevation ≤ 500 m, n= 59), the simu-
lated ground temperatures differ less from borehole measure-
ments (RMSE= 1.74 K, and bias=+0.17 K) than in moun-
tainous terrain (elevation> 500 m, n= 23) where the devi-
ations are larger (RMSE= 3.10 K) and show a clear warm
bias (bias=+1.65 K). This temperature bias is likely due
to the coarse spatial resolution (1◦) of the climate forcing
data used. Variations in orography are averaged through the
coarse grid resolution so that topographic climate effects are
not accounted for. Since boreholes in mountainous regions
are often located in higher terrain where permafrost occurs
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Figure 2. Map (a) showing modeled mean annual ground temperatures at 10 m depth (MAGT10 m) averaged over the decade from 2007 to
2016. Circles indicate temperature deviations between the observed ground temperatures of the Global Terrestrial Network for Permafrost
(GTN-P) boreholes and the modeled temperatures at the depth of the subsurface grid closest to the depth of the respective observations.
Scatter plot (b) illustrating the agreement between observed and modeled MAGT (2007–2016 averages) with observations lying in the same
model grid cell being grouped together. On the y axis the dots show the mean of the parameter ensemble, while the whiskers show the range
between the 5th and 95th percentiles. Scatter plot (c) illustrating the agreement between observed and modeled (ensemble-mean) trends in
MAGT, each derived from a linear least-squares regression over the 2007–2016 period. Observed trends are only included if there are 5 or
more years of observations available. Horizontal error bars indicate the range of all observed trends belonging to the same model grid cell.
Vertical error bars correspond to the 5th and 95th percentiles of the trends estimated by the parameter ensemble.

(e.g., in Norway), a warm bias is to be expected in a direct
comparison.

At most borehole sites, the observed temperature trends
can also be reproduced in sign and magnitude by the simula-
tions (Fig. 2c). Here, the confidence intervals of the observed
trends and the range of the simulated trends must be taken
into account. Both ranges indicate relatively large uncertain-
ties in temperature trends, in particular at sites showing rela-
tively strong trends (absolute trend values > 0.1 K yr−1). On
average the simulated trends show an RMSE of 0.07 K yr−1.
Nevertheless, the comparison between observed and mea-
sured temperature trends suggests that the model tends to un-
derestimate observed warming.

A more detailed model evaluation is conducted for se-
lected sites across the Arctic where long-term borehole mea-
surements spanning periods of more than 10 years were
available (see Appendix D). Overall, the simulated long-term
ground temperature evolution is in agreement with observa-
tions, and remaining deviations can be explained by either
inadequate forcing data or shortcomings in the model to re-
flect local environmental conditions.

3.1.2 Active layer thickness

We evaluate the capability of the model to reproduce the ac-
tive layer thickness (ALT), i.e., the depth of the permafrost
table, using field observations of the Circumpolar Active

Layer Monitoring (CALM) program (Shiklomanov et al.,
2012). The dataset comprises a total of nCALM = 166 sites
within the simulation domain which are located in n= 94
different model grid cells. Note that we compared the ob-
served ALTs to the maximum annual thawed ground depth
(TD10 m) diagnosed from the simulations, which we subse-
quently denote as “modeled ALT” for simplicity.

Relatively small deviations (< 0.1 m) between observed
and modeled ALTs are found in the northern permafrost re-
gions with small ALTs (< 1 m) (Fig. 3a). In contrast, large
deviations between modeled and observed ALTs (exceeding
2 m) are found for southern permafrost regions except for
a few locations in the South Siberian Mountains. On aver-
age, the model is found to overestimate the ALTs in com-
parison to the CALM observations, resulting in a high root
median squared error (RmedSE= 0.74 m). However, consid-
ering the full range of the modeled parameter ensemble (Fig.
3b) reveals a high sensitivity of modeled ALTs to the sim-
ulated parameter range. In particular, locations with mod-
eled average ALTs beyond 2 m reveal very broad ensemble
ranges spanning several meters. At a few CALM sites, the
model underestimates ALT; however, measurements within
the same model grid cell at these sites show very high vari-
ability. Given the wide range of simulated ALTs among the
members of the parameter ensemble and the fact that CALM
sites are specific point observations rather than representative
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Figure 3. Map (a) showing the simulated maximum annual thaw depth (active layer thickness, ALT) averaged over the decade from 2007
to 2016. Circles indicate deviations between the ALT measurements of the Circumpolar Active Layer Monitoring (CALM) program and the
modeled ALTs. Scatter plot (b) comparing CALM measurements and modeled ALTs (2007–2016 averages). On the y axis the dots indicate
the mean of the model ensemble, with error bars indicating the range between the 5th and 95th percentiles. On the x axis the dots indicate
the mean observed ALT thickness averaging all sites located within the corresponding model grid cell, and the error bars show the range
of observations if there is more than one observation in the corresponding grid cell. Dashed lines indicate relative deviations of ±20 %,
and the gray square indicates ALTs < 2 m for which a comparison between measurements and simulations is most meaningful. Scatter plot
(c) showing modeled and measured trends in ALT over the 2007–2016 period for all sites with observations available for 5 or more years.
Vertical error bars correspond to the 5th and 95th percentiles of the simulated ALT trends, and horizontal error bars indicate the range of
observed trends for grid cells with more than one corresponding measurement site.

regional averages, it is found that the model at least partially
reproduces observed ALTs realistically.

The comparison between modeled and observed ALT
trends shows a large scatter (RSME= 0.04 m yr−1 with max-
imum values of about 0.10 m yr−1) (Fig. 3c). However, the
magnitude and sign of ALT trends are captured by the model,
especially when uncertainties in the parameters are consid-
ered. The wide ranges of the ensemble simulations reveal a
high sensitivity of the ALT trends to the groundwater and
ground ice contents. On average, the model has a tendency
to overestimate ALT changes for both ALT growth and ALT
shrinkage using the current parameter ranges.

Several factors have to be considered for explaining the de-
viations between measured and modeled ALTs. First, at sites
with deep active layers, ALT measurements with poke probes
are often biased towards values that are too low, as gravel
or other compact soil material can be misinterpreted as per-
mafrost. Second, in southern areas, CALM sites are prefer-
entially located at known permafrost sites such as peatlands,
which are not representative of the large-scale picture. Third,
our model does not fully take into account the protective ef-
fect of tall and dense vegetation cover, which would lead to
shallower ALTs, especially in the boreal biome (e.g., Fisher
et al., 2016; Stuenzi et al., 2022). Fourth, our model does
not simulate thaw subsidence and soil compaction processes,
which would reduce ALTs, especially in ice-rich regions

(e.g., Günther et al., 2015; Nyland et al., 2021). Therefore,
perfect agreement between modeled and observed ALTs on a
circum-Arctic scale is not expected. Nevertheless, the simu-
lation demonstrates the high sensitivity of the simulated ALT
to local groundwater and ground ice contents, which are sub-
ject to large uncertainties and strong spatial variability. While
the parameter ensemble simulations can provide insights into
the associated model uncertainties, the actual spatial variabil-
ity of groundwater and ice content remains an unresolved
challenge.

3.2 Spatial and temporal evolution of permafrost
temperatures

We evaluate the changes in the thermal state of permafrost
based on mean annual ground temperatures in 10 m depth
(MAGT10 m) over 3 centuries from 1750 until 2000. We use
the late 19th century (L19C) period (1850–1900) as the ref-
erence, based on which temperature anomalies are calculated
for a previous period (1750–1800) representing the later 18th
century (L18C) and a subsequent period (1950–2000) rep-
resenting the more recent late 20th century (L20C) climate.
The calculated MAGT10 m values refer to temporal averages
of the ensemble mean.

The MAGT10 m anomalies show that the entire Arctic per-
mafrost region is about 0.51 K colder during the later 18th
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Figure 4. Map (a) showing the simulated anomaly of the mean annual ground temperatures in 10 m depth (MAGT10 m) during the later 18th
century (L18C, 1750–1800) relative to the L19C period (1850–1900) shown in (b). Map (c) showing the MAGT10 m anomaly of the L20C
climate period (1950–2000) relative to MAGT10 m during the L19C period.

century (L18C) compared to the L19C period (Fig. 4a). The
permafrost on the North American continent (defined as 190–
310◦ E) is on average 0.57 K colder during the L18C with
the strongest MAGT10 m anomalies found in north-central
Alaska, which is found to be more than 1 K colder during
the L18C than during the L19C period. Temperature recon-
structions based on tree-ring analyses show a distinct warm
period for central Alaska between 1850 and 1900 (Barber
et al., 2004), while lake sediment analyses suggest a distinct
cold and dry period within the L18C period for the Alaskan
Brooks Range (Bird et al., 2009). Cold air temperatures and
low snow depths due to low precipitation explain the cold
permafrost temperatures between 1750 and 1800 in north-
central Alaska in our simulations. On the Eurasian conti-
nent, the differences in the MAGT10 m between the L18C
and L19C periods are found to be slightly smaller. The per-
mafrost in eastern Siberia (defined as 120–190◦ E) is found
to be 0.55 K colder, and in western Siberia (60–120◦ E) the
simulated difference between the L18C and L19C periods
is on average only −0.42 K. It is also worth noting that the
L18C period coincides with the later part of the Little Ice
Age, a generally colder period starting in the 13th century
that affected large areas of the Northern Hemisphere (Miller
et al., 2012). Thus, the significantly lower permafrost tem-
peratures found here are also partly a legacy of this period of
persistently cold climatic conditions which predate the L18C
period under study (Halsey et al., 1995).

Between the L19C and L20C climate periods, the simu-
lations reveal a general warming of the Arctic permafrost
(+0.72 K, Fig. 4c). Three relative “hotspot” regions with
MAGT10 m anomalies above 1 K can be identified in north-
eastern Canada (Québec: 280–310◦ E), northern Alaska
(North Slope), and western Siberia. The region in Québec
shows the strongest MAGT10 m anomaly, indicating an aver-
age warming of 1.40 K between the L19C and L20C peri-
ods. At some grid cells the warming exceeds 3 K. This pro-
nounced regional permafrost warming in our simulations is
attributed to a warming of air temperature between 1970 and
1990 and to a shift in the seasonal snowfall distribution with

earlier and heavier snowfall in autumn (October–November).
For the Québec region observations and model results agree
well for the L20C period (Fig. D1a, b). However, we note
that the forcing data before 1980 are significantly colder than
those after 1980. This temperature shift is attributed to the
applied paleo-temperature anomaly. In particular, the cool-
ing trend reconstructed by Chouinard et al. (2007) for the
decades between 1950 and 1980 is not clearly visible in our
forcing data. Also, regional differences such as the earlier
ending of this cooling event in the eastern Canadian Arctic
(e.g., Taylor et al., 2006) are not reproduced by our forc-
ing data. Nevertheless, the modeled temperature anomalies
(Fig. 4) indicate that the L20C period is much warmer than
the L19C period. This finding is consistent with the obser-
vations and supported by the regional climate reconstruction
in Chouinard et al. (2007), revealing a longer-term warming
trend in northern Québec starting in the 18th century. On the
North Slope the MAGT10 m has also increased by more than
2 K, while the hotspot of warming in western Siberia is much
less pronounced but still more than 1 K over a larger region.

Our simulations reveal pronounced regional differences in
the development of the ground thermal regime during the
last 300 years. Atmospheric and oceanic circulation patterns
controlling the seasonal distribution of air temperature and
precipitation may be responsible for the regional differences
found in the simulations. The seasonal interaction of temper-
ature and snowfall and its strong impact on the thermal state
of permafrost are well known (Smith et al., 2022), and varia-
tion in snow cover can counteract the changes in air tempera-
ture (Taylor et al., 2006). Our long-term simulations over the
last 3 centuries reveal increased spatial heterogeneity in the
change in ground temperatures at regional scales (compare
Fig. 2a, c). Simulations suggest that during the late 20th cen-
tury (1950–2000), permafrost warming is observed in three
hotspot regions. However, depending on long-term changes
in Arctic climate, regional shifts or the emergence of other
hotspots may occur. The regional hotspot of Arctic warming
is currently located over the Barents Sea driven by sea ice
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Figure 5. Map (a) showing the relative change in mean active layer thickness (ALT) between the later 18th century (1750–1800) and the
L19C period (1850–1900). Map (b) showing the mean ALT during L19C period. Map (c) showing the relative change in mean ALT between
the L20C (1950–2000) and the L19C period.

loss and changes to atmospheric circulation (Rantanen et al.,
2022).

3.3 Spatial and temporal evolution of the active layer
thickness

Similar to changes in the ground temperatures, we evaluate
relative changes in mean active layer thickness (ALT) based
on the same centennial periods used to evaluate MAGT10 m
anomalies. The simulations reveal low to moderate changes
in ALT between the L18C and L19C periods (Fig. 5a). ALT
changes on the order of 50 % are nevertheless simulated for
a narrow band on the North American continent (Fig. 5b).
The simulated ALTs during the L19C (Fig. 5b) show that
the transition from ALTs less than 2 m to ALTs greater than
10 m is very sharp. In warmer permafrost, especially in re-
gions with higher ground ice content, the temperature profile
is isothermal and the permafrost is close to the freezing point
down to depths of 10 m or more (e.g., Romanovsky et al.,
2010; Smith et al., 2010). A small increase in MAGT under
such conditions is sufficient to thaw deep soil layers, which
explains the sharp increase in ALT. This narrow transition
zone at the southern fringe of the permafrost region marks the
zone of active permafrost degradation and thus indicates the
southern boundary of stable near-surface permafrost. For the
Eurasian continent, minor changes (< 15 %) in mean ALT
are simulated between the L18C and L19C periods. Substan-
tial ALT changes are, however, simulated between the L20C
and L19C periods (Fig. 5c). The simulation show a substan-
tial increase in ALT of more than 100 % in the narrow bound-
ary zone of near-surface permafrost on the North American
continent. In particular, northeastern Canada (Québec) and
southwestern Alaska are affected. A lower but still substan-
tial increase in ALT (25 % to 80 %) is simulated at the bound-
ary of the near-surface permafrost on the Eurasian conti-
nent. The simulations thus show a much greater loss of near-
surface permafrost on the North American continent than on
the Eurasian continent over the past 250 years.

3.4 Temporal evolution of the permafrost extent

The parameter ensemble allows us to diagnose an occurrence
probability of permafrost (Eqs. 18 and 19) which can be used
to assess the evolution of near-surface permafrost extent if in-
terpreted as an areal fraction underlain by permafrost. Simi-
lar to Obu et al. (2019) we further distinguish four groups of
permafrost occurrence probability (p > 0.9, 0.9≥ p > 0.5,
0.5≥ p > 0.1, p ≤ 0.1). These are oriented at the permafrost
zones (continuous, discontinuous, sporadic, and isolated),
but we emphasize that our diagnostics do not exactly corre-
spond to these typical zones of spatial permafrost occurrence
probability.

Figure 6a shows the temporal evolution of the pan-Arctic
area underlain by permafrost (dashed line) and of the area
of the region where permafrost occurs (solid line) based on
the probability p3 m (Eq. 18; i.e., the probability of maxi-
mum annual thaw depths less than 3 m). The area under-
lain by permafrost (dashed line in Fig. 6a) is slightly de-
creased from its initial level of about 12× 106 km2 during
the 19th century, with a marked acceleration during the last 5
decades. It agrees well with the respective estimate by Brown
et al. (1997) around the late 20th century. The area of the
region where permafrost occurs (solid line in Fig. 6a) is al-
most constant at about 16×106 km2 from 1700 until it starts
declining around the middle of the 20th century. It is, how-
ever, substantially smaller than the respective estimates by
Brown et al. (1997) and Obu et al. (2019), which can be ex-
plained by the fact that the applied diagnostic does not cap-
ture permafrost conditions deep in the ground. In addition,
the model likely underestimates the areas where permafrost
is ecosystem-protected (see Appendix D, College Peat site;
Fig. D1g).

The permafrost areal extents according to the p10 m di-
agnostic (i.e., the probability of finding perennially frozen
ground within the upper 10 m) provide a slightly different
picture (Fig. 6b). These are generally higher than those ac-
cording to the p3 m diagnostic, since the occurrence of any
perennially frozen layers within the upper 10 m is accounted
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Figure 6. Areas of near-surface permafrost occurrence according to two different diagnostics focusing on (a) 3 m and (b) 10 m ground depth.
The occurrence probabilities are derived from the parameter ensemble simulations and their grouping is aligned to the zonation of permafrost
according to permafrost probability by Obu et al. (2019). Black lines indicate the simulated pan-Arctic area underlain by permafrost (dashed
lines) and the area of the region where permafrost occurs (continuous lines). Horizontal lines mark the corresponding estimates as delineated
by Brown et al. (1997) and Obu et al. (2019) for the late 20th and early 21st century, respectively. Dashed red vertical lines in (b) mark strong
volcanic eruption events (volcanic eruption index – VEI, ≤ 6) which are represented in the applied climate forcing data.

for. Both the area underlain by permafrost (dashed line in
Fig. 6b) and the area of the region where permafrost occurs
(solid line in Fig. 6b) remain relatively stable throughout
the 18th century before they start to decline during the 19th
and 20th century. An acceleration of the decline towards the
end of the analysis period as observed for the p3 m diagnos-
tic is not clearly visible. However, the p10 m diagnostic is
more sensitive to short-term climate fluctuations, therefore
complementing the p3 m diagnostic which responds faster to
long-term climatic changes. The area of the region where
permafrost occurs (solid line) for the late 20th century com-
pares well with the estimate by Brown et al. (1997), while
the area underlain by permafrost (dashed line) is about 3–
4 million km2 larger than the estimate by Brown et al. (1997).
Combined with the insights from Fig. 6a, this suggests that
the model ensemble likely underestimates the full extent of
the transitional area where permafrost is not continuous.

3.4.1 Response of permafrost extent to climatic
variability and change

We note that the beginning of the 19th century as well as the
decades around the year 1900 experienced several large vol-
canic eruptions with impacts on the global climate (volcanic
eruptions with VEI≥ 6 during the analysis period: unknown,
1808/1809, see Guevara-Murua et al., 2014; Timmreck et al.,
2021; Tambora, 1815; Krakatoa, 1883; Santa-Maria, 1902;
Novarupta, 1912; Pinatubo, 1991). These climate events are
included in the applied forcing data (Phipps et al., 2013) and
their impact on permafrost extent can therefore be assessed.
Our simulations suggest that the two tropical eruptions at the
beginning of the 19th century (unknown and Tambora), as
well as the Novarupta eruption in the Northern Hemisphere
(Alaska), are associated with positive effects on the Arctic
permafrost extent according to the p10 m diagnostic (Fig. 6b).

In particular, the zone of high permafrost occurrence proba-
bility is simulated to expand by several hundred thousand
square kilometers after these events. However, these expan-
sions only lasted for 2 to 3 decades before the zones began
to decline again. Interestingly, these short-term increases in
permafrost extent are not clearly visible if diagnosed using
the p3 m diagnostic (Fig. 6). This is explained by different
sensitivities of the diagnostics to short-term variability and
long-term changes in the climate, respectively.

The p3 m diagnostic responds faster to the long-term
warming during the 20th century since it is sufficient to thaw
3 m of permafrost within the upper 10 m of the ground for a
location to be considered free of (near-surface) permafrost.
Typically, thaw will also quickly affect deeper layers such
that the thawed ground depth will be > 3 m. A subsequent
short-term cooling (e.g., due to a volcanic eruption) could
lead to permafrost formation near the surface, but overall
> 3 m would remain thawed within the upper 10 m follow-
ing the cooling event. Thus, the effect of volcanic eruptions
is not visible in Fig. 6a, while the permafrost extent responds
to the warming during the 20th century.

The p10 m diagnostic only considers a location to be
permafrost-free when the upper 10 m is completely thawed
once within a year. Therefore, it does not respond so quickly
to the long-term warming of the 20th century, as it takes time
for permafrost sites to thaw completely down to a depth of
10 m. However, short-term cooling can lead to permafrost
formation below the active layer, which would be directly
diagnosed as permafrost according to this criterion.

Overall, the combination of the two diagnostics allows for
nuanced insights into the response of permafrost conditions
to short-term cooling and long-term warming of the climate.
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3.5 Limitations and uncertainties

To keep CryoGridLite efficient enough to run a parameter en-
semble simulation (n= 50 per grid cell) for the Arctic per-
mafrost region at a spatial resolution of 1◦ and over a total
time period of 1400 years, several simplifications and process
exclusions are made. The model limitations and the resulting
uncertainties in our simulations are summarized below.

– In this version of the model, ground freezing is approx-
imated by an enthalpy–temperature relation of free wa-
ter (see Appendix A). The implicit scheme used for
CryoGridLite can theoretically be applied to arbitrary
freezing characteristics, but convergence is not guaran-
teed and may require under-relaxation (Swaminathan
and Voller, 1992). For the simulations and analyses per-
formed, this means that an increase in thaw depth re-
quires absorption of the total latent heat content as de-
termined by the ice content. However, in fine-grained
soils, the phase change may occur partially below the
freezing point temperature so that in reality less latent
heat is required to achieve an equal thaw depth. Conse-
quently, there is a possibility of underestimation when
evaluating simulated active layer thickness (ALT) for
soils with high clay or silt content. Furthermore, any
freezing point depressions (e.g., occurring in coastal re-
gions due to salt) are not taken into account.

– The current model does not account for groundwater
changes, so the total water–ice content for each ensem-
ble member is assumed to be constant throughout the
simulation period. Therefore, the model does not repre-
sent soil water fluxes. Thus, the effects of a climatically
changing water balance on the permafrost temperatures
are not captured by the simulations. However, uncer-
tainties in soil water and ice contents are represented
by the parameter ensemble simulations. The limitations
imposed by a static hydrology are accepted to avoid the
high computational cost of a full surface energy balance,
which would require a model forcing that resolves the
diurnal cycle and additional uncertain surface parame-
ters.

– The probabilistic representation of soil and snow prop-
erties provides differentiated insight into the probabil-
ity of permafrost occurrence. However, the ensemble of
parameters used does not necessarily represent the ac-
tual local variability of surface and subsurface condi-
tions. Due to lacking data on the probability distribu-
tions of the varied parameters, uniform distributions are
used. Thus, permafrost occurrence is assessed by plausi-
ble parameter ranges, but the parameter ensemble does
not necessarily correspond to the spatial permafrost oc-
currence probability. Furthermore, our simulations fo-
cus on the variability of groundwater and ice distribu-
tions, as well as highly variable snow cover properties.

While our parameter ensemble approach was success-
ful in reproducing MAGT variations due to variability
in stratigraphy and snow height, it has limitations in ac-
counting for mesoscale topographic effects. These ef-
fects are found to result in substantial temperature devi-
ations between observations and simulations in moun-
tainous and hilly terrain. Disregarding the variability of
sub-grid topography thus potentially results in underes-
timating permafrost occurrence in mountain areas (Fid-
des et al., 2019).

– The lack of representation of vegetation limits the
model’s ability to accurately simulate current per-
mafrost conditions and to predict their long-term
changes. Vegetation, like snow, plays an important role
in regulating the surface temperature of the ground
through its composition and structure. Vegetation acts
as an insulating layer and affects the amount of solar
radiation reaching the ground as well as the heat and
moisture exchange with the atmosphere (e.g., Beringer
et al., 2001; Stuenzi et al., 2022; Heijmans et al., 2022),
and it modifies the snow cover. Neglecting the influ-
ence of vegetation leads to an underestimation of the ex-
tent of permafrost regions and their expansion to lower
latitudes, where our current model tends to overesti-
mate ALT values. Although vegetation is not explic-
itly represented, it is important to note that our model
accounts for a range of isolating surface conditions.
In this way, the parameter ensemble simulations per-
formed partially emulate thermal buffer effects, such as
those caused by organic surface layers, and provide an
estimate of the potential probability of permafrost oc-
currence. However, we clarify the fact that ensemble
simulations cannot capture the complex effects of dy-
namically evolving and responding vegetation cover, in
particular in warm permafrost regions where permafrost
occurrence is very sensitive to organic surface layer
properties (James et al., 2013; Holloway and Lewkow-
icz, 2020). This could be problematic in accurately rep-
resenting permafrost evolution in peatlands, particularly
in the lowest-latitude regions where permafrost is re-
ported to be an ecosystem-protected legacy of the Little
Ice Age and earlier cold periods (Treat and Jones, 2018).

– The current scheme does not account for landscape
change related to soil mechanical processes, such as
ground subsidence due to pore ice and excess ice melt.
Such thermokarst processes can greatly accelerate per-
mafrost thaw regionally (Nitzbon et al., 2020). In addi-
tion, the warming effect of surface water such as ponds,
lakes, and rivers (e.g., Langer et al., 2016; Juhls et al.,
2021; Ohara et al., 2022) on the thermal state of the un-
derlying and surrounding permafrost is also not consid-
ered, nor are their dynamic changes with time. Account-
ing for such non-gradual thaw processes would likely
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decrease the occurrence of near-surface permafrost, par-
ticularly in higher latitudes.

– Processes that stabilize or form permafrost due to, e.g.,
changes in surface water distribution (lakes and rivers),
retreat of surface ice (glaciers and ice sheets), or post-
glacial uplift in coastal regions are not taken into ac-
count.

Despite these limitations, we find that CryoGridLite pro-
vides a solid and efficient basis for realistically reproducing
permafrost thermal dynamics at the pan-Arctic scale. Never-
theless, the identified shortcomings give rise to future model
improvements. Operational parameterizations for local and
regional permafrost models already exist for most of the pro-
cesses not considered in the current model version (Nitzbon
et al., 2019; Stuenzi et al., 2022; Westermann et al., 2023).
Simplified and numerically optimized parameterizations can
be derived from these and implemented in CryoGridLite. In
particular, the ability of CryoGridLite to compute many in-
stances of a grid cell allows the implementation of multi-tile
approaches to represent sub-grid processes and their lateral
interactions (Martin et al., 2021; Nitzbon et al., 2021).

4 Conclusions

In this study, an efficient numerical permafrost model is
presented that bridges the gap between reduced-order per-
mafrost schemes used in intermediate-complexity climate
models and very detailed permafrost process models. The
CryoGridLite model is tailored to enable parameter ensemble
simulations of ground thermal dynamics covering the entire
Arctic permafrost region and timescales beyond centuries.
Despite limited process inclusion, the model is capable of
estimating the thermal state of permafrost (RMSE= 2.26 K)
and its current warming rate. Taking into account possible
biases caused by neglecting sub-grid variations in topogra-
phy due to coarse spatial resolution of the climate data used,
even higher accuracies are obtained (RMSE= 1.74 K). The
model is also able to provide a realistic estimate of active
layer thickness (ALT), especially in the zone of continuous
permafrost. Large uncertainties in ALT simulations are found
in the zones of discontinuous to isolated permafrost and can
likely be attributed to uncertain groundwater and ground ice
contents as well as a lacking representation of vegetation
cover.

The simulations performed show spatially heterogeneous
warming of the permafrost during the last 250 years. Three
hotspot regions characterized by particularly strong warm-
ing (> 1 K) since industrialization (1900) were identified.
Changes in ALT are simulated to occur mainly along the
boundary between continuous and discontinuous permafrost.
In particular, permafrost on the North American continent
has been affected by a substantial increase in ALT (> 100 %)
since industrialization, whereas much smaller changes in

ALT are simulated for the Eurasian Arctic permafrost. Gen-
erally, the North American continent is characterized by in-
tense permafrost thaw, while Eurasian permafrost appears to
have been less affected over the past 250 years.

The near-surface permafrost extent (i.e., permafrost within
the upper 10 m below the surface) in the Arctic has changed
significantly over the past 250 years. All Arctic permafrost
zones combined have lost about 12 % of their area since
1850, with the most affected zone of continuous permafrost
showing an area loss of about 20 %. A greatly accelerated
decline in permafrost extent has occurred since the 1950s,
with a loss of area of about −1.36× 105 km2 decade−1. It
was found that climatic events caused by volcanic eruptions
affect permafrost extent only for a very limited duration of a
few decades.

Despite limited process representation compared to more
complex permafrost process models, we conclude that Cryo-
GridLite provides important insights into the long-term evo-
lution of the thermal ground regime on the pan-Arctic
scale. In particular, the model’s ability to link multiple
global datasets using a probabilistic ensemble approach al-
lows CryoGridLite to deal with highly uncertain ground and
snow properties. Future simulations could cover even larger
timescales to investigate the formation of permafrost as a re-
sult of transient climate conditions from the Pleistocene to
the present.

Appendix A: Details on the model formulation

Volumetric enthalpy, Hv, as a function of temperature, T , is
defined as

Hv = T Cv(T )+Lf (T ), (A1)

where Cv(T ) [J m−3 K−1] is the temperature-dependent vol-
umetric heat capacity of the medium, L [Jm−3] is the vol-
umetric heat of fusion of water, and f (T ) [m3 m−3] is the
freezing characteristic curve which defines the relationship
between temperature and volumetric liquid water content.
The free water freezing characteristic defines the liquid frac-
tion of water in terms of volumetric enthalpy:

fwl(Hv)=


θ Hv > Lθ
Hv
L

0≤Hv ≤ Lθ

0 Hv < 0,

(A2)

where θ is the total water content. Temperature can be deter-
mined via the corresponding inverse enthalpy function:

H−1
v (Hv)=


(Hv−Lθ)

Cv
Hv > Lθ

0 0≤Hv ≤ Lθ
Hv
Cv

Hv < 0.
(A3)

While the derivative of the enthalpy function dHv
dT be-

yond the critical enthalpy range where a phase change oc-
curs (Hv < 0 or Hv > Lθ ) can simply be equated to Cv (see
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Eq. A1), within this range it would technically be infi-
nite (see Eq. A2). In this case, a numerically convenient
workaround is to simply set it to a very large value, e.g.,
dHv
dT ≈ 1× 109 J m−3 K−1.

Appendix B: Details on parameter values

Table B1 provides an overview of the thermal properties of
the soil constituents that have been used to calculate the bulk
properties using Eqs. (16) and (17).

Table B1. Overview of the heat capacity and thermal conductivity
values used for the individual soil constituents. The values are based
on Hillel (1998).

Soil Volumetric heat Thermal
constituent capacity cn conductivity kn

[J m−3 K−1] [W m−1 K−1]

Water 4.2× 106 0.57
Ice 1.9× 106 2.2
Organic 2.5× 106 0.25
Mineral 2.0× 106 3.8
Air 1.25× 103 0.025

Appendix C: Numerical model accuracy and
performance tests

We validate the numerical accuracy of the CryoGridLite
implementation separately for the heat conduction problem
(Fig. C1) and the phase change process (Fig. C2) using ide-
alized test cases for which analytical solutions exist.

We furthermore compare the numerical performance of
the integration scheme to other algorithms, revealing a very
good performance in solving the heat conduction with phase
change (Fig. C3).

Figure C1. Evaluation of CryoGridLite in simulating heat diffu-
sion with sinusoidal upper and zero flux lower boundary conditions
without phase change. The analytical solution (a) for a semi-infinite
half-space is compared to the solution obtained using CryoGridLite
(b). Analysis of the differences (c) reveals a relatively small peri-
odic error of less than ±0.01K at deeper depths due to the spatial
discretization. These results demonstrate that the numerical scheme
effectively captures the heat diffusion process, yielding results that
closely align with the analytical solution.

Figure C2. Comparison of the analytical solution to the two-phase
Stefan problem and CryoGridLite for the one-sided thawing of a
frozen soil column. The soil temperature is initialized at −0.02 ◦C,
and a constant upper boundary temperature of 1 ◦C is applied for a
period of 5 years. The spatial domain is discretized into a nonuni-
form rectangular grid cell with minimum spacing of 0.01 m down to
a depth of 0.5 m. The good agreement between the analytical solu-
tion and the CryoGridLite simulation demonstrates that the model
is able to accurately represent phase change of water.
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Figure C3. Work-precision plot comparing different numerical in-
tegration methods with CryoGridLite on heat conduction with phase
change with a periodic upper boundary. The y axis shows the com-
putational demand in CPU time of each numerical solve, while the x
axis shows the global temperature error of the solution with respect
to a high-resolution reference simulation using a 10-stage, fourth-
order strong stability-preserving (SSP) Runge–Kutta with a 60 s
time step. All of the algorithms (except CryoGridLite) use adap-
tive time stepping schemes with tolerances changed from 10−6 to
10−1. Since CryoGridLite is a fixed-time-step method, we instead
use a time step of 24 h scaled from 10−3 to 100 for comparison.
With the largest time step of 24 h CryoGridLite achieves an accept-
able global error of approximately 0.014 K while being an order of
magnitude more efficient than all other methods.

Appendix D: Evaluation of model simulations using
borehole observations

In Fig. D1 we compare long-term ground temperature obser-
vations from 20 boreholes across Canada (five boreholes at
three sites) (Allard et al., 2020), Russia (two boreholes at one
site) (Smith et al., 2022), and Alaska (13 boreholes) to the
corresponding model results from the closest grid cell within
the model domain.

For the Canadian high Arctic site Alert on Ellesmere Is-
land (Fig. D1a, b, c), the long-term observations from three
boreholes agree reasonably well with the simulations, al-
though a warming trend is more pronounced in the observa-
tions and the variability between the three boreholes is larger
than the spread of the model ensemble. Here, the model
ensemble likely underestimates the mesoscale variability in
snow conditions (Smith et al., 2012). We further note that the
closest model grid cell is located 5◦ further south than the
observation site.

For the Canadian sites in Québec (Quaqtaq and Salluit,
Fig. D1d, e), the observed mean annual ground temperatures
(MAGTs) at 10 m depth during the 2000s and 2010s are very
well within the modeled ensemble range and even agree well
with the model mean, especially for Quaqtaq, suggesting

that the model ensemble captures site-level conditions. For a
depth at 20 m, additional borehole observations are available
for the late 1980s and early 1990s (Allard et al., 1995). The
time series of measurements, however, is not long enough to
confirm the pronounced negative temperature anomaly sim-
ulated before 1980 for Quaqtaq.

For the Alaskan sites, the agreement between the model
and observations is also good, with some exceptions. For
the relatively cold sites on the North Slope (from north to
south: West Dock, Deadhorse, Franklin Bluffs, Happy Val-
ley, Galbraith Lake; Fig. D1f, g, h, i, j), the observations
are mostly within the range of the model ensemble. The ob-
served long-term warming is underestimated in the simula-
tions at the northernmost sites Deadhorse and West Dock,
which might be explained by their proximity to the coast
where the model forcing data might not be representative.
The observed warming trend is well captured for the south-
ern North Slope sites.

For the sites Chandalar Shelf and Coldfoot (Fig. D1k, l)
which are located in the Brooks Range, the corresponding
simulations are clearly too cold, which is likely attributable
to the forcing data of the closest grid cell reflecting the colder
North Slope climate.

At the interior sites in discontinuous permafrost (from
north to south: Old Man, Livengood, College Peat, Birch
Lake, Healy, Gulkana; Fig. D1m, n, o, p, q, r) the model sim-
ulates MAGTs at or just below 0 ◦C, and the observations
are mostly within the range of the ensemble. An exception
is College Peat, where stable permafrost is observed in the
borehole, but all simulations show temperatures to be in the
zero curtain. Here, the insulating effect of the peat is not cap-
tured by the model ensemble.

The long-term measurements from borehole Urengoy 1
(Fig. D1s, t) in Russia show relatively cold borehole tempera-
tures, and only the coldest simulations of the model ensemble
show such low temperatures. Another borehole (Urgenoy 2)
is located in the immediate vicinity but shows much warmer
temperatures, which are within the model range.
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Figure D1. Model evaluation based on long-term ground temperature observations from 20 boreholes across Canada (5 boreholes), Russia
(2 boreholes), and Alaska (13 boreholes).
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Code and data availability. The CryoGridLite model code is avail-
able from https://doi.org/10.5281/zenodo.6619537 (Langer et al.,
2022c). The input data required for pan-Arctic simulations are avail-
able from https://doi.org/10.5281/zenodo.6619212 (Langer et al.,
2022a). Model output used for the results presented in this article
is available from https://doi.org/10.5281/zenodo.6619260 (Langer
et al., 2022b).
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