Articles | Volume 18, issue 8
https://doi.org/10.5194/tc-18-3495-2024
https://doi.org/10.5194/tc-18-3495-2024
Research article
 | 
08 Aug 2024
Research article |  | 08 Aug 2024

Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data

Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small

Related authors

Using GNSS-based vegetation optical depth, tree sway motion, and eddy-covariance to examine evaporation of canopy-intercepted rainfall in a subalpine forest
Sean P. Burns, Vincent Humphrey, Ethan D. Gutmann, Mark S. Raleigh, David R. Bowling, and Peter D. Blanken
EGUsphere, https://doi.org/10.5194/egusphere-2025-1755,https://doi.org/10.5194/egusphere-2025-1755, 2025
Short summary
Evaluating the Utility of Sentinel-1 in a Data Assimilation System for Estimating Snow Depth in a Mountainous Basin
Bareera N. Mirza, Eric E. Small, and Mark S. Raleigh
EGUsphere, https://doi.org/10.5194/egusphere-2025-978,https://doi.org/10.5194/egusphere-2025-978, 2025
Short summary
Canopy structure modulates the sensitivity of subalpine forest stands to interannual snowpack and precipitation variability
Max Berkelhammer, Gerald F. M. Page, Frank Zurek, Christopher Still, Mariah S. Carbone, William Talavera, Laura Hildebrand, James Byron, Kyle Inthabandith, Angellica Kucinski, Melissa Carlson, Kelsey Foss, Wendy Brown, Rosemary W. H. Carroll, Austin Simonpietri, Marshall Worsham, Ian Breckheimer, Anna Ryken, Reed Maxwell, David Gochis, Mark S. Raleigh, Eric Small, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 29, 701–718, https://doi.org/10.5194/hess-29-701-2025,https://doi.org/10.5194/hess-29-701-2025, 2025
Short summary
Spatially distributed snow depth, bulk density, and snow water equivalent from ground-based and airborne sensor integration at Grand Mesa, Colorado, USA
Tate G. Meehan, Ahmad Hojatimalekshah, Hans-Peter Marshall, Elias J. Deeb, Shad O'Neel, Daniel McGrath, Ryan W. Webb, Randall Bonnell, Mark S. Raleigh, Christopher Hiemstra, and Kelly Elder
The Cryosphere, 18, 3253–3276, https://doi.org/10.5194/tc-18-3253-2024,https://doi.org/10.5194/tc-18-3253-2024, 2024
Short summary
Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets
Timbo Stillinger, Karl Rittger, Mark S. Raleigh, Alex Michell, Robert E. Davis, and Edward H. Bair
The Cryosphere, 17, 567–590, https://doi.org/10.5194/tc-17-567-2023,https://doi.org/10.5194/tc-17-567-2023, 2023
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Radar-equivalent snowpack: reducing the number of snow layers while retaining their microwave properties and bulk snow mass
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
The Cryosphere, 19, 2949–2962, https://doi.org/10.5194/tc-19-2949-2025,https://doi.org/10.5194/tc-19-2949-2025, 2025
Short summary
Evaluating sensitivity of optical snow grain size retrievals to radiative transfer models, shape parameters, and inversion techniques
James W. Dillon, Christopher P. Donahue, Evan N. Schehrer, and Kevin D. Hammonds
The Cryosphere, 19, 2913–2933, https://doi.org/10.5194/tc-19-2913-2025,https://doi.org/10.5194/tc-19-2913-2025, 2025
Short summary
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025,https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Evaluation of the Snow Climate Change Initiative (Snow CCI) snow-covered area product within a mountain snow water equivalent reanalysis
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025,https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
UAV LiDAR surveys and machine learning improves snow depth and water equivalent estimates in the boreal landscapes
Maiju Ylönen, Hannu Marttila, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, and Pertti Ala-Aho
EGUsphere, https://doi.org/10.5194/egusphere-2025-1297,https://doi.org/10.5194/egusphere-2025-1297, 2025
Short summary

Cited articles

Anderson, B. T., McNamara, J. P., Marshall, H.-P., and Flores, A. N.: Insights into the physical processes controlling correlations between snow distribution and terrain properties, Water Resour. Res., 50, 4545–4563, https://doi.org/10.1002/2013WR013714, 2014. 
Barrett, A. P.: National Operational Hydrologic Remote Sensing Center SNOw Data Assimilation System (SNODAS) Products at NSIDC, NSIDC Special Report 11, Boulder, CO, USA, National Snow and Ice Data Center, 2003. 
Blankinship, J. C., Meadows, M. W., Lucas, R. G., and Hart, S. C.: Snowmelt timing alters shallow but not deep soil moisture in the Sierra Nevada, Water Resour. Res., 50, 1448–1456, https://doi.org/10.1002/2013WR014541, 2014. 
Blöschl, G.: Scaling issues in snow hydrology, Hydrol. Process., 13, 2149–2175, https://doi.org/10.1002/(SICI)1099-1085(199910)13:14/15<2149::AID-HYP847>3.0.CO;2-8, 1999. 
Bonnell, R., McGrath, D., Hedrick, A. R., Trujillo, E., Meehan, T. G., Williams, K., Marshall, H.-P., Sexstone, G., Fulton, J., Ronayne, M. J., Fassnacht, S. R., Webb, R. W., and Hale, K. E.: Snowpack relative permittivity and density derived from near-coincident lidar and ground-penetrating radar, Hydrol. Process., 37, e14996, https://doi.org/10.1002/hyp.14996, 2023. 
Download
Short summary
Automated stations measure snow properties at a single point but are frequently used to validate data that represent much larger areas. We use lidar snow depth data to see how often the mean snow depth surrounding a snow station is within 10 cm of the snow station depth at different scales. We found snow stations overrepresent the area-mean snow depth in ~ 50 % of cases, but the direction of bias at a site is temporally consistent, suggesting a site could be calibrated to the surrounding area.
Share