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Abstract. Automated snow station networks provide critical
hydrologic data. Whether point observations represent snow-
pack at larger areas is an enduring question. Leveraging the
recent proliferation of airborne lidar snow depth data, we re-
visit the question of snow station representativeness at multi-
ple scales surrounding 111 stations in Colorado and Califor-
nia (USA) from 2021–2023 (n= 476 total samples). In about
50 % of cases, station depths were at least 10 cm higher than
areal-mean snow depth (from lidar) at 0.5 to 4 km scales. The
nearest 50 m lidar pixels had lower bias and were more often
representative of the areal-mean snow depth than coincident
stations. The closest 3 m lidar pixel often agreed with station
snow depth to within 10 cm, suggesting differences between
station snow depth and the nearest 50 m lidar pixel result
from highly localized conditions and not the measurement
method. Representativeness decreased as scale increased up
to∼ 6 km, mainly explained by the elevation of a site relative
to the larger area. Relative values of vegetation and southness
did not have significant impacts on site representativeness.
The sign of bias at individual snow stations is temporally
consistent, suggesting the relationship between station depth
and that of the surrounding area may be predictable. Improv-
ing understanding of snow station representativeness could
allow for more accurate validation of modeled and remotely
sensed data.

1 Introduction

Mountain snowpack provides water to over a billion peo-
ple worldwide (Dozier et al., 2016) and comprises approx-
imately half of freshwater available in the western United

States (Li et al., 2017). Snowmelt impacts agricultural ac-
tivity (Qin et al., 2020) and ecosystems (Blankinship et al.,
2014; Dollery et al., 2006) and influences the magnitude
and frequency of natural hazards such as wildfires, floods,
and droughts (Dierauer et al., 2019; Musselman et al., 2018;
Westerling et al., 2006). The amount and timing of water
availability in snowmelt-dominated watersheds is dependent
on snowpack characteristics. Despite recent advances, exist-
ing remote sensing techniques do not allow for spatially and
temporally continuous monitoring of snow water equivalent
(SWE) in the complex terrain of mountain watersheds (Let-
tenmaier et al., 2015). Instead, assessments of water stored
in mountain snowpack for hydrologic research and applica-
tions (e.g., streamflow forecasting) rely on a combination of
ground-based snow sampling, remote sensing, and modeling
(Pagano et al., 2009).

Automated stations (hereafter: snow stations), such as
the Natural Resource Conservation Service’s (NRCS) Snow-
Telemetry (Snotel) network, provide temporally continuous,
high-quality measurements of snow depth and SWE at over
900 locations throughout the western United States. Snow
stations are strategically located to maximize their utility for
water supply forecasts. Sites with more persistent snow (e.g.,
higher elevation, northern aspects) are preferred, since lo-
cations with more persistent snow provide data for stream-
flow forecasts longer into the ablation season (NRCS, 2011).
Stations are built on flat surfaces, below the treeline (be-
tween 2745–3350 m above sea level), and in areas shielded
from high winds (Molotch and Bales, 2006; NRCS, 2011;
Woelders et al., 2020). The specific requirements for snow
station locations, combined with their uneven distribution
across the landscape, may increase the potential for bias
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when using station data to represent larger areas such as an
entire watershed.

In addition to aiding water supply forecasts, snow station
data have been applied to a wide array of applications in
snow hydrology. Snow station data are frequently used to
validate models (Pan et al., 2003; Schneider and Molotch,
2016) and as ground truth references for remotely sensed
data (Klein and Barnett, 2003; Lievens et al., 2022; Painter et
al., 2016). In these cases, station data are used as the “true”
values against which the model and remotely sensed data are
validated. However, the data sets being validated frequently
represent areas on the 100 m to 1 km scale, much larger than
the ∼ 1–3 m sampling area of a snow station. Another com-
mon use for snow station data is as input for data assimila-
tion frameworks (DeChant and Moradkhani, 2011; Margulis
et al., 2019; Slater and Clark, 2006; Smyth et al., 2020; Bar-
rett, 2003). These applications also apply snow station data
to represent the (usually much larger) scale of the model res-
olution. Finally, station data have been spatially interpolated
into gridded products (Broxton et al., 2019; Molotch et al.,
2005; López-Moreno et al., 2011). Even though the interpo-
lation may include the influence of landscape factors such as
elevation or aspect, the representativeness of the snow station
data is typically unknown and is thus unaccounted for in the
interpolation scheme.

Care is warranted when extrapolating snow station data to
larger areas because the distribution of snow across a land-
scape can be highly variable, especially at 1–100 m scales
(Blöschl, 1999; Clark et al., 2011; Scipión et al., 2013). As a
result, many studies have assessed the utility of point data to
represent larger areas. Evaluations of point measurement rep-
resentativeness suggest single measurements are inadequate
to represent areas as small as 10 m2 (López-Moreno et al.,
2011) or 30 m2 (Fassnacht et al., 2018), and over 50 point
measurements are required to represent an area of 300 m2

(Watson et al., 2006). Other investigations used manual sam-
pling of snow depth and SWE combined with binary regres-
sion trees to determine how snow properties vary surround-
ing a limited number of snow stations (Meromy et al., 2013;
Molotch and Bales, 2005). These results suggested that half
or fewer of the stations yielded snow depths within 10 % of
the mean snow depth of the surrounding area (areal-mean
snow depth). Embedded sensor networks surrounding an op-
erational snow course and snow station demonstrated that
neither the snow course nor the station represented the areal-
mean snow depth to within 20 %–30 % at the 1, 4, or 16 km2

scales due to differences in the surrounding topography (Rice
and Bales, 2010).

Other studies have used high-spatial-resolution mapping
of snow depth from airborne lidar to assess snow station rep-
resentativeness, though these efforts were limited in scope.
Grünewald and Lehning (2011) used data from five snow sta-
tions and three lidar surveys to assess if snow stations can
accurately represent the change in snow depth with altitude.
Grünewald and Lehning (2015) used lidar surveys from six

different watersheds (one survey per watershed), finding sites
that met the criteria for snow station locations (as opposed to
using real station data) to assess snow station representative-
ness. These efforts found that snow stations typically over-
estimate SWE, possibly due to the sampling locations occur-
ring on flat terrain compared to the more characteristically
sloping mountainous terrain of the surrounding area. Of the
sites that were deemed representative of the surrounding area
(within 10 % of the areal mean), there were no discernible
similarities in topographic attributes that would serve as a
predictor for “well-placed” sites.

The aforementioned studies were limited in the quantity
and spatial extent of study areas due to the labor requirements
of manually collecting samples and the limited availability of
high-resolution lidar snow depth data. The recent prolifera-
tion of lidar snow depth data in the western US made pos-
sible by the Airborne Snow Observatory (ASO; Painter et
al., 2016) provides an opportunity to assess the representa-
tiveness of snow monitoring stations using high-confidence,
spatially distributed lidar data that are colocated with snow
station locations. We utilize lidar snow depth data available
in watersheds in Colorado and California to revisit the ques-
tion of how representative the locations of snow monitoring
stations are compared to the surrounding area and whether
the relationship is consistent over time.

Here, we address the following questions. (1) How vari-
able is lidar snow depth around operational snow stations?
(2) What is the distribution of relative snow depth (RSD;
defined in Sect. 2.2.2) values, and how does RSD change
when calculated for different spatial scales and point snow
depths derived from different sensing techniques (i.e., in situ
vs. remotely sensed)? (3) Do individual sites demonstrate re-
peatable patterns of RSD sign and magnitude over time? Fi-
nally, (4) What impact do relative land cover and topography
variables (specifically, elevation, fractional vegetation, and
southness) have on RSD? While answering these questions
we focus on snow depth (not SWE) because snow depth is
the variable measured directly both by airborne lidar and at
snow stations. See Sect. 2.1.2 for further explanation regard-
ing this decision.

2 Methods

2.1 Study sites and data

We selected locations in Colorado and California that have
coincident airborne lidar and snow station data over the in-
terval February 2021 through June 2023. In Colorado, we uti-
lized 40 lidar surveys in 13 watersheds, containing 48 active
snow stations, totaling 138 instances of coincident lidar and
snow station data. All Colorado lidar surveys were carried
out in April and May, typically with two surveys per year per
basin. More data were available in California, where we uti-
lized 108 lidar surveys in 13 watersheds, containing 63 active
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snow stations, totaling 338 coincident lidar–station compar-
isons. California surveys were conducted between January
and June, with most surveys between March and May. Loca-
tions of the lidar surveys and snow stations are summarized
in Fig. 1 (and Tables S1 and S2 in the Supplement). Between
both states, we analyzed 476 instances of coincident lidar–
station data.

In the remainder of Sect. 2.1 we provide detailed descrip-
tions of the data sets we employ in this investigation and the
scales at which we employ them.

2.1.1 Snow station data

The NRCS and the California Department of Water Re-
sources (CA-DWR) operate snow stations which monitor
snow depth, SWE, and meteorological parameters at select
locations in snow-dominated watersheds. These stations col-
lect snow depth data using an ultrasonic sensor (precision:
13 mm) and SWE data by measuring the mass above a snow
pillow (precision: 2.5 mm) (NRCS, 2011). Sensor precision
values are not reported by CA-DWR but should be similar to
the NRCS values since they use similar equipment. The typ-
ical spatial support (Blöschl, 1999) is 9 m2 for SWE (snow
pillow) and ∼ 1 m2 for depth (ultrasonic sensor).

Although SWE is the critical variable for understanding
water storage, we conduct our analyses using snow depth be-
cause it is the variable directly retrieved by lidar surveys. Li-
dar SWE products use modeled density (Painter et al., 2016),
increasing the uncertainty of the measurement as compared
to snow depth. Of the existing literature, one study (Molotch
and Bales, 2005) directly measured SWE using a federal
sampler to get distributed measurements of SWE but was
limited by the total amount of samples collected. Most other
studies (e.g., Grünewald and Lehning, 2011, 2015; Meromy
et al., 2013) converted snow depth to SWE by assuming a
uniform snow density across the study site. Snow density is
not uniform across the landscape and may contribute consid-
erable uncertainty in SWE estimations based on lidar data
(Meehan et al., 2023; Raleigh and Small, 2017; Wetlaufer et
al., 2016). Converting values to SWE by assuming a uniform
snow density increases the potential error as compared to re-
taining the values as snow depth. Thus, we keep our analyses
in terms of snow depth. Any results herein would be identi-
cal if we converted to SWE by multiplying snow depth with
a chosen snow density (e.g., Grünewald and Lehning, 2011,
2015; Meromy et al., 2013).

We downloaded daily NRCS Snotel and CA-DWR snow
depth data from all sites within the bounds of watershed areas
surveyed by ASO with airborne lidar in Colorado and Cali-
fornia from 2021 to 2023. We acquired site coordinates (lat-
itudes and longitudes) from the NRCS and CA-DWR web-
sites. Due to the importance of accurate location data for
this study, we verified the locations of each snow station us-
ing visual inspection of high-resolution satellite imagery in
Google Earth. We updated site coordinates in locations where

the provided coordinates were visibly offset from an identifi-
able snow station. The coordinates were updated to the fifth
decimal place in decimal degrees, providing ∼ 1 m accuracy
for the location of the center of the snow pillow. We assume
that the depth sensor is located over the center of the pillow
(which can be identified in the satellite images); however, we
recognize that this is not always true. The location of four
CA-DWR sites within lidar-surveyed watersheds could not
be verified and were excluded from the analysis. Site coordi-
nates are available in Tables S1 and S2.

We carried out quality control on the snow depth data
to ensure accuracy. NRCS data were free from obvious
error, while CA-DWR data frequently displayed unnatural
jumps in snow depth. In many cases, the snow depth sen-
sor recorded meter-scale changes in daily snow depth, often
followed by a change in the opposite direction of the same
magnitude. This likely results from a lack of quality control
measures conducted on CA-DWR snow depth data. We dis-
carded clearly erroneous data that recorded unnatural multi-
directional shifts of greater than 0.5 m. Upon visual inspec-
tion of the data, the 0.5 m threshold removed the unnatural
shifts in snow depth.

2.1.2 Lidar data

We utilize all ASO lidar snow depth data available in Col-
orado and California from 2021–2023. These data sets are
available as gridded rasters at 50 and 3 m resolutions in the
Universal Transverse Mercator (UTM) coordinate system,
WGS84. The 3 m product is produced by taking the differ-
ence between snow-on and snow-off point clouds, and the
50 m product is an aggregation of the 3 m data (Painter et al.,
2016). We use the 50 m data sets to analyze the distribution
of snow depth surrounding a snow station and calculate the
areal-mean snow depth at a range of larger scales (analyses
discussed in Sect. 2.2). The 50 m scale is sufficient to cap-
ture snow depth distribution across the landscape at coarser
analysis scales and requires much less storage and computa-
tional expense to manage compared to the 3 m data sets. We
employ a subset of 3 m gridded snow depth data, extracting
the pixel coincident with the snow station.

Snow depth is retrieved from lidar data by calculating the
difference in surface elevation between snow-on and snow-
off surveys. The 3 m snow depths record mean absolute er-
rors of < 8 cm, and 50 m snow depths record mean absolute
errors of < 2 cm (Painter et al., 2016).

It is worth noting that we do not exclude any lidar data
based on proximity to human activities (e.g., compacted
snow in ski areas, deeper snow due to snow-making, snow re-
moval on roads) which may impact areal-mean snow depths.
Snow stations are often built in secluded locations, which we
expect to be minimally impacted by human activities, but
this is limited to only the small (∼ 30 m) area surrounding
a snow station. Lidar surveys encompassing ski areas, towns,
and roads have the potential to record snow depths that do
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Figure 1. Locations of lidar surveys and snow stations in (a) California and (b) Colorado, with watersheds labeled. Two stations (Stillwater
Creek and Spratt Creek) are highlighted as these are used in subsequent examples.

not represent the “natural” snow depth that would have been
measured in the absence of human impacts. We chose to not
remove any lidar surveys due to the difficulty of finding an
objective method to do so and the changing degree of human
impact at a site with scale. We found that at least eight snow
stations are near ski areas but did not find a consistent bias in
the snow depths across those sites.

2.1.3 Land cover and topography data

We obtained digital elevation models and vegetation data sets
surrounding all snow stations employed in this study. For the
digital elevation model, we use the 10 m resolution USGS
National Elevation Dataset (Gesch et al., 2018). These data
are used for their elevation values and to calculate southness.
Southness serves as a metric for how exposed an area is to
solar radiation in the Northern Hemisphere and is calculated
as the sine of the slope multiplied by the cosine of the aspect
(Dozier and Frew, 1990). For vegetation, we downloaded the
National Land Cover Database percent tree cover data set
(2019), which provides fractional vegetation (FVEG) at 30 m
resolution (Dewitz, 2021). We bilinearly resampled all land

cover and topography data to match the 50 m spatial resolu-
tion of the lidar data.

2.1.4 Data representing the snow station

We use different data sources to represent snow depth at the
snow station. In doing so, we can establish if any biases result
from using data with different spatial coverage and sampling
methodologies. These sources include the reported snow sta-
tion snow depth (station SD), the coincident 50 m resolution
lidar pixel (50 m SD), and the coincident 3 m resolution li-
dar pixel (3 m SD). These data sources have different spa-
tial coverages (1–3 m vs. 50 m) and use different sampling
methodologies (in situ vs. lidar). For our analyses we pri-
marily use 50 m SD and station SD; station SD assesses the
performance of the station itself while the 50 m SD assesses
the general location of the snow station within the landscape.

2.2 Analyses

In this section, we describe the analyses conducted. First, we
present the spatial scales at which we conduct the analyses,
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Figure 2. The spatial distribution at 50 m resolution of (a) lidar snow depth, (b) elevation, and (c) fractional vegetation. The squares represent
spatial scales of 0.5 km (solid), 1 km (dashed), and 4 km (dotted). (d) Cumulative density functions (CDFs) of snow depth at each of the three
scales with 50 m SD and station SD plotted on the distribution for the Stillwater Creek snow station in Colorado on 16 April 2023.

and we then provide details on each analysis in the order of
the research questions it aims to address.

2.2.1 Spatial scales

We conduct our analyses at three spatial scales typically
employed in remote sensing and modeling applications:
0.5 km× 0.5 km, 1 km× 1 km, and 4 km× 4 km grid squares
(hereafter: 0.5, 1, and 4 km scales) (Figs. 2, 3). The snow
stations were centered within these squares (as in previous
studies); however, we acknowledge that snow stations will
rarely be centered in gridded products (remote sensing or dis-
tributed models). We separately repeated the same analyses
using the 0.5 km MOD10A1F grid from the MODIS/Terra
Snow Cover Daily L3 Global 500 m SIN Grid data set (Riggs
and Hall, 2020), and the results (not shown) were not sig-

nificantly changed as compared to the 0.5 km grid centered
around a snow station.

We also expand on the three discrete scales to more di-
rectly assess how representativeness and the influences of
land cover and topography change with scale. Beginning at
the point scale, we expand outward in 50 m increments up to
the 8 km scale. In doing so, we are able to assess the rela-
tionship of scale and representativeness as well as determine
if the trends we observe continue beyond the 4 km scale. At
some sites, expanding the analysis to scales greater than 4 km
results in an analysis area that extends beyond the bounds of
the lidar scan. For the expanded scale analysis, we only in-
cluded sites in which 90 % or more of the grid cells contain
snow depth values at the 8 km scale. This reduced the number
of snow stations in the analysis to 56 (from 111) but ensured
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Figure 3. The spatial distribution at 50 m resolution of (a) lidar snow depth, (b) elevation, and (c) fractional vegetation. The squares represent
spatial scales of 0.5 km (solid), 1 km (dashed), and 4 km (dotted). (d) Cumulative density functions (CDFs) of snow depth at each of the three
scales with 50 m SD and station SD plotted on the distribution for the Spratt Creek snow station in California on 31 March 2023. Note that
the x axis in (d) is cut off and that there are snow depth values exceeding 3 m at the 4 km scale.

that the results were not influenced by increased amounts of
null data at larger scales.

2.2.2 Snow depth variability

To gauge snow depth variability surrounding a snow station
we evaluate the distribution of snow depths at each scale. To
do so, we calculate the 5th–95th percentile range of snow
depth values using the 50 m resolution lidar data at each co-
incident lidar–station pair (Figs. 2d, 3d). We then determine
where point snow depth observations (station SD and 50 m
SD) fall within the cumulative density function (CDF) of
50 m snow depths at each scale. We present the results of
this analysis in Sect. 3.1.

2.2.3 Relative snow depth and representativeness

We assess the spatial representativeness of a snow station by
comparing point snow depth to the areal-mean snow depth.
To do so, we employ relative snow depth (RSD). RSD is cal-
culated by subtracting the areal-mean snow depth from the
point snow depth representing the snow station, following
Eq. (1):

RSD= point snow depth− areal-mean snow depth (1)

We use RSD to determine if extrapolation of the point snow
depth to the larger area would overestimate (if positive) or
underestimate (if negative) the areal-mean snow depth. We
calculate the RSD for each spatial scale, using station SD and
50 m SD as point data sources. We deem a site to be repre-
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sentative if the RSD is within ±10 cm. We acknowledge that
the range of “representative” RSD values varies based on the
application and that there is subjectivity in what constitutes
a representative site (similarly discussed in Meromy et al.,
2013). Our results could easily be adjusted using a differ-
ent range of acceptable values. We present a probability den-
sity function in Sect. 3.2 to illustrate the distribution of RSD
values irrespective of our classification of representativeness.
Unlike previous investigations, we do not use a percent dif-
ference from the mean as an indicator of representativeness,
as percentages can be overly influenced by the magnitude of
snow depth. The data we employ encompass a wide variety
of locations and times within the snow season, meaning snow
depth magnitudes are highly variable. As such, the magni-
tude difference is a more interpretable metric.

Snow stations are strategically placed on the landscape
to maximize their utility for water supply forecasts (NRCS,
2011). We assess the impact of this strategic placement by
calculating RSD for all possible snow station locations at
each study site. Using lidar data, we calculate the RSD value
by sequentially setting each pixel in a study area as the snow
station location. For example, we calculate 100 RSD values
at the 0.5 km scale for the 100 pixels (each 50 m resolution)
within the study area. We use these data to create a distribu-
tion of expected RSD values at a given scale (term: virtual
RSD). We then compare the distribution of the virtual RSD
values to the distribution of real RSD values (across all 476
lidar–station survey pairings) to see how strategic placement
of snow stations compares to expected RSD values. The re-
sults of these analyses are presented in Sect. 3.2.

2.2.4 Consistency of RSD values

Is the sign and magnitude of RSD at a site consistent through
time? We address this question by calculating RSD at each
snow station over all available lidar surveys in the 3-year pe-
riod. For this temporal consistency assessment, we include
all sites that have data points spanning at least three lidar sur-
veys across at least 2 years (n= 71 sites). To assess temporal
consistency at snow stations, we partition the data into three
groups: those where the median RSD is less than−0.1 m, be-
tween −0.1 to 0.1, and greater than 0.1 m. We then analyze
the distribution of RSD values within these three groups. Ad-
ditionally, we assess how RSD varies throughout the season
by plotting RSD against days to snow station meltout date
for each site.

2.2.5 Land cover and topography analysis

We assess variations in land cover and topography to test
whether there are any discernable effects on RSD (Figs. 2b,
c, 3b, c). To do so, we calculated relative elevation, relative
fractional vegetation (FVEG), and relative southness. These
metrics are similar to RSD; they are calculated by subtract-
ing the areal-mean value of the variable from the pixel value

closest to the snow station. For example, a positive relative
fractional vegetation value signifies that the fractional vege-
tation value representing the snow station is greater than the
mean fractional vegetation of the surrounding area. We use
linear regressions to determine if there are significant rela-
tionships between the relative land cover or topography vari-
ables and RSD.

3 Results

3.1 Snow depth variability

The spatial variability of snow depth influences the likeli-
hood that a snow station is representative of the surrounding
area. A higher range of snow depths increases the maximum
possible magnitude of RSD, whereas a limited snow depth
range has a smaller maximum RSD. For example, a site with
a 20 cm range of snow depths would have a maximum RSD
value of 10 cm (assuming a normal distribution), guarantee-
ing the station to be representative. Recall that we define a
representative site as being within 10 cm of the areal-mean.
Here, we examine the statistical distribution of snow depth
surrounding snow stations and its role in site representative-
ness, with a focus on the 0.5 km scale.

The 5th–95th percentile range of snow depth varies greatly
between sites and between study region (Colorado vs. Cal-
ifornia, Fig. 4a, f). The mode for the 5th–95th percentile
range is 0.4–0.5 m in Colorado and between 0–0.1 m in Cal-
ifornia; the latter is a result of lidar surveys occurring when
some study sites were mostly snow-free. Aside from these
low values, most sites have a range of snow depths between
0.3–0.6 m at the 0.5 km scale in both Colorado and Califor-
nia. The maximum 5th–95th percentile range is about 1 m in
Colorado and 2.4 m in California, likely due to deeper snow-
packs in California. The median range is 0.46 m in Colorado
and 0.61 m in California.

The CDF plots demonstrate a range of possible scenarios
created from different snow depth distributions. Sites charac-
terized by lower snow depth variability (Fig. 4b, c, g, h) are
less likely to have point snow depths far from the median due
to the limited range of snow depths, while sites with higher
snow depth variability (Fig. 4d, e, i, j) allow for greater dif-
ferences between the median and point snow depth. For ex-
ample, at the Michigan Creek Snotel site (Fig. 4b) the 50 m
SD and station SD values correspond to the 7th and 95th per-
centiles, yet both values are within 0.1 m depth of the median
value. Conversely, at sites with greater snow depth variabil-
ity (e.g., Scotch Creek and Huysink; Fig. 4e, j), high per-
centiles corresponding with the station SD are accompanied
by large differences from the median (0.46 and 0.95 m, re-
spectively). These results highlight that snow depth variabil-
ity differs from site to site and that percentile from the me-
dian is influenced by the range of snow depth values. Thus,
using the percentile proximity to the median is not an effec-
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tive indicator of representativeness at sites with low or mod-
erate snow depth variability. Identifying snow depth variabil-
ity at sites is one important factor that controls the likelihood
that a site will be representative of the surrounding area, since
sites with low variability are more likely to be yield depths
close to the station SD.

3.2 Site representativeness

We now examine the distribution of RSD values and how
the distribution changes when RSD is calculated using dif-
ferent scales and point snow depths. This is compared to the
distribution of virtual RSDs, which represent the distribution
of RSDs calculated when considering each lidar pixel in the
study area to be a hypothetical station location. The virtual
RSD distribution provides a distribution of RSDs if a snow
station was randomly placed within the landscape.

When using station SD as the point measurement, 35 %,
33 %, and 28 % of the snow stations are representative at the
0.5, 1, and 4 km scales, respectively (Fig. 5, Table 1). Root-
mean-square error (RMSE) is 0.46, 0.48, and 0.54 m for the
same respective scales. Approximately 50 % of RSD values
are biased high (RSD > 0.1 m), while only∼ 15 %–21 % are
biased low (RSD <−0.1 m) at all three scales.

Sites are more frequently representative when using 50 m
SD to represent the station (as compared to station SD). Ap-
proximately 50 % of points are representative at the 0.5 and
1 km scales. Representativeness again decreases with scale,
with 38 % of points being representative at the 4 km scale
(Fig. 5, Table 1). Relative to the station SD case, RMSE val-
ues are lower when using 50 m SD, yielding values of 0.20,
0.24, and 0.35 m for the 0.5, 1, and 4 km scales (Table 1),
respectively. At all three scales the proportion of high-biased
sites is greater than the proportion low-biased sites. However,
the difference between high- and low-biased sites is less pro-
nounced when using 50 m SD vs. station SD.

The virtual snow station analysis suggests that 50 m SD lo-
cations more effectively represent the surrounding area than
if they were placed randomly (Fig. 5 and Table 1). Com-
pared to virtual locations, real site placement (using 50 m
SD) increases the frequency of representative sites and re-
duces the frequency of low-biased sites at all three scales.
The frequency of high-biased sites is approximately equal
between the 50 m SD and virtual site placement values at all
three scales. We compare the 50 m SD and virtual stations to
each other because they are generated from the same data set.
In doing so, the comparisons we make are a direct reflection
of the location within the study area, and not any biases in
sampling methodology or spatial coverage. It is important to
note that both the 50 m SD and virtual stations perform bet-
ter than the station SD. We analyze the reason for decreased
representativeness when using station SD in Sect. 3.3.

Next, we expand the spatial scales of our analysis at 50 m
increments from 0.1 to 0.8 km scales to more fully examine
the effect of scale on representativeness. For both the 50 m

SD and station SD the proportion of representative sites de-
creases with scale, plateauing at a minimum value near 20 %
at the ∼ 6 km scale (Fig. 6). The main differences between
the 50 m SD and station SD results are that at the smaller
scales (0.1 to 1 km) the 50 m SD values have higher propor-
tions of representativeness, and the high bias for the station
SD RSD values is consistently near 50 % regardless of scale.

These results highlight that (1) point snow depths are more
likely to be representative of the surrounding area at finer
scales than at coarser scales, (2) non-representative sites are
more likely to be biased high than biased low at all three
scales and for all data sources, and (3) high biases are most
pronounced when using station SD.

3.3 Point snow depth comparisons

As exemplified in Fig. 5, the source and spatial coverage of
point snow depth observations influences whether a site qual-
ifies as representative. RSD calculated using station SD tends
to have a higher bias than RSD calculated using 50 m SD
(Fig. 5). There are two possible explanations for this bias:
(1) snow stations tend to be installed in locations with rel-
atively deep snow compared to the surrounding 50 m area,
or (2) there is a systematic bias caused by the difference
between remotely sensed lidar and in situ station ultrasonic
measurements of snow depth. To assess the cause of these
differences we now compare the 50 m SD, the 3 m SD, and
the station SD with each other (Fig. 7).

Station SDs are systematically higher than the 50 m SDs,
with 48 % of station SDs being over 10 cm greater than their
50 m SD counterparts and only 9 % being at least 10 cm less
than the 50 m SD (Fig. 7a). The station SD and 3 m SD match
each other more closely (Fig. 7b); 64 % of points are within
±10 cm of each other, with minimal bias. The 3 m SD to 50 m
SD comparison (Fig. 7c) yields similar results to those of
the snow station SD to 50 m SD comparison (Fig. 7a), with
a similar high bias. The similarity between the 3 m SD and
station SD values suggest that the high bias in RSD at stations
is not caused by differences in measurement technique (i.e.,
airborne lidar vs. a ground-based ultrasonic sensor). Thus,
we conclude that the high bias reported by the station SD
and 3 m SD is a result of differences in snow depth at the
station locations compared to the surrounding 50 m area.

3.4 Temporal consistency of RSD at snow stations

RSD values at individual sites demonstrate temporal consis-
tency from survey to survey at all three scales (Fig. 8). For
this analysis, we used sites with three or more lidar surveys.
We grouped the sites into three categories: those with median
RSD values less than −0.1 m (low bias), between −0.1 and
0.1 m (unbiased), or greater than 0.1 m (high bias) at the 0.5,
1, and 4 km scales (Fig. 8a–c). Violin plots of the three cate-
gories (Fig. 8d–f) illustrate a divide between the three groups.
Sites in the low-biased group are classified by almost exclu-
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Figure 4. Histogram plot of the 5th–95th percentile lidar snow depth values around snow stations in (a) Colorado (138 sites) and (f) California
(338 sites). Cumulative density function plots at select sites in (b–e) Colorado and (g–j) California spanning low to high snow depth variability
at the 0.5 km scale. Point snow depths are plotted with their corresponding probabilities within the snow depth distribution in blue for station
SD and yellow for 50 m SD. Vertical black lines represent the range of snow depth values which are within ±10 cm of the median snow
depth.

Figure 5. (a–c) Probability density functions of RSD at the 0.5, 1, and 4 km scales, using 50 m SD, station SD, and the virtual station
locations as point values for all sites. (d–f) The relative distribution of RSD values that are less than −10 cm (low), within 10 cm (in), or
above 10 cm (high) for each of the point values at each scale. The vertical grey lines at −0.1 and 0.1 m represent the delineations between
low-biased, representative, and high-biased sites.

sively negative RSD values, whereas sites in the high-biased
group are classified by almost exclusively positive RSD val-
ues. For example, at the 0.5 km scale, 64 of 65 RSD values

in the low-biased group are less than or equal to zero. Sim-
ilarly, 83 out of 90 RSD values are greater than or equal to
zero in the high-biased group. The proportions of low and
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Table 1. The percentage of coincident lidar–snow station data points where RSD is less than −10 cm (Low), within ±10 cm (In), or above
10 cm (High) for each scale, using the 50 m lidar, station SD, and virtually placed snow stations. Median, mean, and RMSE of the RSD
values are also presented.

Scale Point data Low (%) In (%) High (%) Median RSD (m) Mean RSD (m) RMSE (m)

0.5 km
Station SD 15 35 50 0.10 0.15 0.46
50 m SD 16 54 30 0.01 0.03 0.20
Virtual site 22 45 33 0.00 0.03 0.32

1 km
Station SD 16 33 51 0.11 0.15 0.48
50 m SD 17 50 33 0.00 0.04 0.24
Virtual site 25 42 33 0.00 0.04 0.40

4 km
Station SD 21 28 51 0.11 0.18 0.54
50 m SD 25 38 37 0.00 0.06 0.35
Virtual site 29 31 40 0.00 0.06 0.67

Figure 6. The percentage of low-biased, representative, or high-biased RSD values for each scale from 0.1 to 0.8 km when using (a) 50 m
SD as the point value or (b) station SD as the point value.

high sites are similar at the 1 and 4 km scales. These results
demonstrate that certain sites exhibit consistency in the sign
of RSD values through time.

The temporal consistency of RSD at a site must be influ-
enced by more than just relative elevation. As demonstrated
in Sect. 3.3, the magnitude of RSD values increases in tan-
dem with the increased magnitude of relative elevation val-
ues. However, there is still a clear temporal consistency in the
sign of RSD at the smaller (0.5 and 1 km) scales, where rela-
tive elevation has minimal influence (Fig. 8a, b). The 0.5 km
scale is particularly striking; relative elevation magnitudes
are generally less than 25 m (Fig. 8a), but there is still a clear
delineation of low-biased and high-biased sites (Fig. 8d, f).
The 4 km scale does exhibit an increased number of low- and
high-biased sites and higher-magnitude RSD values, which
may be a result of higher-magnitude relative elevation val-
ues.

The above paragraphs analyzed trends of RSD at a site re-
gardless of timing. Here, we assess how RSD varies through-
out the season. Figure 9 displays relative snow depth in rela-
tion to days from snow station meltout for three selected sites
at all three spatial scales. We selected sites that yield typi-
cally negative (Devil’s Postpile), variable (Dana Meadows),
or positive (Ostrander Lake) RSD values. These data demon-
strate that RSD does change within the snow season. At
Devil’s Postpile and Ostrander Lake, RSD magnitudes reach
their peak in the ablation season, approximately ∼ 50–25 d
from meltout. Dana Meadows is less consistent in the timing
maximum magnitude of RSD, with maximums in 2021 and
2022 occurring in the late ablation season, while the 2023
maximum occurred nearing peak snow depth. These data
also suggest that scale influences the magnitude of RSD, but
the sign and trend are consistent between all scales. We dis-
play three sites from California because California sites have
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Figure 7. Scatter plots comparing the three different options for point snow depth: (a) station SD vs. 50 m SD, (b) station SD vs. 3 m SD,
and (c) 3 m SD vs. 50 m SD. Points inside the black lines are within ±10 cm of each other. Histogram insets represent percentage of points
that are below, within, or above the ±10 cm threshold represented by the black lines.

Figure 8. The temporal consistency of relative snow depth at snow stations with three or more lidar surveys. (a–c) Each snow station (x axis)
plotted against the RSD calculated from the 50 m SD for each lidar survey at 0.5, 1, and 4 km scales. Crosses represent individual RSD
values, and the lines represent the range of RSD values at a given site. Stations are ordered from lowest to highest mean RSD for each
scale (snow stations are thus in different orders for each scale). Relative elevation values are also plotted as black circles on the right y axis.
(d–f) Distribution plots of qualitatively grouped snow stations that are typically biased low, unbiased, or biased high for the three scales. The
black bars with circles represent the median and interquartile range of the RSD values.

more lidar surveys and surveys that span a greater breadth of
the snow season. Colorado sites display similar trends to the
sites shown in Fig. 9.

3.5 Topography and fractional vegetation

In this section we examine question 4: what impact do rela-
tive land cover and topography variables have on RSD? We
found significant correlations between relative elevation and
RSD (calculated using 50 m SD) but no significant correla-
tions between relative fractional vegetation or relative south-
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Figure 9. (a–c) Days to meltout vs. relative snow depth for all lidar surveys at select sites at all three scales. (d–f) Snow depth time series as
recorded by snow stations for years with coincident lidar–station data at the selected site. Note that 2021 data are missing at Devil’s Postpile.

ness and RSD. However, regressions of fractional vegeta-
tion and southness against snow depth at each site at the
4 km scale (i.e., a regression of all 50 m lidar snow depths
values against the coincident fractional vegetation or south-
ness value at a site) demonstrated significant relationships
(p < 0.05) at 86 % and 93 % of sites for fractional vegeta-
tion and southness, respectively (results not shown). These
results indicate that fractional vegetation and southness im-
pact snow depth; however, the relative variables do not have
significant correlations with relative snow depth. We discuss
possible reasons for this in Sect. 4.2. We focus on relation-
ships between RSD and relative elevation hereafter and in-
clude results related to relative fractional vegetation and rel-
ative southness in the Supplement.

Analysis of the three primary scales demonstrates that the
correlation (as indicated by R2) between RSD and relative
elevation increases with scale (Fig. 10). At the 4 km scale, the
slope of the linear regression indicates that RSD increases by
16 cm for every 100 m of relative elevation (R2

= 0.3). The
positive slope is consistent with our expectation of lapse rates
of temperature and precipitation producing deeper snow at
higher elevations.

The expanded scale analysis (0.1 to 8 km scales) allows
us to better understand the interplay of scale and elevation
effects on RSD. As discussed in Sect. 2.2, we only include
sites in which 90 % or more of the grid cells contain valid
snow depth values at the 8 km scale. The correlation between

RSD and relative elevation (as indicated with R2) steadily in-
creases with scale until ∼ 7 km, where it levels off at a value
of ∼ 0.47 (Fig. 11a). The relationship between RSD and rel-
ative elevation is significant (p < 0.05) at scales greater than
or equal to 0.5 km (Fig. 11a).

4 Discussion

4.1 High-bias tendency at operational snow stations

We found that station SDs exceeded the areal-mean snow
depth by at least 10 cm in ∼ 50 % of cases at all scales
(Figs. 5, 6). Longer persisting snow at snow stations is bene-
ficial for water supply forecasts, but it is unclear whether this
bias is by design. The finding of snow stations to be biased
high compared to the areal-mean snow depth is not unprece-
dented. Grünewald and Lehning (2011, 2015) found that
snow stations typically overestimate the mean snow depth of
both the corresponding elevation band and the entire catch-
ment when analyzing snow depth surrounding areas that fit
the qualifications for a snow station location. Meromy et
al. (2013) analyzed 53 samples, designating a site as repre-
sentative if the station SD was within ±10 % of the areal-
mean SD. Using that definition, 51 % of their station SDs
were representative, 30 % were high, and 19 % were low at
the 1 km scale. This distribution more closely matches the
distribution we observed when using 50 m SD as the point
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Figure 10. Scatter plots showing the relationship between relative elevation and relative snow depth at the three spatial scales using 50 m SD
data to represent the point value.

Figure 11. (a) Spatial scale vs. R2 correlation between RSD and relative elevation. Points with p values less than 0.05 are marked with a
filled circle, while sites with p values greater than 0.05 are marked with an “x” marker. (b) Scale vs. the mean range of elevations calculated
from all sites.

snow depth but still demonstrates a slight high bias. It is im-
portant to note that the use of percentage from the areal-mean
snow depth is different than our use of magnitude from the
areal-mean snow depth, which could affect the results.

Comparing the snow depths we use to represent the snow
stations demonstrates that the station SD values are consis-
tently higher than the 50 m SD values (Fig. 7). The general
agreement between the 3 m SD and station SD values, two in-
dependent data sources, suggests that the deeper snow depths
at the snow stations are not a result of differences in sam-
pling methodology (i.e., lidar vs. ultrasonic depth sensor) but
rather fine-scale (several meters) spatial variability within the
50 m pixel. A higher proportion of sites are representative of
larger areas when using 50 m SD as opposed to station SD
(Fig. 5). This suggests that the high bias at the fine-scale sta-

tion location lowers representativeness. Uniformly correct-
ing the bias exhibited by snow station snow depths would
mitigate this problem at some sites but risks deteriorating
representativeness at low-biased sites. Thus, bias correction
would have to be site specific and require existing spatial
snow depth data.

Why are station SDs higher than the corresponding 50 m
SD values? There are two possibilities of why station loca-
tion within a 50 m pixel causes a high bias: either (1) there
is a persistent bias caused by snow station location or (2) the
bias is caused by the snow station infrastructure. Grünewald
and Lehning (2011) suggested that deeper snow at stations
compared to the surrounding area was a result of flat terrain
at a snow station compared to the sloping terrain character-
istic of a mountain watershed. Persistent shielding effects or
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placement within forest gaps could provide another location-
based explanation for the high bias. The bias could also be
introduced by the snow pillow, which is a flat, vegetation-
free structure with thermal properties distinct from the sur-
rounding forest floor. A final explanation could be that snow
density is systematically lower at the snow station, meaning
that the increased SD would not actually result in differences
in SWE. Density could be lower due to altered thermal ex-
change at the snow–ground interface due to the snow pillow
(i.e., hence changing metamorphism) or due to wind shel-
tering (e.g., reduced rates of settlement and compaction of
newer snow). This final issue highlights the limitations of
working in terms of snow depth, since spatial variations in
density can influence snow depth variations (e.g., Bonnell et
al., 2023; Meehan et al., 2023). Knowledge of both depth and
density are needed to accurately resolve spatial distributions
of SWE. In all, further work is required to ascertain the ex-
act cause of higher snow depths recorded at snow stations
compared to the surrounding 50 m area.

4.2 Temporal consistency of station biases

Snow stations exhibit both intra- and inter-annual consis-
tency in the directional bias of RSD. At least half of sites
with three or more lidar surveys demonstrate almost exclu-
sively unidirectional bias in RSD at all three scales (Fig. 8).
Meromy et al. (2013) also found consistent bias direction and
magnitude at many sites in their investigation. Another study
analyzing basin-wide snowpack using lidar data found con-
sistent patterns of snowpack in years with similar meteoro-
logical characteristics (Pflug and Lundquist, 2020). Topogra-
phy, land cover, and typical storm tracks are relatively static
on annual timescales (e.g., Liston, 1999). If these are the fac-
tors that control snow depth distribution, it is not unexpected
that RSD biases would also be similar from year to year at a
given site.

Given this consistency, it may only take a few lidar surveys
at a site to determine the relationship of a snow station to the
surrounding area at a certain scale. However, the timing of li-
dar surveys within the snow season would need to be consid-
ered since the magnitude of RSD varies throughout the sea-
son (Fig. 9). Lidar survey timing is currently biased towards
peak SWE and the ablation season, with limited surveys dur-
ing the accumulation season. Regardless, previous efforts to
determine the relationship between a snow station and the
surrounding area required labor-intensive manual sampling
of snow depth surrounding a snow station. Thus, we can in-
crease the utility of the temporally continuous snow station
data with just a few lidar surveys. The consistency we ob-
serve provides the opportunity to adjust snow station data
based on the typical RSD bias at a site for other applica-
tions. Doing so would cause the adjusted value to be more
in line with the areal-mean snow depth, improving its util-
ity for remote sensing ground truthing, data assimilation, or
model validation efforts.

4.3 Influence of land cover and topography

Vegetation and topography influence the distribution of snow
across the landscape (Anderson et al., 2014; Clark et al.,
2011; López-Moreno and Stähli, 2008; Varhola et al., 2010).
Previous efforts that used statistical approaches (e.g., binary
regression trees) to identify the physiographic controls on
snow depth surrounding a snow station determined both ele-
vation and fractional vegetation to be major controls on snow
depth variability (Meromy et al., 2013; Molotch and Bales,
2006). Rice and Bales (2010) attributed the inability of the
Gin Flat snow course and snow pillow to represent larger ar-
eas to differences in the surrounding physiography. Assess-
ing the role of specific landscape factors on relative snow
depth could inform the likelihood of a site to be representa-
tive based on the surrounding physiography.

4.3.1 Influence of elevation

Snow depth generally increases with elevation due to in-
creased precipitation and colder temperatures, except at the
highest altitudes where wind redistribution is more signifi-
cant (Grünewald et al., 2014). We found that relative eleva-
tion and RSD have significant correlations at scales greater
than or equal to 0.5 km (Fig. 11a). The increasing correlation
with scale is likely linked to a growing range of elevation
values (i.e., complex mountainous terrain), which have an
increased impact on relative snow depth (Fig. 11b). As scale
increases, sites are more likely to have higher-magnitude rel-
ative elevation values, leading to higher magnitude RSD val-
ues (and fewer representative sites).

The results show that the proportion of representative sites
decreases with scale until plateauing between the 6–7 km
scale (Fig. 6). The close matching of the representativeness
curve (Fig. 6) to the R2 curve (Fig. 11a) suggests that these
relationships are closely linked. Within the range of scales
we assessed in the available data, the larger the scale, the
less likely an individual site is to be representative (until the
7 km scale). It is unclear why the proportion of representa-
tive sites stabilizes at the 7 km scale, but one possible expla-
nation is that other local factors controlling areal-mean snow
depth keep the impact of relative elevation on RSD from in-
creasing further. It is important to note that high-magnitude
relative elevation values are the primary cause for deterio-
rating representativeness at larger scales, not the scale itself.
At the 4 km scale, relative elevation alters RSD by ∼ 16 cm
per 100 m (Fig. 10). Thus, sites with high-magnitude relative
elevation values could be adjusted using this slope to better
represent the areal-mean snow depth. It is important to note
that the slope (change in RSD per change in relative eleva-
tion) calculated here is a mean slope of all sites used in this
study. Local factors impact the rate of snow depth change
with elevation, so calculating a slope of relative elevation vs.
RSD at an individual site would be a more accurate way to
adjust RSD.
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4.3.2 Influence of vegetation

Previous studies identified fractional vegetation as a major
control on snow depth distribution (Meromy et al., 2013;
Molotch and Bales, 2006). We found significant relationships
between fractional vegetation and snow depth (i.e., the non-
relative values) at 86 % of sites (at the 4 km scale) but found
no significant relationships between relative fractional vege-
tation and relative snow depth. This indicates that vegetation
does impact snow depth, but the relative metrics we employ
are unable to capture this dynamic. The relationship between
vegetation and snowpack is complex and nonlinear and (de-
pending on climate) may shift within a single snow season
(e.g., less deep snow in the forest in midwinter but deeper
snow in the forest in the spring melt season) (Dickerson-
Lange et al., 2021; Lundquist et al., 2013; Mazzotti et al.,
2020; Bonner et al., 2022). Additionally, there may be differ-
ent snow depth regimes within subcanopy zones and gaps in
a forest (e.g., Currier and Lundquist, 2018). Given these fac-
tors, the relationship between fractional vegetation and snow
depth is much more complex than the comparatively simple
(and linear) lapse rate effects of elevation on temperature and
precipitation.

Accurately simulating forest effects on snow cover also
requires extremely high spatial resolutions (< 5 m) (Clark et
al., 2011; Mazzotti et al., 2021), which would not be captured
by the 30 m fractional vegetation data set we employ. Addi-
tionally, we used relative fractional vegetation as the metric
to describe site vegetation, which reduces vegetation dynam-
ics to a single value. A single value may be insufficient to
capture the complex dynamics of vegetation effects on snow.
For example, an areal-mean fractional vegetation of 0.5 could
represent either an area split into equal parts of 100 % and
0 % vegetation cover or a homogeneous area with 50 % veg-
etation cover. The impact of vegetation on snow distribution
at these two example sites could be considerably different,
but the areal-mean value is unable to convey the difference
in vegetation distribution between the sites. An analysis of
the high-resolution spatial distribution of vegetation involv-
ing the distribution of forest gaps would conceivably reveal
the influence of vegetation on relative snow depth but is be-
yond the scope of this paper.

4.3.3 Influence of southness

It is well documented that slope and aspect impact snow dis-
tribution (e.g., Golding and Swanson, 1986; Murray and But-
tle, 2003). We similarly found significant relationships be-
tween southness and snow depth at 93 % of sites (at the 4 km
scale) but no significant relationships between relative south-
ness and relative snow depth. One explanation for the lack of
significant relationship is that snow station southness is not
different enough from the surrounding area to impact snow
depth. Snow stations are strategically placed on flat areas,
which could reduce the influence of relative southness. It is

possible that other landscape factors outweigh the impact of
southness on snow depth, making its impact more difficult
to ascertain. More complex analyses that take multiple vari-
ables into account may be required to determine the relative
importance of landscape variables on relative snow depth.

5 Conclusions

We analyzed snow depth distributions surrounding snow sta-
tions at three scales using coincident lidar–snow station data
in Colorado and California from 2021–2023. Snow stations
(station SDs) record snow depths within±10 cm of the areal-
mean snow depth in approximately one-third of cases at all
three scales, while overestimating the areal-mean snow depth
by greater than 10 cm in ∼ 50 % of cases. When relative
snow depth is calculated using 50 m SD, the frequency of
site representation is increased to∼ 50 % at the 0.5 and 1 km
scales. Representativeness increases when using 50 m SD be-
cause snow station locations record snow depths that are on
average∼ 10 cm greater than the surrounding 50 m area. This
high bias needs to be considered when using snow station
data for validation. Representativeness decreases with scale
because relative elevation magnitudes increase, causing lapse
rates to impact relative snow depth via changes in areal-mean
snow depth. The directional bias of RSD at a snow station is
consistent from survey to survey. Together, these results sug-
gest there is an opportunity to increase the utility of snow sta-
tions for model validation and ground truthing. Future work
should focus on determining the underlying influences that
cause site bias, potentially allowing for a priori identification
of a site’s relationship with the surrounding area. Adjusting
snow station data based on the consistent high bias compared
to the surrounding 50 m area or based on the typical trend of
RSD would increase the ability of a snow station to better
represent the surrounding area, particularly at scales of 1 km
or less.
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