Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2207-2024
https://doi.org/10.5194/tc-18-2207-2024
Research article
 | 
03 May 2024
Research article |  | 03 May 2024

SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition

Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas

Related authors

Modeling the contribution of leads to sea spray aerosol in the high Arctic
Rémy Lapere, Louis Marelle, Pierre Rampal, Laurent Brodeau, Christian Melsheimer, Gunnar Spreen, and Jennie L. Thomas
Atmos. Chem. Phys., 24, 12107–12132, https://doi.org/10.5194/acp-24-12107-2024,https://doi.org/10.5194/acp-24-12107-2024, 2024
Short summary
Regional and seasonal evolution of melt ponds on Arctic sea ice
Hannah Niehaus, Gunnar Spreen, Larysa Istomina, and Marcel Nicolaus
EGUsphere, https://doi.org/10.5194/egusphere-2024-3127,https://doi.org/10.5194/egusphere-2024-3127, 2024
Short summary
Estimating seasonal bulk density of level sea ice using the data derived from in situ and ICESat-2 synergistic observations during MOSAiC
Yi Zhou, Xianwei Wang, Ruibo Lei, Arttu Jutila, Donald K. Perovich, Luisa von Albedyll, Dmitry V. Divine, Yu Zhang, and Christian Haas
EGUsphere, https://doi.org/10.5194/egusphere-2024-2821,https://doi.org/10.5194/egusphere-2024-2821, 2024
Short summary
Exploring microwave penetration into snow on Antarctic summer sea ice along CryoSat-2 and ICESat-2 (CRYO2ICE) orbit from multi-frequency air- and spaceborne altimetry
Renée M. Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut V. Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian B. Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ G. D. Casal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2854,https://doi.org/10.5194/egusphere-2024-2854, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
The AutoICE Challenge
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024,https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary
A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery
Lanqing Huang and Irena Hajnsek
The Cryosphere, 18, 3117–3140, https://doi.org/10.5194/tc-18-3117-2024,https://doi.org/10.5194/tc-18-3117-2024, 2024
Short summary
Estimating differential penetration of green (532 nm) laser light over sea ice with NASA's Airborne Topographic Mapper: observations and models
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024,https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Estimating the uncertainty of sea-ice area and sea-ice extent from satellite retrievals
Andreas Wernecke, Dirk Notz, Stefan Kern, and Thomas Lavergne
The Cryosphere, 18, 2473–2486, https://doi.org/10.5194/tc-18-2473-2024,https://doi.org/10.5194/tc-18-2473-2024, 2024
Short summary

Cited articles

Boulze, H., Korosov, A., and Brajard, J.: Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional Neural Networks, Remote Sens., 12, 2165, https://doi.org/10.3390/rs12132165, 2020. a, b
Doulgeris, A. P.: An Automatic 𝒰-Distribution and Markov Random Field Segmentation Algorithm for PalSAR Images, IEEE T. Geosci. Remote, 53, 1819–1827, https://doi.org/10.1109/TGRS.2014.2349575, 2015. a
Fily, M. and Rothrock, D. A.: Extracting Sea Ice Data from Satellite SAR Imagery, IEEE T. Geosci. Remote, GE-24, 849–854, https://doi.org/10.1109/TGRS.1986.289699, 1986. a
Fritz, T., Mittermayer, J., Schaettler, B., Buckreuss, S., Werninghaus, R., and Balzer, W.: Level 1b Product Format Specification, DLR: TerraSAR-X Ground Segment, https://www.intelligence-airbusds.com/files/pmedia/public/r460_9_030201_level-1b-product-format-specification_1.3.pdf (last access: November 2022), 2007. a
Geldsetzer, T. and Yackel, J. J.: Sea ice type and open water discrimination using dual co-polarized C-band SAR, Can. J. Remote Sens., 35, 73–84, https://doi.org/10.5589/m08-075, 2009. a
Download
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.