Articles | Volume 18, issue 5
https://doi.org/10.5194/tc-18-2207-2024
https://doi.org/10.5194/tc-18-2207-2024
Research article
 | 
03 May 2024
Research article |  | 03 May 2024

SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition

Karl Kortum, Suman Singha, Gunnar Spreen, Nils Hutter, Arttu Jutila, and Christian Haas

Related authors

Sea Ice Freeboard Extrapolation from ICESat-2 to Sentinel-1
Karl Kortum, Suman Singha, and Gunnar Spreen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3351,https://doi.org/10.5194/egusphere-2024-3351, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Updated Arctic melt pond fraction dataset and trends 2002–2023 using ENVISAT and Sentinel-3 remote sensing data
Larysa Istomina, Hannah Niehaus, and Gunnar Spreen
The Cryosphere, 19, 83–105, https://doi.org/10.5194/tc-19-83-2025,https://doi.org/10.5194/tc-19-83-2025, 2025
Short summary
Impact assessment of snow thickness, sea ice density and water density in CryoSat-2-derived sea ice thickness
Imke Sievers, Henriette Skourup, and Till A. S. Rasmussen
The Cryosphere, 18, 5985–6004, https://doi.org/10.5194/tc-18-5985-2024,https://doi.org/10.5194/tc-18-5985-2024, 2024
Short summary
Pan-Arctic sea ice concentration from SAR and passive microwave
Tore Wulf, Jørgen Buus-Hinkler, Suman Singha, Hoyeon Shi, and Matilde Brandt Kreiner
The Cryosphere, 18, 5277–5300, https://doi.org/10.5194/tc-18-5277-2024,https://doi.org/10.5194/tc-18-5277-2024, 2024
Short summary
Assessing sea ice microwave emissivity up to submillimeter waves from airborne and satellite observations
Nils Risse, Mario Mech, Catherine Prigent, Gunnar Spreen, and Susanne Crewell
The Cryosphere, 18, 4137–4163, https://doi.org/10.5194/tc-18-4137-2024,https://doi.org/10.5194/tc-18-4137-2024, 2024
Short summary
The AutoICE Challenge
Andreas Stokholm, Jørgen Buus-Hinkler, Tore Wulf, Anton Korosov, Roberto Saldo, Leif Toudal Pedersen, David Arthurs, Ionut Dragan, Iacopo Modica, Juan Pedro, Annekatrien Debien, Xinwei Chen, Muhammed Patel, Fernando Jose Pena Cantu, Javier Noa Turnes, Jinman Park, Linlin Xu, Katharine Andrea Scott, David Anthony Clausi, Yuan Fang, Mingzhe Jiang, Saeid Taleghanidoozdoozan, Neil Curtis Brubacher, Armina Soleymani, Zacharie Gousseau, Michał Smaczny, Patryk Kowalski, Jacek Komorowski, David Rijlaarsdam, Jan Nicolaas van Rijn, Jens Jakobsen, Martin Samuel James Rogers, Nick Hughes, Tom Zagon, Rune Solberg, Nicolas Longépé, and Matilde Brandt Kreiner
The Cryosphere, 18, 3471–3494, https://doi.org/10.5194/tc-18-3471-2024,https://doi.org/10.5194/tc-18-3471-2024, 2024
Short summary

Cited articles

Boulze, H., Korosov, A., and Brajard, J.: Classification of Sea Ice Types in Sentinel-1 SAR Data Using Convolutional Neural Networks, Remote Sens., 12, 2165, https://doi.org/10.3390/rs12132165, 2020. a, b
Doulgeris, A. P.: An Automatic 𝒰-Distribution and Markov Random Field Segmentation Algorithm for PalSAR Images, IEEE T. Geosci. Remote, 53, 1819–1827, https://doi.org/10.1109/TGRS.2014.2349575, 2015. a
Fily, M. and Rothrock, D. A.: Extracting Sea Ice Data from Satellite SAR Imagery, IEEE T. Geosci. Remote, GE-24, 849–854, https://doi.org/10.1109/TGRS.1986.289699, 1986. a
Fritz, T., Mittermayer, J., Schaettler, B., Buckreuss, S., Werninghaus, R., and Balzer, W.: Level 1b Product Format Specification, DLR: TerraSAR-X Ground Segment, https://www.intelligence-airbusds.com/files/pmedia/public/r460_9_030201_level-1b-product-format-specification_1.3.pdf (last access: November 2022), 2007. a
Geldsetzer, T. and Yackel, J. J.: Sea ice type and open water discrimination using dual co-polarized C-band SAR, Can. J. Remote Sens., 35, 73–84, https://doi.org/10.5589/m08-075, 2009. a
Download
Short summary
A dataset of 20 radar satellite acquisitions and near-simultaneous helicopter-based surveys of the ice topography during the MOSAiC expedition is constructed and used to train a variety of deep learning algorithms. The results give realistic insights into the accuracy of retrieval of measured ice classes using modern deep learning models. The models able to learn from the spatial distribution of the measured sea ice classes are shown to have a clear advantage over those that cannot.