Articles | Volume 17, issue 7
https://doi.org/10.5194/tc-17-2891-2023
https://doi.org/10.5194/tc-17-2891-2023
Research article
 | 
18 Jul 2023
Research article |  | 18 Jul 2023

Characterizing the surge behaviour and associated ice-dammed lake evolution of the Kyagar Glacier in the Karakoram

Guanyu Li, Mingyang Lv, Duncan J. Quincey, Liam S. Taylor, Xinwu Li, Shiyong Yan, Yidan Sun, and Huadong Guo

Related authors

Increasing precipitation due to climate change could partially offset the impact of warming air temperatures on glacier loss in the monsoon-influenced Himalaya until 2100 CE
Anya Schlich-Davies, Ann Rowan, Andrew Ross, Duncan Quincey, and Vivi Pedersen
EGUsphere, https://doi.org/10.31223/X5SH7C,https://doi.org/10.31223/X5SH7C, 2025
Short summary
Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024,https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849, https://doi.org/10.5194/tc-17-2829-2023,https://doi.org/10.5194/tc-17-2829-2023, 2023
Short summary
Spatiotemporal changes in the boreal forest in Siberia over the period 1985–2015 against the background of climate change
Wenxue Fu, Lei Tian, Yu Tao, Mingyang Li, and Huadong Guo
Earth Syst. Dynam., 14, 223–239, https://doi.org/10.5194/esd-14-223-2023,https://doi.org/10.5194/esd-14-223-2023, 2023
Short summary
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023,https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary

Cited articles

Barrand, N. E. and Murray, T.: Multivariate Controls on the Incidence of Glacier Surging in the Karakoram Himalaya, Arct. Antarct. Alp. Res., 38, 489–498, https://doi.org/10.1657/1523-0430(2006)38[489:MCOTIO]2.0.CO;2, 2006. 
Bazai, N. A., Cui, P., Carling, P. A., Wang, H., Hassan, J., Liu, D., Zhang, G., and Jin, W.: Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram, Earth-Sci. Rev., 212, 103432, https://doi.org/10.1016/j.earscirev.2020.103432, 2021. 
Benn, D. I.: Surging glaciers in Scotland, Scott. Geogr. J., 137, 1–40, https://doi.org/10.1080/14702541.2021.1922738, 2021. 
Benn, D. I. and Evans, D. J. A. (Eds.): Glaciers and glaciation, Hodder Education, London, https://doi.org/10.4324/9780203785010, 2010. 
Benn, D. I., Fowler, A. C., Hewitt, I., and Sevestre, H.: A general theory of glacier surges, J. Glaciol., 65, 701–716, https://doi.org/10.1017/jog.2019.62, 2019. 
Download
Short summary
Kyagar Glacier in the Karakoram is well known for its surge history and its frequent blocking of the downstream valley, leading to a series of high-magnitude glacial lake outburst floods. Using it as a test bed, we develop a new approach for quantifying surge behaviour using successive digital elevation models. This method could be applied to other surge studies. Combined with the results from optical satellite images, we also reconstruct the surge process in unprecedented detail.
Share