Articles | Volume 17, issue 6
https://doi.org/10.5194/tc-17-2285-2023
https://doi.org/10.5194/tc-17-2285-2023
Research article
 | 
08 Jun 2023
Research article |  | 08 Jun 2023

Constraining regional glacier reconstructions using past ice thickness of deglaciating areas – a case study in the European Alps

Christian Sommer, Johannes J. Fürst, Matthias Huss, and Matthias H. Braun

Related authors

Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast Greenland
Katrina Lutz, Lily Bever, Christian Sommer, Angelika Humbert, Mirko Scheinert, and Matthias Braun
EGUsphere, https://doi.org/10.5194/egusphere-2024-1244,https://doi.org/10.5194/egusphere-2024-1244, 2024
Short summary
Mass changes of the northern Antarctic Peninsula Ice Sheet derived from repeat bi-static synthetic aperture radar acquisitions for the period 2013–2017
Thorsten Seehaus, Christian Sommer, Thomas Dethinne, and Philipp Malz
The Cryosphere, 17, 4629–4644, https://doi.org/10.5194/tc-17-4629-2023,https://doi.org/10.5194/tc-17-4629-2023, 2023
Short summary
Brief communication: Increased glacier mass loss in the Russian High Arctic (2010–2017)
Christian Sommer, Thorsten Seehaus, Andrey Glazovsky, and Matthias H. Braun
The Cryosphere, 16, 35–42, https://doi.org/10.5194/tc-16-35-2022,https://doi.org/10.5194/tc-16-35-2022, 2022
Short summary
Changes of the tropical glaciers throughout Peru between 2000 and 2016 – mass balance and area fluctuations
Thorsten Seehaus, Philipp Malz, Christian Sommer, Stefan Lippl, Alejo Cochachin, and Matthias Braun
The Cryosphere, 13, 2537–2556, https://doi.org/10.5194/tc-13-2537-2019,https://doi.org/10.5194/tc-13-2537-2019, 2019
Short summary

Related subject area

Discipline: Glaciers | Subject: Remote Sensing
Monthly velocity and seasonal variations of the Mont Blanc glaciers derived from Sentinel-2 between 2016 and 2024
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024,https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Improved records of glacier flow instabilities using customized NASA autoRIFT (CautoRIFT) applied to PlanetScope imagery
Jukes Liu, Madeline Gendreau, Ellyn Mary Enderlin, and Rainey Aberle
The Cryosphere, 18, 3571–3590, https://doi.org/10.5194/tc-18-3571-2024,https://doi.org/10.5194/tc-18-3571-2024, 2024
Short summary
Observing glacier elevation changes from spaceborne optical and radar sensors – an inter-comparison experiment using ASTER and TanDEM-X data
Livia Piermattei, Michael Zemp, Christian Sommer, Fanny Brun, Matthias H. Braun, Liss M. Andreassen, Joaquín M. C. Belart, Etienne Berthier, Atanu Bhattacharya, Laura Boehm Vock, Tobias Bolch, Amaury Dehecq, Inés Dussaillant, Daniel Falaschi, Caitlyn Florentine, Dana Floricioiu, Christian Ginzler, Gregoire Guillet, Romain Hugonnet, Matthias Huss, Andreas Kääb, Owen King, Christoph Klug, Friedrich Knuth, Lukas Krieger, Jeff La Frenierre, Robert McNabb, Christopher McNeil, Rainer Prinz, Louis Sass, Thorsten Seehaus, David Shean, Désirée Treichler, Anja Wendt, and Ruitang Yang
The Cryosphere, 18, 3195–3230, https://doi.org/10.5194/tc-18-3195-2024,https://doi.org/10.5194/tc-18-3195-2024, 2024
Short summary
Lake ice break-up in Greenland: timing and spatiotemporal variability
Christoph Posch, Jakob Abermann, and Tiago Silva
The Cryosphere, 18, 2035–2059, https://doi.org/10.5194/tc-18-2035-2024,https://doi.org/10.5194/tc-18-2035-2024, 2024
Short summary
The Pléiades Glacier Observatory: high resolution digital elevation models and ortho-imagery to monitor glacier change
Etienne Berthier, Jérôme Lebreton, Delphine Fontannaz, Steven Hosford, Joaquin Munoz Cobo Belart, Fanny Brun, Liss Marie Andreassen, Brian Menounos, and Charlotte Blondel
EGUsphere, https://doi.org/10.5194/egusphere-2024-250,https://doi.org/10.5194/egusphere-2024-250, 2024
Short summary

Cited articles

Abermann, J., Kuhn, M., and Fischer, A.: Climatic controls of glacier distribution and glacier changes in Austria, Ann. Glaciol., 52, 83–90, https://doi.org/10.3189/172756411799096222, 2011. 
Anonymous: DHM25. Das digitale Höhenmodell der Schweiz, swisstopo, https://www.swisstopo.admin.ch/de/geodata/height/dhm25.html (last access: 29 July 2022), 1–15, 2005. 
Berthier, E., Arnaud, Y., Vincent, C., and Rémy, F.: Biases of SRTM in high-mountain areas: Implications for the monitoring of glacier volume changes, Geophys. Res. Lett., 33, L08502, https://doi.org/10.1029/2006GL025862, 2006. 
Braun, M. H., Malz, P., Sommer, C., Farías-Barahona, D., Sauter, T., Casassa, G., Soruco, A., Skvarca, P., and Seehaus, T. C.: Constraining glacier elevation and mass changes in South America, Nat. Clim. Change, 9, 130–136, https://doi.org/10.1038/s41558-018-0375-7, 2019. 
Buckel, J. and Otto, J.-C.: The Austrian Glacier Inventory GI 4 (2015) in ArcGis (shapefile) format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.887415, 2018. 
Download
Short summary
Knowledge on the volume of glaciers is important to project future runoff. Here, we present a novel approach to reconstruct the regional ice thickness distribution from easily available remote-sensing data. We show that past ice thickness, derived from spaceborne glacier area and elevation datasets, can constrain the estimated ice thickness. Based on the unique glaciological database of the European Alps, the approach will be most beneficial in regions without direct thickness measurements.