Articles | Volume 16, issue 5
The Cryosphere, 16, 1719–1739, 2022
The Cryosphere, 16, 1719–1739, 2022
Research article
06 May 2022
Research article | 06 May 2022

Polarimetric radar reveals the spatial distribution of ice fabric at domes and divides in East Antarctica

M. Reza Ershadi et al.

Related authors

Geomorphology and shallow sub-sea-floor structures underneath the Ekström Ice Shelf, Antarctica
Astrid Oetting, Emma C. Smith, Jan Erik Arndt, Boris Dorschel, Reinhard Drews, Todd A. Ehlers, Christoph Gaedicke, Coen Hofstede, Johann P. Klages, Gerhard Kuhn, Astrid Lambrecht, Andreas Läufer, Christoph Mayer, Ralf Tiedemann, Frank Wilhelms, and Olaf Eisen
The Cryosphere, 16, 2051–2066,,, 2022
Short summary
Reviews and syntheses: A framework to observe, understand, and project ecosystem response to environmental change in the East Antarctic Southern Ocean
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences Discuss.,,, 2022
Preprint under review for BG
Short summary
A scalability study of the Ice-sheet and Sea-level System Model (ISSM, version 4.18)
Yannic Fischler, Martin Rückamp, Christian Bischof, Vadym Aizinger, Mathieu Morlighem, and Angelika Humbert
Geosci. Model Dev., 15, 3753–3771,,, 2022
Short summary
Comparison of ice dynamics using full-Stokes and Blatter–Pattyn approximation: application to the Northeast Greenland Ice Stream
Martin Rückamp, Thomas Kleiner, and Angelika Humbert
The Cryosphere, 16, 1675–1696,,, 2022
Short summary
Basal melt of the southern Filchner Ice Shelf, Antarctica
Ole Zeising, Daniel Steinhage, Keith W. Nicholls, Hugh F. J. Corr, Craig L. Stewart, and Angelika Humbert
The Cryosphere, 16, 1469–1482,,, 2022
Short summary

Related subject area

Discipline: Ice sheets | Subject: Ice Physics
Modeling enhanced firn densification due to strain softening
Falk M. Oraschewski and Aslak Grinsted
The Cryosphere Discuss.,,, 2021
Revised manuscript accepted for TC
Short summary
Geothermal heat flux from measured temperature profiles in deep ice boreholes in Antarctica
Pavel Talalay, Yazhou Li, Laurent Augustin, Gary D. Clow, Jialin Hong, Eric Lefebvre, Alexey Markov, Hideaki Motoyama, and Catherine Ritz
The Cryosphere, 14, 4021–4037,,, 2020
Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry
Maria Zeitz, Anders Levermann, and Ricarda Winkelmann
The Cryosphere, 14, 3537–3550,,, 2020
Short summary
Observation of an optical anisotropy in the deep glacial ice at the geographic South Pole using a laser dust logger
Martin Rongen, Ryan Carlton Bay, and Summer Blot
The Cryosphere, 14, 2537–2543,,, 2020
Short summary
Using a composite flow law to model deformation in the NEEM deep ice core, Greenland – Part 1: The role of grain size and grain size distribution on deformation of the upper 2207 m
Ernst-Jan N. Kuiper, Ilka Weikusat, Johannes H. P. de Bresser, Daniela Jansen, Gill M. Pennock, and Martyn R. Drury
The Cryosphere, 14, 2429–2448,,, 2020
Short summary

Cited articles

Ackley, S. F. and Keliher, T. E.: Ice sheet internal radio-echo reflections and associated physical property changes with depth, J. Geophys. Res., 84, 5675–5680,, 1979. a, b
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung: Neumayer III and Kohnen Station in Antarctica operated by the Alfred Wegener Institute, Journal of large-scale research facilities, 2, A85,, 2016. a
Azuma, N.: A flow law for anisotropic ice and its application to ice sheets, Earth Planet. Sc. Lett., 128, 601–614,, 1994. a, b
Azuma, N. and Goto-Azuma, K.: An anisotropic flow law for ice-sheet ice and its implications, Ann. Glaciol., 23, 202–208,, 1996. a, b
Bohleber, P., Wagner, N., and Eisen, O.: Permittivity of ice at radio frequencies: Part II. Artificial and natural polycrystalline ice, Cold Reg. Sci. Technol., 83–84, 13–19,, 2012. a
Short summary
Radio waves transmitted through ice split up and inform us about the ice sheet interior and orientation of single ice crystals. This can be used to infer how ice flows and improve projections on how it will evolve in the future. Here we used an inverse approach and developed a new algorithm to infer ice properties from observed radar data. We applied this technique to the radar data obtained at two EPICA drilling sites, where ice cores were used to validate our results.