Articles | Volume 16, issue 4
https://doi.org/10.5194/tc-16-1299-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1299-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
Institute for Marine and Antarctic Studies, University of Tasmania,
Hobart, TAS 7001, Australia
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
Alexander D. Fraser
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
Noriaki Kimura
Atmosphere and Ocean Research Institute, The University of Tokyo,
Kashiwa, Japan
Chen Zhao
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
Petra Heil
Australian Antarctic Division, 203 Channel Highway, Kingston, TAS
7050, Australia
Australian Antarctic Program Partnership, Institute for Marine and
Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
Related authors
No articles found.
Joey J. Voermans, Alexander D. Fraser, Jill Brouwer, Michael H. Meylan, Qingxiang Liu, and Alexander V. Babanin
The Cryosphere, 19, 3381–3395, https://doi.org/10.5194/tc-19-3381-2025, https://doi.org/10.5194/tc-19-3381-2025, 2025
Short summary
Short summary
Limited measurements of waves in sea ice exist, preventing our understanding of wave attenuation in sea ice under a wide range of ice conditions. Using satellite observations from ICESat-2, we observe an overall linear increase in the wave attenuation rate with distance into the marginal ice zone. While attenuation may vary greatly locally, this finding may provide opportunities for the modeling of waves in sea ice at global and climate scales when such fine detail may not be needed.
Robert Massom, Phillip Reid, Stephen Warren, Bonnie Light, Donald Perovich, Luke Bennetts, Petteri Uotila, Siobhan O'Farrell, Michael Meylan, Klaus Meiners, Pat Wongpan, Alexander Fraser, Alessandro Toffoli, Giulio Passerotti, Peter Strutton, Sean Chua, and Melissa Fedrigo
EGUsphere, https://doi.org/10.5194/egusphere-2025-3166, https://doi.org/10.5194/egusphere-2025-3166, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean waves play a previously-neglected role in the rapid annual melting of Antarctic sea ice by flooding and pulverising floes, removing the snow cover and reducing the albedo by an estimated 0.38–0.54 – to increase solar absorption and enhance the vertical melt rate by up to 5.2 cm/day. Ice algae further decrease the albedo, to increase the melt-rate enhancement to up to 6.1 cm/day. Melting is accelerated by four previously-unconsidered wave-driven positive feedbacks.
Noriaki Kimura and Hiroyasu Hasumi
EGUsphere, https://doi.org/10.5194/egusphere-2025-3286, https://doi.org/10.5194/egusphere-2025-3286, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Measuring sea ice thickness is difficult using satellite data, but it is crucial for understanding climate change. This study introduces a new method that estimates ice thickness by tracking where and when sea ice formed and calculating how much it likely grew based on daily weather conditions. The results agreed well with underwater measurements. This method helps map ice thickness across the Arctic and may support estimates of other hard-to-measure sea ice features.
Mukund Gupta, Heather Regan, Younghyun Koo, Sean Minhui Tashi Chua, Xueke Li, and Petra Heil
The Cryosphere, 19, 1241–1257, https://doi.org/10.5194/tc-19-1241-2025, https://doi.org/10.5194/tc-19-1241-2025, 2025
Short summary
Short summary
The sea ice cover is composed of floes, whose shapes set the material properties of the pack. Here, we use a satellite product (ICESat-2) to investigate these floe shapes within the Weddell Sea in Antarctica. We find that floes tend to become smaller during the melt season, while their thickness distribution exhibits different behavior between the western and southern regions of the pack. These metrics will help calibrate models and improve our understanding of sea ice physics across scales.
Diana Francis, Ricardo Fonseca, Narendra Nelli, Petra Heil, Jonathan Wille, Irina Gorodetskaya, and Robert Massom
EGUsphere, https://doi.org/10.5194/egusphere-2024-3535, https://doi.org/10.5194/egusphere-2024-3535, 2025
Short summary
Short summary
This study investigates the impact of atmospheric rivers and associated atmospheric dynamics on sea-ice thickness and snow depth at a coastal site in East Antarctica during July–November 2022 using in-situ measurements and numerical modelling. The passage of an atmospheric river induced a reduction of up to 0.06 m in both fields. Precipitation occurred from the convergence of katabatic winds with advected low-latitude moist air.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, Takeshi Tamura, Kohei Mizobata, Guy D. Williams, and Shigeru Aoki
The Cryosphere, 18, 43–73, https://doi.org/10.5194/tc-18-43-2024, https://doi.org/10.5194/tc-18-43-2024, 2024
Short summary
Short summary
This study focuses on the Totten and Moscow University ice shelves, East Antarctica. We used an ocean–sea ice–ice shelf model to better understand regional interactions between ocean, sea ice, and ice shelf. We found that a combination of warm ocean water and local sea ice production influences the regional ice shelf basal melting. Furthermore, the model reproduced the summertime undercurrent on the upper continental slope, regulating ocean heat transport onto the continental shelf.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Lingwei Zhang, Tessa R. Vance, Alexander D. Fraser, Lenneke M. Jong, Sarah S. Thompson, Alison S. Criscitiello, and Nerilie J. Abram
The Cryosphere, 17, 5155–5173, https://doi.org/10.5194/tc-17-5155-2023, https://doi.org/10.5194/tc-17-5155-2023, 2023
Short summary
Short summary
Physical features in ice cores provide unique records of past variability. We identified 1–2 mm ice layers without bubbles in surface ice cores from Law Dome, East Antarctica, occurring on average five times per year. The origin of these bubble-free layers is unknown. In this study, we investigate whether they have the potential to record past atmospheric processes and circulation. We find that the bubble-free layers are linked to accumulation hiatus events and meridional moisture transport.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Na Li, Ruibo Lei, Petra Heil, Bin Cheng, Minghu Ding, Zhongxiang Tian, and Bingrui Li
The Cryosphere, 17, 917–937, https://doi.org/10.5194/tc-17-917-2023, https://doi.org/10.5194/tc-17-917-2023, 2023
Short summary
Short summary
The observed annual maximum landfast ice (LFI) thickness off Zhongshan (Davis) was 1.59±0.17 m (1.64±0.08 m). Larger interannual and local spatial variabilities for the seasonality of LFI were identified at Zhongshan, with the dominant influencing factors of air temperature anomaly, snow atop, local topography and wind regime, and oceanic heat flux. The variability of LFI properties across the study domain prevailed at interannual timescales, over any trend during the recent decades.
Yetang Wang, Xueying Zhang, Wentao Ning, Matthew A. Lazzara, Minghu Ding, Carleen H. Reijmer, Paul C. J. P. Smeets, Paolo Grigioni, Petra Heil, Elizabeth R. Thomas, David Mikolajczyk, Lee J. Welhouse, Linda M. Keller, Zhaosheng Zhai, Yuqi Sun, and Shugui Hou
Earth Syst. Sci. Data, 15, 411–429, https://doi.org/10.5194/essd-15-411-2023, https://doi.org/10.5194/essd-15-411-2023, 2023
Short summary
Short summary
Here we construct a new database of Antarctic automatic weather station (AWS) meteorological records, which is quality-controlled by restrictive criteria. This dataset compiled all available Antarctic AWS observations, and its resolutions are 3-hourly, daily and monthly, which is very useful for quantifying spatiotemporal variability in weather conditions. Furthermore, this compilation will be used to estimate the performance of the regional climate models or meteorological reanalysis products.
Minghu Ding, Xiaowei Zou, Qizhen Sun, Diyi Yang, Wenqian Zhang, Lingen Bian, Changgui Lu, Ian Allison, Petra Heil, and Cunde Xiao
Earth Syst. Sci. Data, 14, 5019–5035, https://doi.org/10.5194/essd-14-5019-2022, https://doi.org/10.5194/essd-14-5019-2022, 2022
Short summary
Short summary
The PANDA automatic weather station (AWS) network consists of 11 stations deployed along a transect from the coast (Zhongshan Station) to the summit of the East Antarctic Ice Sheet (Dome A). It covers the different climatic and topographic units of East Antarctica. All stations record hourly air temperature, relative humidity, air pressure, wind speed and direction at two or three heights. The PANDA AWS dataset commences from 1989 and is planned to be publicly available into the future.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022, https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
Short summary
The sea ice thickness was simulated by a single-column model and compared with in situ observations obtained off Zhongshan Station in the Antarctic. It is shown that the unrealistic precipitation in the atmospheric forcing data leads to the largest bias in sea ice thickness and snow depth modeling. In addition, the increasing snow depth gradually inhibits the growth of sea ice associated with thermal blanketing by the snow.
Yu Wang, Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and Roland Warner
The Cryosphere, 16, 1221–1245, https://doi.org/10.5194/tc-16-1221-2022, https://doi.org/10.5194/tc-16-1221-2022, 2022
Short summary
Short summary
The thermal structure of the Amery Ice Shelf and its spatial pattern are evaluated and analysed through temperature observations from six boreholes and numerical simulations. The simulations demonstrate significant ice warming downstream along the ice flow and a great variation of the thermal structure across the ice flow. We suggest that the thermal structure of the Amery Ice Shelf is unlikely to be affected by current climate changes on decadal timescales.
Jessica Cartwright, Alexander D. Fraser, and Richard Porter-Smith
Earth Syst. Sci. Data, 14, 479–490, https://doi.org/10.5194/essd-14-479-2022, https://doi.org/10.5194/essd-14-479-2022, 2022
Short summary
Short summary
Due to the scale and remote nature of the polar regions, it is essential to use satellite remote sensing to monitor and understand them and their dynamics. Here we present data from the Advanced Scatterometer (ASCAT), processed in a manner proven for use in cryosphere studies. The data have been processed on three timescales (5 d, 2 d and 1 d) in order to optimise temporal resolution as each of the three MetOp satellites is launched.
Joey J. Voermans, Qingxiang Liu, Aleksey Marchenko, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Takuji Waseda, Takehiko Nose, Tsubasa Kodaira, Jingkai Li, and Alexander V. Babanin
The Cryosphere, 15, 5557–5575, https://doi.org/10.5194/tc-15-5557-2021, https://doi.org/10.5194/tc-15-5557-2021, 2021
Short summary
Short summary
We have shown through field experiments that the amount of wave energy dissipated in landfast ice, sea ice attached to land, is much larger than in broken ice. By comparing our measurements against predictions of contemporary wave–ice interaction models, we determined which models can explain our observations and which cannot. Our results will improve our understanding of how waves and ice interact and how we can model such interactions to better forecast waves and ice in the polar regions.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Camilla K. Crockart, Tessa R. Vance, Alexander D. Fraser, Nerilie J. Abram, Alison S. Criscitiello, Mark A. J. Curran, Vincent Favier, Ailie J. E. Gallant, Christoph Kittel, Helle A. Kjær, Andrew R. Klekociuk, Lenneke M. Jong, Andrew D. Moy, Christopher T. Plummer, Paul T. Vallelonga, Jonathan Wille, and Lingwei Zhang
Clim. Past, 17, 1795–1818, https://doi.org/10.5194/cp-17-1795-2021, https://doi.org/10.5194/cp-17-1795-2021, 2021
Short summary
Short summary
We present preliminary analyses of the annual sea salt concentrations and snowfall accumulation in a new East Antarctic ice core, Mount Brown South. We compare this record with an updated Law Dome (Dome Summit South site) ice core record over the period 1975–2016. The Mount Brown South record preserves a stronger and inverse signal for the El Niño–Southern Oscillation (in austral winter and spring) compared to the Law Dome record (in summer).
Richard Porter-Smith, John McKinlay, Alexander D. Fraser, and Robert A. Massom
Earth Syst. Sci. Data, 13, 3103–3114, https://doi.org/10.5194/essd-13-3103-2021, https://doi.org/10.5194/essd-13-3103-2021, 2021
Short summary
Short summary
This study quantifies the characteristic complexity
signaturesaround the Antarctic outer coastal margin, giving a multiscale estimate of the magnitude and direction of undulation or complexity at each point location along the entire coastline. It has numerous applications for both geophysical and biological studies and will contribute to Antarctic research requiring quantitative information about this important interface.
Diana Francis, Kyle S. Mattingly, Stef Lhermitte, Marouane Temimi, and Petra Heil
The Cryosphere, 15, 2147–2165, https://doi.org/10.5194/tc-15-2147-2021, https://doi.org/10.5194/tc-15-2147-2021, 2021
Short summary
Short summary
The unexpected September 2019 calving event from the Amery Ice Shelf, the largest since 1963 and which occurred almost a decade earlier than expected, was triggered by atmospheric extremes. Explosive twin polar cyclones provided a deterministic role in this event by creating oceanward sea surface slope triggering the calving. The observed record-anomalous atmospheric conditions were promoted by blocking ridges and Antarctic-wide anomalous poleward transport of heat and moisture.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, and Takeshi Tamura
The Cryosphere, 15, 1697–1717, https://doi.org/10.5194/tc-15-1697-2021, https://doi.org/10.5194/tc-15-1697-2021, 2021
Short summary
Short summary
We used an ocean–sea ice–ice shelf model with a 2–3 km horizontal resolution to investigate ocean–ice shelf/glacier interactions in Lützow-Holm Bay, East Antarctica. The numerical model reproduced the observed warm water intrusion along the deep trough in the bay. We examined in detail (1) water mass changes between the upper continental slope and shelf regions and (2) the fast-ice role in the ocean conditions and basal melting at the Shirase Glacier tongue.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Joey J. Voermans, Jean Rabault, Kirill Filchuk, Ivan Ryzhov, Petra Heil, Aleksey Marchenko, Clarence O. Collins III, Mohammed Dabboor, Graig Sutherland, and Alexander V. Babanin
The Cryosphere, 14, 4265–4278, https://doi.org/10.5194/tc-14-4265-2020, https://doi.org/10.5194/tc-14-4265-2020, 2020
Short summary
Short summary
In this work we demonstrate the existence of an observational threshold which identifies when waves are most likely to break sea ice. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. We show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for operational forecasting models.
Alexander D. Fraser, Robert A. Massom, Kay I. Ohshima, Sascha Willmes, Peter J. Kappes, Jessica Cartwright, and Richard Porter-Smith
Earth Syst. Sci. Data, 12, 2987–2999, https://doi.org/10.5194/essd-12-2987-2020, https://doi.org/10.5194/essd-12-2987-2020, 2020
Short summary
Short summary
Landfast ice, or
fast ice, is a form of sea ice which is mechanically fastened to stationary parts of the coast. Long-term and accurate knowledge of its extent around Antarctica is critical for understanding a number of important Antarctic coastal processes, yet no accurate, large-scale, long-term dataset of its extent has been available. We address this data gap with this new dataset compiled from satellite imagery, containing high-resolution maps of Antarctic fast ice from 2000 to 2018.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Cited articles
Altena, B., Kääb, A., and Wouters, B.: Correlation dispersion as a measure to better estimate uncertainty of remotely sensed glacier displacements, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2021-202, in review, 2021.
Arrigo, K. R. and Thomas, D. N.: Large scale importance of sea ice biology
in the Southern Ocean, Antarct. Sci., 16, 471–486,
https://doi.org/10.1017/S0954102004002263, 2004.
Brown, C. D.: Spacecraft Mission Design Second Edition, AIAA, ISBN 1-56347-262-7, 1998.
Curry, J. A., Schramm, J. L., and Ebert, E. E.: Sea ice-albedo climate
feedback mechanism, J. Climate, 8, 240–247,
https://doi.org/10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2,
1995.
Dieckmann, G. S. and Hellmer, H. H.: The Importance of Sea Ice: An Overview, in: Sea Ice, 2, 1–22, ISBN 978-1-40581-8580-6, 2010.
Drucker, R., Martin, S., and Kwok, R.: Sea ice production and export from coastal polynyas in the Weddell and Ross Seas, Geophys. Res. Lett., 38, L17502, https://doi.org/10.1029/2011GL048668, 2011.
Ebert, E. E. and Curry, J. A.: An intermediate one-dimensional thermodynamic sea ice model for investigating ice-atmosphere interactions, J. Geophys. Res., 98, 10085–10109, https://doi.org/10.1029/93jc00656, 1993.
Emery, W. J., Fowler, C. W., Hawkins, J., and Preller, R. H.: Fram Strait satellite image-derived ice motions, J. Geophys. Res., 96, 4751–4768, https://doi.org/10.1029/90JC02273, 1991.
Giles, A. B., Massom, R. A., Heil, P., and Hyland, G.: Semi-automated
feature-tracking of East Antarctic sea ice from Envisat ASAR imagery, Remote
Sens. Environ., 115, 2267–2276, https://doi.org/10.1016/j.rse.2011.04.027, 2011.
Goosse, H., Campin, J. M., Fichefet, T., and Deleersnijder, E.: Impact of sea-ice formation on the properties of Antarctic bottom water, Ann. Glaciol., 25, 276–281, https://doi.org/10.3189/s0260305500014154, 1997.
Hakkinen, S.: Seasonal simulation of the Southern Ocean coupled ice-ocean system, J. Geophys. Res., 100, 22733–22748, https://doi.org/10.1029/95jc02441, 1995.
Heil, P. and Allison, I.: The pattern and variability of Antarctic sea-ice drift in the Indian Ocean and western Pacific sectors,
J. Geophys. Res.-Oceans, 104, 15789–15802, https://doi.org/10.1029/1999jc900076, 1999.
Heil, P., Lytle, V. I., and Allison, I.: Enhanced thermodynamic ice growth by sea-ice deformation, Ann. Glaciol., 27, 433–437, https://doi.org/10.3189/1998aog27-1-433-437, 1998.
Heil, P., Fowler, C. W., Maslanik, J. A., Emery, W. J., and Allison, I.: A comparison of East Antartic sea-ice motion derived using drifting buoys and remote sensing, Ann. Glaciol., 33, 139–144, https://doi.org/10.3189/172756401781818374, 2001.
Heil, P., Fowler, C. W., and Lake, S. E.: Antarctic Sea-ice velocity as
derived from SSM/I imagery, Ann. Glaciol., 44, 361–366,
https://doi.org/10.3189/172756406781811682, 2006.
Heil, P., Massom, R. A., Allison, I., Worby, A. P., and Lytle, V. I.: Role of off-shelf to on-shelf transitions for East Antarctic sea ice dynamics during spring 2003, J. Geophys. Res.-Oceans, 114, C09010, https://doi.org/10.1029/2008JC004873, 2009.
Heil, P., Massom, R. A., Allison, I., and Worby, A. P.: Physical attributes
of sea-ice kinematics during spring 2007 off East Antarctica, Deep-Sea Res.
Part II, 58, 1158–1171,
https://doi.org/10.1016/j.dsr2.2010.12.004, 2011.
Hoeber, H. and Gube-Lenhardt, M.: The eastern Weddell Sea drifting buoy data set of the Winter Weddell Sea Project (WWSP) 1986, Berichte zur Polarforsch., Reports Polar Res., 37, ISSN 01 76-5027, 1987.
Hutchings, J. K., Heil, P., and Hibler, W. D.: Modeling linear kinematic
features in sea ice, Mon. Weather Rev., 133, 3481–3497,
https://doi.org/10.1175/MWR3045.1, 2005.
Hutchings, J. K., Heil, P., Steer, A., and Hibler, W. D.: Subsynoptic scale spatial variability of sea ice deformation in the western Weddell Sea during early summer, J. Geophys. Res.-Oceans, 117, C00E04, https://doi.org/10.1029/2011JC006961, 2012.
Hutter, N., Losch, M., and Menemenlis, D.: Scaling Properties of Arctic Sea
Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in
Satellite Observations, J. Geophys. Res.-Oceans, 123, 672–687,
https://doi.org/10.1002/2017JC013119, 2018.
Kimura, N.: Sea ice motion in response to surface wind and ocean current in
the Southern Ocean, J. Meteorol. Soc. Jpn., 82, 1223–1231,
https://doi.org/10.2151/jmsj.2004.1223, 2004.
Kimura, N., Nishimura, A., Tanaka, Y., and Yamaguchi, H.: Influence of winter sea-ice motion on summer ice cover in the Arctic, Polar Res., 32, 20193, https://doi.org/10.3402/polar.v32i0.20193, 2013.
Kirwan, A. D.: Oceanic Velocity Gradients, J. Phys. Oceanogr., 5, 729–735, https://doi.org/10.1175/1520-0485(1975)005<0729:OVG>2.0.CO;2, 1975.
Kottmeier, C. and Sellmann, L.: Atmospheric and oceanic forcing of Weddell
Sea ice motion, J. Geophys. Res.-Oceans, 101, 20809–20824,
https://doi.org/10.1029/96JC01293, 1996.
Kwok, R.: Satellite remote sensing of sea-ice thickness and kinematics: A
review, J. Glaciol., 56, 1129–1140, https://doi.org/10.3189/002214311796406167,
2011.
Lavergne, T.: Low Resolution Sea Ice Drift Product User's Manual, https://osisaf-hl.met.no/sites/osisaf-hl/files/user_manuals/osisaf_cdop2_ss2_pum_sea-ice-drift-lr_v1p8.pdf (last access: 28 December 2021), 2016.
Lavergne, T., Piñol Solé, M., Down, E., and Donlon, C.: Towards a swath-to-swath sea-ice drift product for the Copernicus Imaging Microwave Radiometer mission, The Cryosphere, 15, 3681–3698, https://doi.org/10.5194/tc-15-3681-2021, 2021.
Lindsley, R. D. and Long, D. G.: Adapting the SIR algorithm to ASCAT, International Geoscience and Remote Sensing Sym- posium (IGARSS), Honolulu, HI, USA, 25–30 July 2010, https://doi.org/10.1109/IGARSS.2010.5650207, 2010.
Marsan, D., Stern, H., Lindsay, R., and Weiss, J.: Scale dependence and localization of the deformation of Arctic sea ice, Phys. Rev. Lett., 93, 178501, https://doi.org/10.1103/PhysRevLett.93.178501, 2004.
Mathew, N., Heygster, G., and Melsheimer, C.: Surface emissivity of the Arctic sea ice at AMSR-E frequencies, IEEE T. Geosci. Remote, 47, 4115–4124, https://doi.org/10.1109/TGRS.2009.2023667, 2009.
Meier, W. N., Maslanik, J. A., and Fowler, C. W.: Error analysis and assimilation of remotely sensed ice motion within 60 an Arctic sea ice model, J. Geophys. Res.-Oceans, 105, 3339–3356, https://doi.org/10.1029/1999jc900268, 2000.
Melsheimer, C. and Spreen, G.: AMSR2 ASI sea ice concentration data,
Antarctic, version 5.4 (NetCDF) (July 2012–December 2018), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.898400, 2019.
Molinari, R. and Kirwan, A. D.: Calculations of Differential Kinematic Properties from Lagrangian Observations in the Western Caribbean Sea, J. Phys. Oceanogr., 5, 483–491, https://doi.org/10.1175/1520-0485(1975)005<0483:codkpf>2.0.co;2, 1975.
Ninnis, R. M., Emery, W. J., and Collins, M. J.: Automated extraction of pack ice motion from Advanced Very High Resolution Radiometer imagery, J. Geophys. Res., 91, 10725–10734, https://doi.org/10.1029/jc091ic09p10725, 1986.
Rintoul, S. R., Hughes, C. W., and Olbers, D.: Chapter 4.6 The Antarctic
Circumpolar Current system, Int. Geophys., 77, 271–302,
https://doi.org/10.1016/S0074-6142(01)80124-8, 2001.
Scargle, J. D.: Studies in astronomical time series analysis. II – Statistical aspects of spectral analysis of unevenly spaced data, Astrophys. J., 496, 577–584, https://doi.org/10.1086/160554, 1982.
Schröder, M.: The Expedition PS111 of the Research POLARSTERN to the southern Weddell Sea in 2018, Berichte zur Polar-und Meeresforschung (Reports on Polar and Marine Research), Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, 718, 161 pp., 2018.
Spreen, G., Kwok, R., Menemenlis, D., and Nguyen, A. T.: Sea-ice deformation in a coupled ocean–sea-ice model and in satellite remote sensing data, The Cryosphere, 11, 1553–1573, https://doi.org/10.5194/tc-11-1553-2017, 2017.
Sumata, H., Lavergne, T., Girard-Ardhuin, F., Kimura, N., Tschudi, M. A.,
Kauker, F., Karcher, M., and Gerdes, R.: An intercomparison of Arctic ice
drift products to deduce uncertainty estimates, J. Geophys. Res.-Oceans,
119, 4887–4921, https://doi.org/10.1002/2013jc009724, 2014.
Szanyi, S., Lukovich, J. V., Barber, D. G., and Haller, G.: Persistent
artifacts in the NSIDC ice motion data set and their implications for
analysis, Geophys. Res. Lett., 43, 10800–10807,
https://doi.org/10.1002/2016GL069799, 2016.
Tian, T.: Passive microwave derived corrected AMSR2 Antarctic sea ice motion dataset – 2017, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/9tpt-tr09, 2021.
Tison, J. L., Maksym, T., Fraser, A. D., Fraser, A. D., Corkill, M., Corkill, M., Kimura, N., Nosaka, Y., Nomura, D., Nomura, D., Nomura, D., Vancoppenolle, M., Ackley, S., Stammerjohn, S., Wauthy, S., Van Der Linden, F., Van Der Linden, F., Carnat, G., Sapart, C., De Jong, J., Fripiat, F., and Delille, B.: Physical and biological properties of early winter Antarctic sea ice in the Ross Sea, Ann. Glaciol., 61, 241–259, https://doi.org/10.1017/aog.2020.43, 2020.
Tschudi, M. A., Meier, W. N., and Stewart, J. S.: An enhancement to sea ice motion and age products at the National Snow and Ice Data Center (NSIDC), The Cryosphere, 14, 1519–1536, https://doi.org/10.5194/tc-14-1519-2020, 2020.
Walsh, J. E.: The role of sea ice in climatic variability: Theories and
evidence, Atmos.-Ocean, 21, 229–242,
https://doi.org/10.1080/07055900.1983.9649166, 1983.
Weiss, J. and Marsan, D.: Scale properties of sea ice deformation and
fracturing, Comptes Rendus Phys., 5, 735–751,
https://doi.org/10.1016/j.crhy.2004.09.005, 2004.
Yang, J. and Neelin, J. D.: Sea-ice interaction with the thermohaline
circulation, Geophys. Res. Lett., 20, 217–220, https://doi.org/10.1029/92GL02920,
1993.
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
This study presents a comprehensive validation of a satellite observational sea ice motion...