Articles | Volume 16, issue 3
The Cryosphere, 16, 1007–1030, 2022
https://doi.org/10.5194/tc-16-1007-2022
The Cryosphere, 16, 1007–1030, 2022
https://doi.org/10.5194/tc-16-1007-2022
Research article
15 Mar 2022
Research article | 15 Mar 2022

Evaluation of Northern Hemisphere snow water equivalent in CMIP6 models during 1982–2014

Kerttu Kouki et al.

Related authors

Mapping the dependence of BC radiative forcing on emission region and season
Petri Räisänen, Joonas Merikanto, Risto Makkonen, Mikko Savolahti, Alf Kirkevåg, Maria Sand, Øyvind Seland, and Antti-Ilari Partanen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-288,https://doi.org/10.5194/acp-2022-288, 2022
Preprint under review for ACP
Short summary
Technical note: Parameterising cloud base updraft velocity of marine stratocumuli
Jaakko Ahola, Tomi Raatikainen, Muzaffer Ege Alper, Jukka-Pekka Keskinen, Harri Kokkola, Antti Kukkurainen, Antti Lipponen, Jia Liu, Kalle Nordling, Antti-Ilari Partanen, Sami Romakkaniemi, Petri Räisänen, Juha Tonttila, and Hannele Korhonen
Atmos. Chem. Phys., 22, 4523–4537, https://doi.org/10.5194/acp-22-4523-2022,https://doi.org/10.5194/acp-22-4523-2022, 2022
Short summary
Cloud-probability-based estimation of black-sky surface albedo from AVHRR data
Terhikki Manninen, Emmihenna Jääskeläinen, Niilo Siljamo, Aku Riihelä, and Karl-Göran Karlsson
Atmos. Meas. Tech., 15, 879–893, https://doi.org/10.5194/amt-15-879-2022,https://doi.org/10.5194/amt-15-879-2022, 2022
Short summary
Natural hazards and extreme events in the Baltic Sea region
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022,https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021,https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
Homogeneity assessment of Swiss snow depth series: comparison of break detection capabilities of (semi-)automatic homogenization methods
Moritz Buchmann, John Coll, Johannes Aschauer, Michael Begert, Stefan Brönnimann, Barbara Chimani, Gernot Resch, Wolfgang Schöner, and Christoph Marty
The Cryosphere, 16, 2147–2161, https://doi.org/10.5194/tc-16-2147-2022,https://doi.org/10.5194/tc-16-2147-2022, 2022
Short summary
Propagating information from snow observations with CrocO ensemble data assimilation system: a 10-years case study over a snow depth observation network
Bertrand Cluzet, Matthieu Lafaysse, César Deschamps-Berger, Matthieu Vernay, and Marie Dumont
The Cryosphere, 16, 1281–1298, https://doi.org/10.5194/tc-16-1281-2022,https://doi.org/10.5194/tc-16-1281-2022, 2022
Short summary
Multilayer observation and estimation of the snowpack cold content in a humid boreal coniferous forest of eastern Canada
Achut Parajuli, Daniel F. Nadeau, François Anctil, and Marco Alves
The Cryosphere, 15, 5371–5386, https://doi.org/10.5194/tc-15-5371-2021,https://doi.org/10.5194/tc-15-5371-2021, 2021
Short summary
Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset
Yufei Liu, Yiwen Fang, and Steven A. Margulis
The Cryosphere, 15, 5261–5280, https://doi.org/10.5194/tc-15-5261-2021,https://doi.org/10.5194/tc-15-5261-2021, 2021
Short summary
Local-scale variability of seasonal mean and extreme values of in situ snow depth and snowfall measurements
Moritz Buchmann, Michael Begert, Stefan Brönnimann, and Christoph Marty
The Cryosphere, 15, 4625–4636, https://doi.org/10.5194/tc-15-4625-2021,https://doi.org/10.5194/tc-15-4625-2021, 2021
Short summary
Download
Short summary
We analyze state-of-the-art climate models’ ability to describe snow mass and whether biases in modeled temperature or precipitation can explain the discrepancies in snow mass. In winter, biases in precipitation are the main factor affecting snow mass, while in spring, biases in temperature becomes more important, which is an expected result. However, temperature or precipitation cannot explain all snow mass discrepancies. Other factors, such as models’ structural errors, are also significant.