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Abstract. Seasonal snow cover of the Northern Hemisphere
(NH) is a major factor in the global climate system, which
makes snow cover an important variable in climate models.
Previously, substantial uncertainties have been reported in
NH snow water equivalent (SWE) estimates. A recent bias-
correction method significantly reduces the uncertainty of
NH SWE estimation, which enables a more reliable analy-
sis of the climate models’ ability to describe the snow cover.
We have intercompared NH SWE estimates between CMIP6
(Coupled Model Intercomparison Project Phase 6) models
and observation-based SWE reference data north of 40◦ N
for the period 1982–2014 and analyzed with a regression ap-
proach whether model biases in temperature (T ) and pre-
cipitation (P ) could explain the model biases in SWE. We
analyzed separately SWE in winter and SWE change rate
in spring. For SWE reference data, we used bias-corrected
SnowCCI data for non-mountainous regions and the mean of
Brown, MERRA-2 and Crocus v7 data for the mountainous
regions. The SnowCCI SWE data are based on satellite pas-
sive microwave radiometer data and in situ snow depth data.
The analysis shows that CMIP6 models tend to overestimate
SWE; however, large variability exists between models. In
winter, P is the dominant factor causing SWE discrepancies
especially in the northern and coastal regions. T contributes
to SWE biases mainly in regions, where T is close to 0◦ C
in winter. In spring, the importance of T in explaining the
snowmelt rate discrepancies increases. This is to be expected,
because the increase in T is the main factor that causes snow
to melt as spring progresses. Furthermore, it is obvious from
the results that biases in T or P cannot explain all model
biases either in SWE in winter or in the snowmelt rate in
spring. Other factors, such as deficiencies in model parame-
terizations and possibly biases in the observational datasets,

also contribute to SWE discrepancies. In particular, linear re-
gression suggests that when the biases in T and P are elim-
inated, the models generally overestimate the snowmelt rate
in spring.

1 Introduction

Seasonal snow cover of the Northern Hemisphere (NH) is
an important factor of the global climate system. The sea-
sonal snow cover greatly influences surface albedo and, thus,
the Earth’s energy balance (Callaghan et al., 2011; Flanner et
al., 2011; Qu and Hall, 2005; Trenberth and Fasullo, 2009).
This makes snow cover an important variable in climate mod-
els (Derksen and Brown, 2012; Loth et al., 1993). Addition-
ally, snow cover significantly affects the hydrological cycle
at high latitudes and in mountainous regions (Barnett et al.,
2005; Bormann et al., 2018; Callaghan et al., 2011; Dou-
ville et al., 2002). In winter, snow cover stores large amounts
of fresh water, which limits water availability. In spring and
summer, warming temperatures melt the snowpack, releasing
water as runoff. In some areas, snow is the largest freshwater
storage, and about one-sixth of the world’s population is de-
pendent on meltwater from snow (Barnett et al., 2005; Hall
et al., 2008).

Melting snow is also a major source for hydropower
(Callaghan et al., 2011; Magnusson et al., 2020). Due
to the global warming, the melting season begins earlier,
with the timing of streamflow peaks also becoming earlier
(Kundzewicz et al., 2008). In addition, changes in snow cover
affect the intensity of spring streamflow, as an increasing
proportion of winter precipitation is rain instead of snow
(Callaghan et al., 2011; Cohen et al., 2015; Dong et al., 2020;
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Kundzewicz et al., 2008). Thus, changes in snow cover af-
fecting the hydrological cycle can cause regional water short-
ages and affect hydropower production.

SWE (snow water equivalent) is the amount of water con-
tained in the snowpack (in units of kg m−2) or, equivalently,
the height of the water layer (in units of mm) that would re-
sult from melting the whole snowpack instantaneously (Fierz
et al., 2009). Recent studies show negative trends in global
SWE (Bormann et al., 2018; Derksen and Brown, 2012; Es-
sery et al., 2020; Hernández-Henríquez et al., 2015; Mor-
timer et al., 2020; Mudryk et al., 2017), but significant spa-
tial variability exists: North America shows clear negative
trends in observed SWE, while negative trends are less pro-
nounced in Eurasia (Kunkel et al., 2016; Pulliainen et al.,
2020). At mid-latitudes, SWE is more sensitive to warming
than at high latitudes (Brown and Mote, 2009). Although
the overall SWE trends are negative, there are also regions
where SWE is observed and projected to increase: SWE will
most likely increase in northern Siberia and northern Canada,
which largely results from the increased atmospheric mois-
ture holding capacity (Brown and Mote, 2009; Park et al.,
2012; Räisänen, 2008). Trends in snow cover also vary sea-
sonally: the seasonal snow in spring is especially sensitive to
warming due to the strong surface albedo feedback, and the
observed snow cover trends in spring are clearly negative in
both Eurasia and North America (Derksen and Brown, 2012;
Essery et al., 2020; Hernández-Henríquez et al., 2015). In
winter, the observed trends are less pronounced: early win-
ter from October to December shows even slightly positive
trends in both Eurasia and North America, while in January
and February, there are no significant trends (Hernández-
Henríquez et al., 2015).

Observing SWE at continental scale is only possible from
satellites, but also model and reanalysis products provide
gridded SWE estimates which have been widely used in hy-
drological and climate research (e.g., Huning and AghaK-
ouchak, 2020; Mortimer et al., 2020; Mudryk et al., 2020).
Previously, substantial uncertainties have been reported in
the NH SWE estimates (Bormann et al., 2018; Mudryk et al.,
2015). However, our knowledge of the NH SWE has recently
improved considerably with new bias corrections which re-
duce the uncertainty of the SWE estimate integrated over
NH from 33 % to 7.4 % (Pulliainen et al., 2020). The bias-
correction method, for example, considerably improves SWE
estimates in the moderate and deep SWE range (Pulliainen
et al., 2020), which has previously caused underestimation
in SWE estimates (Cho et al., 2020). However, limitations
still exist: the bias-correction method cannot be applied in
mountainous regions due to the lack of snow course measure-
ments and the large SWE variability in complex terrain (Pul-
liainen et al., 2020). Even though the area of mountainous
regions is limited, these regions store a considerable portion
of seasonal snow (Kim et al., 2021). For observation-based
datasets, the bias-correction method mostly increases SWE,
and it is therefore likely that without bias-correction or al-

ternative approaches where estimates are corrected using in
situ data, SWE in mountainous areas is underestimated (Pul-
liainen et al., 2020; Wrzesien et al., 2018).

Previous studies have shown that climate models have had
difficulties in correctly reproducing the seasonal snow and
its recent trends (Brutel-Vuilmet et al., 2013; Derksen and
Brown, 2012; Henderson et al., 2018; Santolaria-Otín and
Zolina, 2020; Thackeray et al., 2016). However, there are
clear improvements from CMIP5 to CMIP6. The snow cover
extent is better described in CMIP6 than in CMIP5 mod-
els (Mudryk et al., 2020; Zhu et al., 2021). The snow cover
fraction is underestimated in both CMIP5 and CMIP6 multi-
model ensemble means, but the biases are clearly smaller in
CMIP6 than in CMIP5 (Zhu et al., 2021). SWE, in turn, is
biased high in both CMIP5 and CMIP6, and the peak SWE
is also overestimated in almost all models (Mudryk et al.,
2020). The model biases also vary seasonally; the snow cover
fraction is best described in the period from January to March
in CMIP6 models (Zhu et al., 2021), whereas the SWE bias
is smallest in autumn and early winter and increases in spring
(Mudryk et al., 2020). Both CMIP5 and CMIP6 models are
mostly able to reproduce the observed negative trend in snow
cover area, but there are uncertainties in the magnitude of the
trend (Mudryk et al., 2020; Zhu et al., 2021). The CMIP5
models are able to better capture the trend in snow cover
extent than the trend in SWE (Santolaria-Otín and Zolina,
2020).

Due to the reasons described above, it is crucial that sea-
sonal snow is accurately described in climate models to prop-
erly predict the state of the cryosphere in future climate.
Therefore, it is important to study how the new CMIP6 cli-
mate models can describe the seasonal snow, as well as where
the uncertainties and discrepancies arise. The current paper
focuses on the climatological distribution of SWE in CMIP6
models. To our knowledge, only one previous study has eval-
uated NH SWE in CMIP6 models: Mudryk et al. (2020) com-
pared SWE estimates between CMIP6 models and several
observational datasets. Additionally, they studied the con-
nection between SWE and temperature but did not consider
temperature and precipitation together. However, they stated
that a coordinated analysis of temperature and precipitation
is needed to determine SWE trend drivers. In general, sim-
ulated trends of SWE can be considered more reliable if the
current climatological distribution of SWE is simulated ac-
curately. Therefore, in the present study, we consider, for the
first time, the role of both temperature and precipitation for
SWE biases in CMIP6 climate models. Specifically, the main
goals of this study are (1) to intercompare the CMIP6 and
observation-based SWE estimates and (2) to analyze whether
temperature and precipitation biases could explain the SWE
biases.
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2 Data

2.1 CMIP6 model data

The data of this study consist of CMIP6 climate model data
(Table 1) and observational and reanalysis data (Table 2). For
CMIP6, we used monthly mean data from those models for
which either historical or esm-hist simulations were avail-
able for download in August 2021. The historical and esm-
hist simulations extend from 1850 to 2014. In historical sim-
ulations, the CO2 concentrations are prescribed, whereas in
esm-hist simulations, the models calculate the atmospheric
CO2 concentration interactively based on prescribed CO2
fluxes (Eyring et al., 2016). In this study, we used three
variables from CMIP6 models: SWE (variable “snw”, unit
kg m−2), surface air temperature (“tas”, unit kelvin), and pre-
cipitation (“pr”, unit kg m−2 s−1). Altogether, there are 17
high-resolution models (100 km) and 21 low-resolution mod-
els (250–500 km) in Table 1. We have evaluated the SWE
sum over the entire study area for every model but per-
formed the subsequent detailed analysis only for the high-
resolution (100 km) models. We decided to leave the models
with coarser resolution out of the analysis, as coarser resolu-
tion would differ too much from the resolution of the obser-
vational datasets, making the comparison more problematic.
The number of ensemble members available for the chosen
models varies between 1 and 16. For simplicity, we only con-
sider the first member of each model ensemble (r1i1p1f1) in
this study. A brief analysis showed that the differences be-
tween different ensemble members for the same model were
generally smaller compared to intermodel differences. Fig-
ure S1 in the Supplement shows all realizations of three dif-
ferent models (CESM2, MPI-ESM1-2-HR, and EC-Earth3),
which were chosen in this figure due to a high number of
realizations. The figure illustrates that internal variability of
each model is smaller than the intermodel variability.

2.2 Observational and reanalysis data

For SWE reference data, we have used ESA CCI Snow
“SnowCCI” (European Space Agency Climate Change Ini-
tiative, Snow) data for the non-mountainous regions and
MERRA-2 (the Modern-Era Retrospective analysis for Re-
search and Applications, Version 2; Gelaro et al., 2017;
GMAO, 2015a), Brown (Brown et al., 2003), and Crocus
v7 (Brun et al., 2013) data for the mountainous regions.
SnowCCI data, which is the same product as the Glob-
Snow v3 SWE product (except provided in geographical
latitude–longitude grid for easier comparison with climate
model data), are based on satellite passive microwave ra-
diometer data and in situ data (Luojus et al., 2021; Pulli-
ainen et al., 2020). The SnowCCI algorithm combines mi-
crowave brightness temperature (Tb) data, observed by satel-
lite instruments, with ground-based snow depth measure-
ments from the global network of synoptic weather sta-

tions (Luojus et al., 2021). The SWE estimation algorithm
is based on the difference in Tb between two frequencies (37
and 19 GHz). The ground beneath the snowpack emits mi-
crowaves, which propagate through the snowpack, being par-
tially absorbed during the process. The low-frequency and
high-frequency signals attenuate differently as they propa-
gate through the snowpack, which makes the difference in Tb
a good indicator for estimating SWE (Cagnati et al., 2004).
The attenuation is affected by snow depth, snow grain size,
and snow density. The high-frequency signal attenuates more
than the low-frequency signal when it propagates through
the snowpack, especially for a deep, dense, and large-grained
snowpack. Thus, a large difference between high- and low-
frequency signals indicates a high SWE (Kelly et al., 2003).
The SnowCCI approach combines Tb differences with in situ
snow depth observations, which considerably improves SWE
estimation relative to a satellite-only retrieval (Pulliainen,
2006; Takala et al., 2011).

A recent bias-correction method combines the original
SnowCCI data with extensive ground-based snow course
SWE measurements, which significantly reduces the uncer-
tainty of NH SWE estimation (Pulliainen et al., 2020). The
method decreases the uncertainty of hemisphere-mean SWE
estimation from 33 % to 7.4 %. The bias-corrected SnowCCI
data are mapped to a 25 km EASE-Grid and are available
from 1979. Mountainous regions, glaciers, and ice sheets are
excluded from the data. The original SnowCCI data are avail-
able around the year, while bias-corrected SnowCCI data are
only available from February to May. Despite limitations
in its temporal coverage, we have used the bias-corrected
data in this study. We chose to do this as the bias-correction
method significantly reduced the uncertainty and made the
observational data more accurate, which, in turn, makes the
comparison with the models far more meaningful.

As the bias-corrected SnowCCI data are only available
for non-mountainous grid cells, we have used an average
of the MERRA-2, Brown, and Crocus v7 SWE products for
the mountainous regions. MERRA-2 is a NASA (National
Aeronautics and Space Administration) atmospheric reanal-
ysis, and it is available from year 1980. The spatial resolu-
tion of the data is 0.625◦× 0.5◦ (Gelaro et al., 2017). From
MERRA-2, we have used the SWE product (Gelaro et al.,
2017; GMAO, 2015a). Brown SWE product, in turn, uses
a simple snow scheme driven by ERA-Interim reanalysis
(Brown et al., 2003). For the third SWE dataset, we have used
Crocus version 7 product, which is a physical snow model
driven by ERA-Interim reanalysis (Brun et al., 2013). Both
MERRA-2 and Crocus v7 tend to slightly overestimate SWE
under 150 kg m−2 and underestimate SWE over 150 kg m−2

(Mortimer et al., 2020).
For precipitation (P ) and temperature (T ) reference data,

we used GPCC (Global Precipitation Climatology Centre)
version 2018 precipitation data (Schneider et al., 2018) and
MERRA-2 temperature data (Gelaro et al., 2017; GMAO,
2015b). GPCC is a monthly precipitation product based on
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Table 1. CMIP6 models used in this study.

Nominal
resolution

Institution Model Experiment

ID

Reference

100 km Beijing Climate Center (BCC) BCC-CSM2-MR historical Wu et al. (2018a)
esm-hist Wu et al. (2018b)

National Center for Atmospheric Research
(NCAR)

CESM2
CESM2-WACCM

historical
historical

Danabasoglu (2019a)
Danabasoglu (2019b)

Lawrence Livermore National Laboratory (LLNL) E3SM-1-0 historical Bader et al. (2019)

EC-Earth Consortium EC-Earth3 historical EC-Earth (2019a)
EC-Earth3-AerChem historical EC-Earth (2020a)
EC-Earth3-CC esm-hist EC-Earth (2021)
EC-Earth3-Veg historical EC-Earth (2019b)

Geophysical Fluid Dynamics Laboratory
(NOAA-GFDL)

GFDL-CM4
GFDL-ESM4

historical
historical
esm-hist

Guo et al. (2018)
Krasting et al. (2018a)
Krasting et al. (2018b)

Max Planck Institute for Meteorology (MPI-M) MPI-ESM1-2-HR historical Jungclaus et al. (2019)
Meteorological Research Institute (MRI) MRI-ESM2-0 historical Yukimoto et al. (2019)
Norwegian Climate Consortium (NCC) NorESM2-MM historical Seland et al. (2019a)
Seoul National University (SNU) SAM0-UNICON historical Park and Shin (2019)
Research Center for Environmental Changes,
Academia Sinica (AS-RCEC)

TaiESM1 historical Lee and Liang (2020)

250 km Commonwealth Scientific and Industrial
Research Organisation (CSIRO)

ACCESS-CM2
ACCESS-ESM1-5

historical
historical
esm-hist

Dix et al. (2019)
Ziehn et al. (2019a)
Ziehn et al. (2019b)

Alfred Wegener Institute (AWI) AWI-ESM-1-1-LR historical Danek et al. (2020)
Beijing Climate Center (BCC) BCC-ESM1 historical Zhang et al. (2018)
National Center for Atmospheric Research (NCAR) CESM2-WACCM-FV2 historical Danabasoglu (2019c)
EC-Earth Consortium EC-Earth3-Veg-LR historical EC-Earth (2020b)
Goddard Institute for Space Studies GISS-E2-1-G historical NASA/GISS (2018)

GISS-E2-1-G-CC esm-hist NASA/GISS (2019a)
GISS-E2-1-H historical NASA/GISS (2019b)

Institut Pierre Simon Laplace IPSL-CM5A2-INCA historical Boucher et al. (2020)
IPSL-CM6A-LR historical Boucher et al. (2018)
IPSL-CM6A-LR-
INCA

historical Boucher et al. (2021)

Japan Agency for Marine-Earth Science and
Technology (JAMSTEC)

MIROC6 historical Tatebe and Watanabe
(2018)

Max Planck Institute for Meteorology (MPI-M) MPI-ESM-1-2-HAM
MPI-ESM1-2-LR

historical
historical
esm-hist

Neubauer et al. (2019)
Wieners et al. (2019a)
Wieners et al. (2019b)

Norwegian Climate Consortium (NCC) NorESM2-LM historical Bentsen et al. (2019)
esm-hist Seland et al. (2019b)

500 km Canadian Centre for Climate Modelling and
Analysis, Environment and Climate Change Canada

CanESM5 historical
esm-hist

Swart et al. (2019a)
Swart et al. (2019b)
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Table 2. Observational and reanalysis datasets used in this study.

Variable, unit Dataset Resolution Reference

Snow water equivalent (SWE), mm SnowCCI 25 km × 25 km, monthly Luojus et al. (2021)
Brown 0.75◦ × 0.75◦, monthly Brown et al. (2003)
Crocus v7 0.5◦ × 0.5◦, monthly Brun et al. (2013)
MERRA-2 0.5◦ × 0.625◦, monthly Gelaro et al. (2017)

GMAO (2015a)

Precipitation (P ), mm per month GPCC V2018 0.5◦ × 0.5◦, monthly Schneider et al. (2018)

2 m air temperature (T ), K MERRA-2 0.5◦ × 0.625◦, monthly Gelaro et al. (2017)
GMAO (2015b)

Forest cover fraction, % ESA CCI Land Cover 300 m × 300 m, monthly ESA (2017)
time series v2.0.7

data from rain gauge stations, and the data are available on
a 0.5◦ global grid from 1891 to the present (Schneider et al.,
2018). The product agrees well with other precipitation prod-
ucts (Behrangi et al., 2016; Sun et al., 2018). All precipita-
tion data are presented here in units of kilograms per square
meter per month (kg m−2 per month), which is equivalent to
millimeters per month (mm per month).

For T reference data, we have used the monthly mean 2 m
air temperature product, which agrees well with observations
in the Arctic (Gelaro et al., 2017; Simmons et al., 2017), and
the mean values show very small biases (Bosilovich et al.,
2015). MERRA-2 daily temperature tends to have a cool day-
time bias and a warm nighttime bias (Bosilovich et al., 2015;
Draper et al., 2018). However, this is not a major issue for our
study because we use the monthly mean product. In addition,
MERRA-2 seems to underestimate global warming trends in
the last years of our study period (Gelaro et al., 2017; Sim-
mons et al., 2017). Additionally, we used the ESA CCI Land
Cover time series v2.0.7 (ESA, 2017) to study the effect of
forest cover on the results.

3 Methods

We used the nearest-neighbor method to resample CMIP6,
Brown, Crocus v7, MERRA-2, and GPCC data to the 25 km
equal-area projection. The fractional forest cover was calcu-
lated from the higher-resolution ESA CCI Land Cover time
series as the fraction of forest cover grid cells of all cells
within each 25 km × 25 km grid area. The bias-corrected
SnowCCI data are available only for non-mountainous re-
gions. Therefore, we used the bias-corrected SnowCCI data
for the non-mountainous regions, and for the grid cells that
were defined as mountainous in SnowCCI data, we used
the mean SWE of the Brown, MERRA-2, and Crocus v7
datasets. The complex terrain causes uncertainties in SWE
estimates, but averaging over multiple products can improve
the accuracy (Mortimer et al., 2020). We calculated the
model biases by subtracting the observation value from the

model value, i.e., model minus observation, and compared
the biases grid cell by grid cell. Our study covered land ar-
eas north of 40◦ N and years between 1982 and 2014. In
this study, we mainly concentrated on snow-covered areas,
i.e., grid cells where SWE > 10 kg m−2. The snow-covered
area was computed individually for each model and for each
month. We have also filtered out grid cells with modeled
SWE above 2000 kg m−2, as those values greatly exceed ob-
served SWE (Stuefer et al., 2013).

We focus the analysis on two seasons: winter and spring.
For the winter season, we consider only the SWE in Febru-
ary, since bias-corrected SnowCCI data are only available
from February to May. We studied through linear regression
analysis how the SWE bias in February depends on the pre-
cipitation (P ) bias and temperature (T ) biases, summed over
the three preceding months from November to January:

1SWE= βT1Tcum+βP1Pcum+C, (1)

where Pcum and Tcum are the precipitation and temperature
summed over November–January, βP and βT are the regres-
sion coefficients, and C is the constant. Here, as well as in
Eq. (2) below, 1 refers to the model bias, i.e., the differ-
ence between the modeled value (defined for each year sepa-
rately) and the observed climatological value (averaged over
the whole period considered). We used the climatological av-
erage for the observations because climate models cannot be
expected to correctly simulate the weather conditions of indi-
vidual years. Thus, the regression coefficients βP and βT de-
pend only on the modeled interannual variations. The equa-
tions are presented in more detail in Appendix A.

For the spring season, we considered the monthly changes
in SWE from February to March, from March to April,
and from April to May. We defined the SWE change rate
(SWEchange) as the difference in SWE between each month
and the previous month. Positive values indicate an increase
in SWE from one month to the next, and negative values in-
dicate a decrease. The model-minus-observation difference
1SWEchange (i.e., the model bias) was then regressed against
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Figure 1. Mean SWE in April for the CMIP6 high-resolution (100 km) multi-model ensemble mean (a), and the SWE reference data (b) and
the model SWE bias (c) for the period 1982–2014.

the monthly precipitation and temperature biases:

1SWEchange = βT1T +βP1P +C. (2)

For example, when considering SWEchange from February to
March, we used P and T for March. We pooled together the
values of 1SWEchange, 1P , and 1T for the whole spring
period (February through May) to determine the regression
parameters βP and βT and C. The equations are presented in
more detail in Appendix A.

We included only snow-covered grid cells (SWE >

10 kg m−2) in the analysis and calculated the linear regres-
sions only for grid cells with at least four values available
during the study period. We calculated the linear regres-
sions for the whole study period 1982–2014 and separately
for three shorter periods: 1982–1991, 1992–2001, and 2002–
2014.

By substituting into Eqs. (1) and (2) the mean model bi-
ases, it is possible to split the model SWE biases into three
components: the contribution of P (PC), the contribution of
T (TC), and the contribution of other factors. For SWE in
winter, PC and TC are

PC = βP1Pcum,mean, (3)
TC = βT1Tcum,mean. (4)

Correspondingly, for SWEchange in spring, PC and TC are

PC = βP1Pmean, (5)
TC = βT1Tmean. (6)

The third component in both winter and spring is the residual
term, which is the constant from the regression Eq. (1) or (2).
This is the contribution of other factors, including, for exam-
ple, inaccuracies in observational datasets and model param-
eterizations related to, for example, snow and surface energy
budget. The residual (R) gives an estimate for the SWE bias
that would remain if P and T were simulated correctly in the
model.

4 Results

Figure 1 shows as an example the mean SWE of all CMIP6
high-resolution (100 km) models, the mean of SWE refer-
ence data, and 1SWE (CMIP6–SWE reference) in April
during 1982–2014. The corresponding figures for precipita-
tion and temperature are in the Supplement (Fig. S2). The
SWE distribution has a large spatial variability: the high-
est values exceed 240 kg m−2 in both multi-model mean and
SWE reference data, and these values are found in northeast-
ern Canada, around the Rocky Mountains, in Scandinavia,
and in some parts of Siberia. Although the SWE distribu-
tion is similar for the multi-model mean and SWE refer-
ence data, the models overestimate SWE in several regions,
which are mostly located in the northern parts of the study
area in northeastern Canada, northeastern Siberia, and Eura-
sia around 90◦ E. In the southern parts of the study area, the
multi-model mean mainly underestimates SWE.

The monthly SWE sum of the whole study area varies con-
siderably between the models (Fig. 2). In February, March,
and April, the modeled SWEs (solid and dashed grey lines)
vary by a factor of 2, and in May, they even vary by a fac-
tor of 3. The variability between models is notably larger
than the uncertainty range of the SWE reference estimate
(blue markers). The low-resolution models (thin grey lines)
do not significantly differ from the high-resolution models
(dashed lines); the SWE sum is mostly in the same range in
both resolution groups. Also, the mean values for both high-
resolution (red markers) and low-resolution (purple markers)
models are very close to each other. However, there are two
low-resolution models that show very high SWE sum val-
ues in every month, which are clear outliers. These outliers
are “GISS-E2-1-G historical” and “GISS-E2-1-G-CC esm-
hist”, and we have found that the anomalous values are due
to a very high SWE in the mountainous areas. All models
reach the highest SWE in March, which is consistent with
observations. Overall, most models overestimate the monthly
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SWE sum, and the CMIP6 multi-model ensemble mean is
higher than the SWE reference data in every month. While a
few models underestimate the SWE sum especially in May,
the majority of models overestimate the SWE sum in every
month. We have performed the following detailed analysis
only for the high-resolution models. In addition, since the re-
sults for the different model versions for each institute tend
to be rather similar, only one model version for each of the
10 institutes is shown in the figures. Figures including all 17
high-resolution model versions are provided in the Supple-
ment.

4.1 SWE in winter

The mean SWE bias in February shows large spatial variabil-
ity within each model but also varies much between the mod-
els (Figs. 3 and S3). The areal-mean model bias varies from
about−8 kg m−2 to 40 kg m−2. However, the largest negative
and positive biases are well concentrated in the same areas
in all models. Overall, the models tend to overestimate the
SWE in the northern parts of the study area but also in south-
ern Siberia. The negative biases, in turn, occur mostly in the
south and especially on the coastal areas of North America.
In some models, there are negative biases also in the middle
parts of Eurasia. Large biases also occur over Rocky Moun-
tains in every model, but the sign of the bias varies. The
CESM2 and NorESM2-MM models show the largest over-
estimations. For both models, the bias is very high in large
regions in northern parts of North America and Eurasia. In
these areas the relative bias is typically 150 %–200 %. The
BCC-CSM2-MR, E3SM-1-0, and SAM0-UNICON models
also show large positive biases, which are concentrated in
the same areas; although, the biases are clearly smaller than
for the CESM2 and NorESM2-MM models. In other mod-
els, the areal-mean biases are closer to 0 kg m−2; however,
regional differences exist. Overall, the GFDL models are the
most consistent with the SWE reference data during Febru-
ary.

All models overestimate NH extratropical precipitation
from November to January (Figs. 4 and S4). The largest over-
estimations are mainly in southern regions and in coastal
areas. There are small areas where underestimation occurs,
especially in Eurasia around 90◦ E. In every model, there
are large regions where Pcum bias could logically explain
the SWE bias (marked with dots), i.e., areas where models
overestimate or underestimate both SWE and Pcum. These
regions are mostly in the northern parts of the study area,
whereas in the south there are more areas where SWE and
Pcum discrepancies are more often not consistent with each
other.

For model T biases, the values are mostly positive; how-
ever, regional and intermodel variability exists (Figs. 5 and
S5). We show1T (1Tcum divided by 3) instead of1Tcum so
that the values are more intuitive and easier to interpret. The
CESM2 and E3SM-1-0 models generally simulate too warm

temperatures, and the largest positive biases are in the north-
ern parts of the study area. The GFDL, MPI-ESM1-2-HR,
and MRI-ESM2-0 models simulate too warm temperatures
in the north, while the SAM0-UNICON and TaiESM1 mod-
els, in turn, simulate too cold temperatures in the north. The
BCC-CSM2-MR and EC-Earth3 models are the most consis-
tent with the MERRA-2 data. In every model, there are large
areas where the signs of biases for T and SWE are opposite
(marked with dots), indicating that biases in T might explain
biases in SWE. However, in these areas, the biases are mainly
quite small.

The contributions to SWE biases (1SWE) due to precip-
itation biases (PC), temperature biases (TC), and other fac-
tors (residual R) are quantified using the regression Eqs. (1),
(3), and (4). To summarize their relative importance, Figs. 6
and S6 show the areal means of the absolute values of
1SWE, PC , TC , and R. The mean 1SWE varies from under
30 kg m−2 in the GFDL-CM4 model to around 50 kg m−2 in
the CESM2 and NorESM2-MM models. In all models, the
contribution of P on 1SWE is clearly larger than the contri-
bution of T . However, the residual is also typically large, in-
dicating that P and T cannot explain the SWE biases alone.
This implies that observational uncertainty or model struc-
tural factors, such as parameterizations related to the surface
energy budget or hydrology, play a considerable part in the
observed SWE biases. We studied the terms’ statistical sig-
nificance by using the t test and found that all the terms (PC ,
TC , and R) are significantly different from zero at the 99 %
confidence level. The variability in these parameters between
the decadal subperiods and the full three-decade analysis pe-
riod was slight, indicating consistent behavior across time in
both models and observations.

Figures 7 and S7 show the spatial distribution of the con-
tributions of P and T and the residual for each model for the
entire study period 1982–2014. The spatial distributions of
R2, βP , and βT are shown in the Supplement (Fig. S8). Also,
the contributions of P and T and the residual calculated for
the shorter time periods are in the Supplement (Figs. S9–
S11). Figure 7 shows that, overall, the contribution of P is
larger than the contribution of T , as Fig. 6 already indicated.
P contributes to 1SWE especially over northern and coastal
regions, with fairly similar patterns for all models consid-
ered. The regression coefficient βP also shows large values
(βP ≈ 1), especially in the northern and middle parts of both
continents (Fig. S8), with relatively small intermodel vari-
ations. This is consistent with the expectation that in cold
regions an increase in precipitation translates into a similar
increase in SWE.

The contribution of T is mostly very weak (Fig. 7); how-
ever, for some models, T shows stronger contribution es-
pecially over western parts of Eurasia and over northeast-
ern Canada. The regression coefficient βT is mostly negative
or very close to zero (Fig. S8). The negative correlation is
strongest in Europe and southern parts of North America and
Eurasia. In these regions, the temperature is close to 0◦ C
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Figure 2. Monthly SWE sum over the entire study area in February, March, April, and May separately for each high-resolution (100 km)
CMIP6 model (grey dashed lines), for each low-resolution (> 100 km) CMIP6 model (thin solid lines), for the high-resolution CMIP6 multi-
model ensemble mean (red markers), for the low-resolution CMIP6 multi-model ensemble mean (purple markers), and for the SWE reference
data (blue markers). The blue shaded area indicates the 7.4 % uncertainty range of the SWE reference data.

in winter, which makes temperature an important driver of
the SWE. Northern Canada and Siberia, in turn, show areas
with positive correlation, meaning that warmer temperatures
cause higher SWE. Studies have shown that when the tem-
perature rises due to climate change, the winter precipita-
tion will also increase (Brown and Mote, 2009; Park et al.,
2012; Räisänen, 2008). In the south, warming temperatures
will shift winter precipitation from snow to rain. In the north,
in turn, temperature will stay below 0◦ C despite the warm-
ing, which will lead to an increase in snowfall in the coldest
regions of NH and, therefore, to an increase in SWE. This
phenomenon is most likely seen here as well; warmer tem-
peratures in the models will increase winter precipitation,
resulting in too high SWE in the models. In fact, this ex-
poses a limitation of the regression Eq. (1): it treats 1Tcum
and 1Pcum as independent variables, which is not fully real-
istic. When these variables are correlated, their contributions
to 1SWE cannot be fully separated.

The residual shows large spatial and intermodel variabil-
ity (Fig. 7). Especially for the CESM2 and NorESM2-MM
models, the residual shows very large positive values. These
large positive residuals are mainly concentrated in the same
areas where the models clearly overestimate SWE (Fig. 3).
This indicates that, for these models, the large SWE biases in

these areas are mainly caused by some other factors than P
or T . For other models, the residual shows both positive and
negative values across the study area. The possible factors
causing the large residual term are discussed in more detail
in Sect. 5.2.

4.2 Monthly SWE change in spring

Figures 8 and S13 show the mean bias in monthly SWE
change (1SWEchange) in spring in the snow-covered areas
for the whole study period 1982–2014. A figure showing
the SWE change rate of multi-model mean, SWE reference
data, and bias in multi-model mean is in the Supplement
(Fig. S12). Positive 1SWEchange means that there is less
snowmelt in the models compared to the SWE reference data,
and negative 1SWEchange indicates that snow melts faster in
models, respectively. The areal-mean 1SWEchange is mainly
negative in every model, which means that snow melts gen-
erally faster in the models compared to the SWE reference
data. However, there is a large spatial variability in every
model, and the intermodel variability is also large. In the
CESM2 and NorESM2-MM models, three areas show dis-
tinctly positive 1SWEchange: northeastern Canada, northern
Siberia, and eastern Siberia. In all these areas, the SWE bias
in February (Fig. 3) was already clearly positive, meaning
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Figure 3. The mean model bias in SWE (1SWE, model minus observation) in snow-covered areas in February 1982–2014.

that these models greatly overestimate SWE in these areas
also in spring. The EC-Earth3 model shows clear positive
1SWEchange in northeastern Canada but also in Eurasia. The
area with positive biases in Eurasia is very extensive and dif-
fers notably from the other models. The EC-Earth3 model
has been found to drastically overestimate the snow cover
extent as well (Mudryk et al., 2020). The SAM0-UNICON
and TaiESM1 models also show positive values in north-
ern Siberia. The GFDL and MPI-ESM1-2-HR models, in
turn, show large areas with negative1SWEchange in northern
Canada and in eastern parts of Siberia, which differs from the
other models. Overall, the model biases in the SWE change
rate in spring (Fig. 8) show larger intermodel variations than
the corresponding biases in SWE in February (Fig. 3).

As in winter (Fig. 4), models on average overestimate pre-
cipitation in spring as well (Figs. 9 and S14). The largest
overestimations occur mainly in southern regions and in
coastal areas. The regions with mutual biases in P and
SWEchange (marked with dots) show large intermodel vari-
ability, and they are less extensive than in winter (Fig. 4).
This indicates that precipitation is not as important factor in
spring as it is in winter.

The mean T bias in spring shows a large spatial vari-
ability within each model, but also the variability between
models is very clear (Figs. 10 and S15). The BCC-CSM2-

MR, E3SM-1-0, MPI-ESM1-2-HR, and MRI-ESM2-0 mod-
els show a warm bias in the northern parts of the study area,
whereas the SAM0-UNICON and TaiESM1 models show a
cold bias in the same area. The EC-Earth3 model, in turn,
has a cold bias in eastern Eurasia near 60◦ N, which clearly
differs from the other models. These areas also exhibited less
snowmelt than the SWE reference data, which indicates that
the bias in snow melt rate can be caused by the bias in T . The
sizes and locations of the areas with mutually consistent bi-
ases in T and SWEchange (marked with dots) vary greatly be-
tween models. Especially in the GFDL-CM4 model, the size
of these areas is small, while in most of the models, the dots
cover the majority of the study area. Furthermore, in those re-
gions where the biases in T and SWEchange are consistent in
spring, the cold or warm temperature biases are typically rel-
atively large, when compared with the corresponding biases
in winter (Fig. 5). This indicates that biases in T are a more
important driver of biases in SWE in spring than in winter.

Figures 11 and S16 summarize the areal means of the ab-
solute values of1SWEchange, the contribution of P (PC), the
contribution of T (TC), and the contribution of other factors
(the residual R). The contributions of P and T are quite sim-
ilar in magnitude in almost all the models. None of the vari-
ables shows a large dependence on the period considered.
The EC-Earth3 model stands out from the other models, as
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Figure 4. The mean model bias in Pcum (1Pcum, model minus observation) in snow-covered areas from November to January 1982–2014.
The dots indicate areas where the models either overestimate both SWE and P or underestimate both SWE and P .

TC is larger than in the other models. The large contribution
of T in 1SWEchange was already seen in Figs. 8 and 10, as
the spatial distribution of the biases were similar. This also
suggests that the overestimated snow cover extent in the EC-
Earth3 model (Mudryk et al., 2020) might be at least partly
due to the cold bias. In all models, the residual is larger than
PC or TC . This indicates that, overall, the biases in snow melt
rate in spring are dominated by other factors than T or P .
These factors will be further discussed in Sect. 5.2. We also
studied the terms’ statistical significance by using the t test.
Even though the contributions of T and P are considerably
smaller than the residual term, all the terms (PC , TC , and R)
are significantly different from zero at the 99 % confidence
level.

Figures 12 and S17 show the spatial distribution of the
contributions of P and T and the residual for each model
for the entire study period 1982–2014. The spatial distribu-
tions of R2, βP , and βT are displayed in the Supplement
(Fig. S18). Also, the contributions of P and T and resid-
ual calculated for the shorter time periods are in the Supple-
ment (Figs. S19–S21). P contributes to 1SWEchange mostly
in Alaska and northern Siberia, but the effect varies between
models. Furthermore, even though T showed clear warm and
cold biases in many areas (Fig. 10), the contribution of T

is mostly quite weak, because of the small regression co-
efficient βT (Fig. S6). However, exceptions exist; in partic-
ular, the EC-Earth3 and EC-Earth3-Veg models stand out,
as in Eurasia there is a large area where a negative bias in
T (Fig. 10) contributes substantially to a positive bias in
SWEchange (Fig. 8). Also, for the CESM2 and GFDL-ESM4
models, T shows a stronger contribution over northern parts
of North America. Overall, however, the contributions of
both P and T are small compared to the residual R, which is
consistent with Fig. 11. This indicates that other factors than
T or P are the dominant drivers for the SWEchange discrepan-
cies. The residual is mostly negative in all the models, which
means that snow would melt too fast in the models if T and
P were simulated correctly. This issue is discussed further in
Sect. 5.2.

5 Discussion

The analysis shows that CMIP6 models overestimate the to-
tal SWE mass over the entire study area with a few excep-
tions (Fig. 2), which is consistent with the previous study
(Mudryk et al., 2020). The overestimation of SWE was also
observed in CMIP5 models (Mudryk et al., 2020; Santolaria-
Otín and Zolina, 2020). The NH SWE sum reaches its peak
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Figure 5. The mean model bias in T (1T , model minus observation) in snow-covered areas from November to January 1982–2014. We
show 1T (1Tcum divided by 3) instead of 1Tcum so that the values are more intuitive and easier to interpret. The dots indicate areas with
either cold bias and positive SWE bias or warm bias and negative SWE bias, i.e., the areas where T bias could logically explain the SWE
bias.

value in March, but the peak values are overestimated by
most of the models. As the spring advances, the variability
between models increases, and some of the models clearly
overestimate the SWE in May. In some models, in turn, snow
melts faster than in the observations, and they underestimate
SWE in late spring. This is also shown in Figs. 3 and 8: in
winter, the SWE biases are mainly positive (Fig. 3), while in
spring there are large differences in snow melt rates between
the models (Fig. 8).

5.1 The contribution of P and T to the SWE bias

In winter, the models mostly overestimate SWE (Fig. 3), but
spatial and intermodel variability exists. The overestimations
are mostly concentrated in the same areas in all models, but
the magnitude varies greatly between the models. The mod-
els also overestimate precipitation in winter (Fig. 4), suggest-
ing that overestimated SWE is caused by the overestimated
P . The regression coefficient βP also shows very clear cor-
relation between 1SWE and 1Pcum (Fig. S8). Therefore, P
clearly contributes to the SWE bias, whereas the contribution
of T is substantially smaller (Fig. 7). This result is consistent
with the expectation that precipitation is needed to initiate the

snow cover. In other words, even too cold temperatures can-
not cause too high SWE without precipitation. Also, studies
have shown that both the P bias (Zamani et al., 2020) and the
SWE bias (Mudryk et al., 2020) have decreased from CMIP5
to CMIP6. This indicates that there is a connection between
these variables, which is consistent with the results from this
study.

The link between 1Tcum and 1SWE is strongest in the
warmest regions of the study area (Figs. 7 and S8). Espe-
cially in the coldest regions, where T is well below 0◦ C,
variations in T do not significantly affect the amount of snow
on the ground. In regions where T is closer to 0◦ C in win-
ter, T plays a more significant role and has a greater impact
on SWE. This physically reasonable behavior suggests that
climate models might be able to simulate SWE trends in the
warming climate correctly, even if SWE itself is not repro-
duced accurately.

In spring, 1SWEchange and 1T show quite similar pat-
terns in many models (Figs. 8 and 10), which indicates that
biases in T affect the biases in SWEchange. This result is to
be expected because the increase in T is the main factor that
causes snow to melt in spring. A relationship between tem-
perature and snow cover in spring has also been observed in
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Figure 6. The areal means of the absolute values of 1SWE, PC , TC , and residual R calculated for the entire study period 1982–2014 (left
column, shaded with grey) and for three shorter time periods (1982–1991, 1992–2001, and 2002–2014) for each model in winter. The size
of the square indicates the absolute value of1SWE of that time period and model, and the color of the square indicates the absolute value of
PC , TC , and R.

CMIP5 models (Brutel-Vuilmet et al., 2013; Mudryk et al.,
2017). The CMIP5 models have been found to underestimate
the observed trend towards a reduced snow cover extent due
to an underestimation of the spring warming trend (Brutel-
Vuilmet et al., 2013).

Even though 1SWEchange and 1T are quite consistent
with each other, the contribution of T is not very strong
(Fig. 12), because the regression coefficient βT is small
(Fig. S18). The only model showing clear contribution of T
is EC-Earth3, as there is a large area in eastern Eurasia where
positive values of1SWEchange co-occur with a cold bias. The
spatial distribution of the bias in SWEchange in the EC-Earth3
model differs considerably from other models (Fig. 8). The
model has been found to drastically overestimate snow cover
extent though not so much the SWE (Mudryk et. al. 2020).
This suggests that while the positive bias in SWEchange (i.e.,
underestimated snowmelt rate in spring) is related to the cold
bias, the cold bias might be maintained by a too high surface
albedo resulting from overestimated snow cover extent.

Several factors can weaken the regression coefficient βT .
The analysis shows that in spring the relationship between
1T and 1SWEchange is strongest in western parts of Eurasia
and in southern parts of North America (Fig. S18). These are
regions with the earliest snowmelt onset. In these areas, T
is the dominant factor causing snow to melt throughout the
spring season. In the northernmost parts of the study area, the
melt season begins later, so that early spring still belongs to
the snow accumulation season. As a result, P may still be the
dominant factor influencing1SWEchange in early spring, and

T will become a more significant factor later in the spring.
This can reduce the correlation and affect R2, βP , and βT in
the northern parts of the study area. Additionally, if SWE in
winter is simulated incorrectly, this can affect the melt rates
in spring, as there can be too little or too much snow that can
melt.

5.2 The residual term

In both winter and spring, the residual term R of the regres-
sions is also significant (Figs. 6, 7, 11, and 12). This means
that the model biases in SWE in winter and SWEchange in
spring cannot be entirely explained by the biases in P and T ,
but other factors also contribute to these biases. These fac-
tors may include inaccuracy in the model parameterizations
related to snow and surface energy budget but also inaccu-
racy in the observational datasets.

The residual term R is particularly pronounced for the
SWE change rate in spring, when it is typically larger than
either the contribution of P or T . Interestingly, the resid-
ual is mostly negative (Fig. 12). The negative residual means
that if P and T were simulated correctly in the models, snow
would melt too fast in spring. While understanding the ori-
gins of this bias would be worth a separate study, a previous
study with ECHAM5 (Räisänen et al., 2014) is of interest
here. ECHAM5 is a predecessor of the atmospheric part of
MPI-ESM1-2-HR, for which the residual R in Fig. 12 is es-
pecially strongly negative. This is consistent with the finding
that in ECHAM5 snow melted generally too fast in spring,
despite a cold bias in T (Räisänen et al., 2014). A major
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Figure 7. Spatial distribution of the P contribution, the T contribution, and the residual for each model in winter 1982–2014.

factor for this was that T was not calculated separately for
snow-covered and snow-free parts of the grid cell. Because
of that, T was not able to rise above 0◦ C if there was snow
left in the grid cell, and, therefore, a too large fraction of the
available energy was used in melting the snow (Räisänen et
al., 2014).

The parameterization of the surface albedo is another fac-
tor that influences the snowmelt rate. In spring, the sur-
face albedo feedback is strong, and if the albedo is not cor-
rectly simulated in the models, it can cause large biases in
SWE in spring (Thackeray et al., 2018). CMIP5 models have
had challenges in simulating correctly the surface albedo on
snow-covered land (Thackeray et al., 2015). The intermodel

variability in surface albedo feedback is large in CMIP5
models (Qu and Hall, 2014; Thackeray et al., 2018), and the
large variability has been found to persist in CMIP6 models
(Thackeray et al., 2021), suggesting that there are still large
uncertainties in simulating the surface albedo. Specifically,
regarding the discussion on ECHAM5 and MPI-ESM1-2-HR
above, the only region in which MPI-ESM1-2-HR displays
a positive residual in Fig. 12 is southeastern Siberia. In this
very region, ECHAM5 featured delayed snowmelt, related to
overly high albedo in the presence of vegetation over snow
(Räisänen et al., 2014). While the specific mechanisms lead-
ing to too fast snowmelt might differ in different models, the
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Figure 8. The mean model bias in the monthly SWE change (1SWEchange, model minus observation) in spring for the period 1982–2014.

example of ECHAM5 highlights the importance of the treat-
ment of the surface energy budget in the presence of snow.

In addition to issues related to the models, uncertainties
in the observational data can also affect the residual values.
With the bias-correction method, SWE data are more accu-
rate than before, but the uncertainty in hemisphere-mean val-
ues is still 7.4 %. In mountainous regions, the complex terrain
poses a challenge in the SWE estimation, but averaging over
multiple products can improve the accuracy (Mortimer et al.,
2020). There are also uncertainties associated with the GPCC
and MERRA-2 datasets that can cause errors in assessing the
model biases; for example, MERRA-2 underestimates global
warming trends in the last years of our study period com-
pared to other reanalyses (Gelaro et al., 2017; Simmons et al.,
2017). Snow cover in spring is especially sensitive to warm-
ing (Hernández-Henríquez et al., 2015), and, therefore, the
uncertainties in MERRA-2 can affect the results especially
in spring.

The uncertainties associated with the GPCC precipitation
product can be divided into two categories: the systematic
measuring error and stochastic sampling error (Schneider et
al., 2014). The systematic error results from evaporation and
from droplets and snowflakes being drifted across the gauge
funnel. This error almost always causes underestimation of
precipitation (Schneider et al., 2014). The sampling error,

in turn, is caused by the sparse network density of the in
situ stations, and the error increases when the density of the
network decreases. A correction method taking into account
the weather conditions has been implemented in the GPCC
to improve the P estimate (Schneider et al., 2014). In gen-
eral, estimating precipitation in high latitudes is a challenge.
The estimates have improved, but especially regional dis-
crepancies still exist between different precipitation products
(Behrangi et al., 2016). This causes uncertainties in assessing
the model bias and means that the choice of the precipitation
product may influence the results.

We additionally studied the dependency between the resid-
ual term and fractional forest cover (Fig. S22), and we
did this separately for the entire study area and for non-
mountainous regions. In the entire study area, the spread of
the residual term is quite large when the fraction of forest
cover is small in both winter and spring. When looking at
only the non-mountainous areas, the spread decreases com-
pared to the entire study area, especially in spring. This il-
lustrates that the residual term is particularly large in moun-
tainous areas, indicating that in mountainous areas, T or P
can only explain a small fraction of SWE bias, but other fac-
tors contribute SWE bias considerably. Also, in mountain-
ous areas, the intermodel variability of the residual term is
substantial. The complex terrain and large SWE variability
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Figure 9. The mean model bias in P (1P , model minus observation) in snow-covered areas in spring 1982–2014. The dots indicate areas
where models either overestimate both SWEchange and P or underestimate both SWEchange and P .

make SWE estimates challenging. Also, the original resolu-
tion of CMIP6 models can be too coarse for accurately de-
scribing SWE in mountainous terrain; biases in snow cover
and snow depth have been found to decrease considerably
with downscaled regional climate models in mountainous re-
gions (Matiu et al., 2019). Resampling the datasets to a com-
mon grid can cause uncertainties in mountainous areas due
to the high topographic variability within a grid cell.

For most models, the residual term in non-mountainous
areas in winter depends little on the fractional forest cover,
indicating that the residual arises from other sources. For the
CESM2 and NorESM2-MM models, however, the residual
decreases when forest cover fraction increases, and this de-
pendency is strikingly similar for these two models. Since
CESM2 and NorESM2-MM both employ the CLM5 land
surface model (Lawrence et al., 2019), this hints that the
large positive SWE residual in these models originates from
CLM5. Also, a unique feature within CESM2 that may cause
high residual values in the coldest regions is that the model
allows for a very large maximum SWE to enable the simu-
lation of firn production over ice sheets (van Kampenhout et
al., 2017). Even though our study does not cover ice sheets,
this feature may cause positive SWE bias in the coldest re-

gions of the study area (e.g., in the northernmost regions of
Canada).

In spring in non-mountainous areas, the residual of
SWEchange depends quasi-systematically on the forest cover
fraction. While the level of the residual terms varies between
the models, the values increase with increasing forest cover
fraction in all models. The residual varies mostly between
−25 and −12 kg m−2 per month for open areas and between
−13 and−2 kg m−2 per month when the forest cover fraction
is close to 100 %. This leaves room for at least two possible
interpretations. On one hand, the larger intermodel spread of
the residual over open areas suggests that problems in snow
albedo parameterization (e.g., how to account for snow meta-
morphism, Colbeck, 1982) could be at least partly responsi-
ble for the large residual term. Due to the shading effect of
the canopy (Malle et al., 2019), snow albedo treatment dif-
ferences in the models should manifest more strongly over
open tundra regions and less so over dense forest cover. On
the other hand, the quasi-systematic dependence of the resid-
ual on the forest cover fraction could also point to some sub-
tle issues in the SWE estimates of the SnowCCI dataset in
spring.

Overall, the reasons behind the residual term are complex,
and more detailed model-specific investigations for all par-
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Figure 10. The mean model bias in T (1T , model minus observation) in snow-covered areas in spring 1982–2014. The dots indicate areas
with either cold bias and positive SWE bias or warm bias and negative SWE bias, i.e., the areas where T bias could logically explain the
SWE bias.

Figure 11. The areal means of absolute values of 1SWEchange, PC , TC , and residual R calculated for the entire study period 1982–2014
(left column, shaded with grey) and for three shorter time periods (1982–1991, 1992–2001, and 2002–2014) for each model in spring. The
size of the square indicates the mean absolute value of 1SWEchange of that time period and model, and the color of the square indicates the
mean absolute value of PC , TC , and R.
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Figure 12. Spatial distribution of the P contribution, the T contribution, and the residual for each model in spring 1982–2014.

ticipating CMIP6 models are beyond the scope of this study.
Further analysis would be required in the future to fully un-
derstand the factors behind the residual term.

6 Conclusions

We have intercompared NH SWE estimates between CMIP6
models and observation-based SWE reference data and stud-
ied whether model biases in precipitation (P ) or temperature
(T ) could explain the SWE model biases. Our study cov-
ered land areas north of 40◦ N and years between 1982 and
2014. We analyzed separately the SWE in winter (in Febru-

ary) and the SWE change rate in spring (SWEchange from
February to May). Using regression analysis, we divided the
SWE model bias (1SWE and1SWEchange, model minus ob-
servation) into three components: the contribution of P , the
contribution of T , and the contribution of other factors, such
as deficiencies in model parameterizations or inaccuracies in
the observational datasets. The main findings in our study are
as follows.

– The models generally overestimate SWE, but large vari-
ability exists between models. The largest overestima-
tions occur mainly in the northernmost parts of both
Eurasia and North America. In winter, the overesti-
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mated SWE is mainly concentrated in the same areas
in every model, but the magnitude differs between the
models. In spring, the snow melt rates vary clearly be-
tween the models.

– In winter, the SWE biases can be explained mostly with
the P biases. The contribution of T is clearly smaller
than that of P . This is in line with the expected re-
sults, as even too cold temperatures cannot cause too
high SWE without precipitation. However, other factors
contribute to SWE discrepancies as well.

– In spring, T and P explain partly the biases in
SWEchange. Especially cold or warm biases often co-
occur with large SWEchange biases, but large spatial and
intermodel variability exists. The importance of T in ex-
plaining SWEchange discrepancies during spring is to be
expected, because the increase in T is the main factor
that causes snow to melt as spring progresses. Yet it
should be noted that the contribution of other factors,
such as observation uncertainty or deficiencies in model
parameterizations, is more significant in spring than in
winter.

Overall, the study showed that the models still need to be
improved to accurately describe SWE. However, the anal-
ysis also showed that there is a link between T and SWE,
especially in the warmer regions of the study area, suggest-
ing that climate models may be able to simulate SWE trends
in a warming climate correctly, even if SWE itself is not ac-
curately reproduced. Uncertainties in the observational data
also cause uncertainties in the analysis, so by improving the
observational data, we can study the models’ ability to de-
scribe the snow cover more reliably and, thus, further im-
prove the models.

Appendix A: The equations for calculating the model
biases and the linear regressions

The steps for calculating the model biases in SWE, T , and
P and subsequently the linear regressions in winter are as
follows.

1. We calculated cumulative T (Tcum) and P (Pcum) from
November to January for each model and for the obser-
vational datasets:

Tcum,model = TNov+ TDec+ TJan, (A1)
Tcum,obs = TNov+ TDec+ TJan, (A2)
Pcum,model = PNov+PDec+PJan, (A3)
Pcum,obs = PNov+PDec+PJan. (A4)

2. We calculated the model bias in cumulative T (1Tcum)
and P (1Pcum):

1Tcum = Tcum,model− Tcum,obs, (A5)
1Pcum = Pcum,model−Pcum,obs. (A6)

3. We calculated the model bias in SWE (1SWE) in
February:

1SWE= SWEmodel−SWEobs. (A7)

4. We calculated the linear regression for the biases using
the ordinary least squares method:

1SWE= βT1Tcum+βP1Pcum+C, (A8)

where βT and βP are the regression coefficients, and C
is the constant.

The steps for calculating the biases in SWEchange, T , and P
and subsequently the linear regressions in spring are as fol-
lows.

1. We calculated monthly change in SWE (SWEchange) for
each model and for the SWE reference data:

SWEchange,1 = SWEMar−SWEFeb, (A9)
SWEchange,2 = SWEApr−SWEMar, (A10)
SWEchange,3 = SWEMay−SWEApr. (A11)

2. We calculated the model biases in monthly SWEchange
(1SWEchange):

1SWEchange = SWEchange,1,model−SWEchange,1,obs, (A12)
1SWEchange = SWEchange,2,model−SWEchange,2,obs, (A13)
1SWEchange = SWEchange,3,model−SWEchange,3,obs. (A14)

3. We calculated the model biases in T (1T ) and P (1P )
in March, April, and May:

1T1 = TMar,model− TMar,obs, (A15)
1T2 = TApr,model− TApr,obs, (A16)
1T3 = TMay,model− TMay,obs, (A17)
1P1 = PMar,model−PMar,obs, (A18)
1P2 = PApr,model−PApr,obs, (A19)
1P3 = PMay,model−PMay,obs. (A20)

4. We pooled together the values of1SWEchange,1P , and
1T for the whole spring period (February through May)
and calculated the linear regression for the biases using
the ordinary least squares method:

1SWEchange = βT1T +βP1P +C, (A21)

where βT and βP are the regression coefficients, and C
is the constant.

Data availability. The CMIP6 model data are available at the Earth
System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/,
ESGF, 2021). The bias-corrected SnowCCI data are available online

The Cryosphere, 16, 1007–1030, 2022 https://doi.org/10.5194/tc-16-1007-2022

https://esgf-node.llnl.gov/search/cmip6/


K. Kouki et al.: Evaluation of Northern Hemisphere snow water equivalent 1025

at https://doi.org/10.1594/PANGAEA.911944 (Luojus et al., 2020).
The Brown and Crocus v7 datasets are available from the original
authors (please see Table 2 for references). MERRA-2 SWE data
are available online at https://doi.org/10.5067/RKPHT8KC1Y1T
(GMAO, 2015a). The original SnowCCI data and the
ESA CCI Land Cover time series v2.0.7 are available at
the ESA CCI data portal (https://climate.esa.int/en/odp/)
(ESA, 2022). The MERRA-2 temperature data are avail-
able at https://doi.org/10.5067/AP1B0BA5PD2K (GMAO,
2015b). The GPCC data are available at the DWD website
(https://doi.org/10.5676/DWD_GPCC/FD_M_V2018_050)
(Schneider et al., 2018).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-16-1007-2022-supplement.
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