Articles | Volume 15, issue 2
The Cryosphere, 15, 835–861, 2021
https://doi.org/10.5194/tc-15-835-2021
The Cryosphere, 15, 835–861, 2021
https://doi.org/10.5194/tc-15-835-2021
Research article
18 Feb 2021
Research article | 18 Feb 2021

Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America

Xiongxin Xiao et al.

Related authors

Spatiotemporal variation of snow depth in the Northern Hemisphere from 1992 to 2016
Xiongxin Xiao, Tingjun Zhang, Xinyue Zhong, Xiaodong Li, and Yuxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-300,https://doi.org/10.5194/tc-2019-300, 2019
Manuscript not accepted for further review
Short summary
Estimating interaction between surface water and groundwater in a permafrost region using heat tracing methods
Tanguang Gao, Jie Liu, Tingjun Zhang, Yuantao Hu, Jianguo Shang, Shufa Wang, Xiongxin Xiao, Chuankun Liu, Shichang Kang, Mika Sillanpää, and Yulan Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-176,https://doi.org/10.5194/tc-2017-176, 2017
Preprint retracted
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022,https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022,https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022,https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022,https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022,https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary

Cited articles

Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, National Geophysical Data Center, NOAA, https://doi.org/10.7289/V5C8276M, 2009. 
Arsenault, K. R., Houser, P. R., and De Lannoy, G. J. M.: Evaluation of the MODIS snow cover fraction product, Hydrol. Process., 28, 980–998, https://doi.org/10.1002/hyp.9636, 2014. 
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Belgiu, M. and Drăgu, L.: Random forest in remote sensing: A review of applications and future directions, ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016. 
Berman, E. E., Bolton, D. K., Coops, N. C., Mityok, Z. K., Stenhouse, G. B., and Moore, R. D.: Daily estimates of Landsat fractional snow cover driven by MODIS and dynamic time-warping, Remote Sens. Environ., 216, 635–646, https://doi.org/10.1016/j.rse.2018.07.029, 2018. 
Download
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.