Research article
18 Feb 2021
Research article
| 18 Feb 2021
Estimating fractional snow cover from passive microwave brightness temperature data using MODIS snow cover product over North America
Xiongxin Xiao et al.
Related authors
Xiongxin Xiao, Tingjun Zhang, Xinyue Zhong, Xiaodong Li, and Yuxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-300, https://doi.org/10.5194/tc-2019-300, 2019
Manuscript not accepted for further review
Short summary
Short summary
Seasonal snow cover is an important component of the climate system and global water cycle that stores large amounts of freshwater. Our research attempts to develop a long-term Northern Hemisphere daily snow depth and snow water equivalent product data using a new algorithm applying in historical passive microwave dataset from 1992 to 2016. Our further analysis showed that snow cover has a significant declining trend across the Northern Hemisphere, especially beginning in the new century.
Tanguang Gao, Jie Liu, Tingjun Zhang, Yuantao Hu, Jianguo Shang, Shufa Wang, Xiongxin Xiao, Chuankun Liu, Shichang Kang, Mika Sillanpää, and Yulan Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-176, https://doi.org/10.5194/tc-2017-176, 2017
Preprint retracted
Short summary
Short summary
Understanding the interactions between groundwater and surface water in permafrost regions is essential to the understanding of flood frequencies and river water quality of high latitude/altitude basins. Thus, we analyzed the interaction between surface water and groundwater in a permafrost region in the northern Tibetan Plateau by using heat tracing methods.
Rui Ma, Jingfeng Xiao, Shunlin Liang, Han Ma, Tao He, Da Guo, Xiaobang Liu, and Haibo Lu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-96, https://doi.org/10.5194/gmd-2022-96, 2022
Preprint under review for GMD
Short summary
Short summary
Parameter optimization can improve the accuracy of the modeled carbon fluxes. Few studies conducted pixel-level parameterization because it requires a high computational cost. Our paper used high-quality spatial products to optimize parameters at the pixel level, and also used the machine learning method to improve the speed of optimization. The results showed that there was significant spatial variability of parameters, and we also improved the spatial pattern of carbon fluxes.
Jianglei Xu, Shunlin Liang, and Bo Jiang
Earth Syst. Sci. Data, 14, 2315–2341, https://doi.org/10.5194/essd-14-2315-2022, https://doi.org/10.5194/essd-14-2315-2022, 2022
Short summary
Short summary
Land surface all-wave net radiation (Rn) is a key parameter in many land processes. Current products have drawbacks of coarse resolutions, large uncertainty, and short time spans. A deep learning method was used to obtain global surface Rn. A long-term Rn product was generated from 1981 to 2019 using AVHRR data. The product has the highest accuracy and a reasonable spatiotemporal variation compared to three other products. Our product will play an important role in long-term climate change.
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Xueyuan Gao, Shunlin Liang, Dongdong Wang, Yan Li, Bin He, and Aolin Jia
Earth Syst. Dynam., 13, 219–230, https://doi.org/10.5194/esd-13-219-2022, https://doi.org/10.5194/esd-13-219-2022, 2022
Short summary
Short summary
Numerical experiments with a coupled Earth system model show that large-scale nighttime artificial lighting in tropical forests will significantly increase carbon sink, local temperature, and precipitation, and it requires less energy than direct air carbon capture for capturing 1 t of carbon, suggesting that it could be a powerful climate mitigation option. Side effects include CO2 outgassing after the termination of the nighttime lighting and impacts on local wildlife.
Xiaona Chen, Shunlin Liang, Lian He, Yaping Yang, and Cong Yin
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-279, https://doi.org/10.5194/essd-2021-279, 2021
Preprint under review for ESSD
Short summary
Short summary
The present study developed a 39 year consistent 8-day 0.05 degree gap-free SCE dataset over the NH for the period 1981–2019 as part of the Global LAnd Surface Satellite dataset (GLASS) product suite based on the NOAA AVHRR-SR CDR and several contributory datasets. Compared with published SCE datasets, GLASS SCE has several advantages in snow cover studies, including long time series, finer spatial resolution (especially for years before 2000), and complete spatial coverage.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data, 13, 5087–5114, https://doi.org/10.5194/essd-13-5087-2021, https://doi.org/10.5194/essd-13-5087-2021, 2021
Short summary
Short summary
Large portions of the Earth's surface are expected to experience changes in climatic conditions. The rearrangement of climate distributions can lead to serious impacts on ecological and social systems. Major climate zones are distributed in a predictable pattern and are largely defined following the Köppen climate classification. This creates an urgent need to compile a series of Köppen climate classification maps with finer spatial and temporal resolutions and improved accuracy.
Yan Chen, Shunlin Liang, Han Ma, Bing Li, Tao He, and Qian Wang
Earth Syst. Sci. Data, 13, 4241–4261, https://doi.org/10.5194/essd-13-4241-2021, https://doi.org/10.5194/essd-13-4241-2021, 2021
Short summary
Short summary
This study used remotely sensed and assimilated data to estimate all-sky land surface air temperature (Ta) using a machine learning method, and developed an all-sky 1 km daily mean land Ta product for 2003–2019 over mainland China. Validation results demonstrated that this dataset has achieved satisfactory accuracy and high spatial resolution simultaneously, which fills the current dataset gap in this field and plays an important role in studies of climate change and the hydrological cycle.
Yongkang Xue, Tandong Yao, Aaron A. Boone, Ismaila Diallo, Ye Liu, Xubin Zeng, William K. M. Lau, Shiori Sugimoto, Qi Tang, Xiaoduo Pan, Peter J. van Oevelen, Daniel Klocke, Myung-Seo Koo, Tomonori Sato, Zhaohui Lin, Yuhei Takaya, Constantin Ardilouze, Stefano Materia, Subodh K. Saha, Retish Senan, Tetsu Nakamura, Hailan Wang, Jing Yang, Hongliang Zhang, Mei Zhao, Xin-Zhong Liang, J. David Neelin, Frederic Vitart, Xin Li, Ping Zhao, Chunxiang Shi, Weidong Guo, Jianping Tang, Miao Yu, Yun Qian, Samuel S. P. Shen, Yang Zhang, Kun Yang, Ruby Leung, Yuan Qiu, Daniele Peano, Xin Qi, Yanling Zhan, Michael A. Brunke, Sin Chan Chou, Michael Ek, Tianyi Fan, Hong Guan, Hai Lin, Shunlin Liang, Helin Wei, Shaocheng Xie, Haoran Xu, Weiping Li, Xueli Shi, Paulo Nobre, Yan Pan, Yi Qin, Jeff Dozier, Craig R. Ferguson, Gianpaolo Balsamo, Qing Bao, Jinming Feng, Jinkyu Hong, Songyou Hong, Huilin Huang, Duoying Ji, Zhenming Ji, Shichang Kang, Yanluan Lin, Weiguang Liu, Ryan Muncaster, Patricia de Rosnay, Hiroshi G. Takahashi, Guiling Wang, Shuyu Wang, Weicai Wang, Xu Zhou, and Yuejian Zhu
Geosci. Model Dev., 14, 4465–4494, https://doi.org/10.5194/gmd-14-4465-2021, https://doi.org/10.5194/gmd-14-4465-2021, 2021
Short summary
Short summary
The subseasonal prediction of extreme hydroclimate events such as droughts/floods has remained stubbornly low for years. This paper presents a new international initiative which, for the first time, introduces spring land surface temperature anomalies over high mountains to improve precipitation prediction through remote effects of land–atmosphere interactions. More than 40 institutions worldwide are participating in this effort. The experimental protocol and preliminary results are presented.
Diyang Cui, Shunlin Liang, Dongdong Wang, and Zheng Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-53, https://doi.org/10.5194/essd-2021-53, 2021
Preprint withdrawn
Short summary
Short summary
The Köppen-Geiger climate classification has been widely applied in climate change and ecology studies to characterize climatic conditions. We present a new 1-km global dataset of Köppen-Geiger climate classification and bioclimatic variables for historical and future climates. The new climate maps offer higher classification accuracy, correspond well with distributions of vegetation and topographic features, and demonstrate the ability to identify recent and future changes in climate zones.
Jin Ma, Ji Zhou, Frank-Michael Göttsche, Shunlin Liang, Shaofei Wang, and Mingsong Li
Earth Syst. Sci. Data, 12, 3247–3268, https://doi.org/10.5194/essd-12-3247-2020, https://doi.org/10.5194/essd-12-3247-2020, 2020
Short summary
Short summary
Land surface temperature is an important parameter in the research of climate change and many land surface processes. This article describes the development and testing of an algorithm for generating a consistent global long-term land surface temperature product from 20 years of NOAA AVHRR radiance data. The preliminary validation results indicate good accuracy of this new long-term product, which has been designed to simplify applications and support the scientific research community.
Yi Zheng, Ruoque Shen, Yawen Wang, Xiangqian Li, Shuguang Liu, Shunlin Liang, Jing M. Chen, Weimin Ju, Li Zhang, and Wenping Yuan
Earth Syst. Sci. Data, 12, 2725–2746, https://doi.org/10.5194/essd-12-2725-2020, https://doi.org/10.5194/essd-12-2725-2020, 2020
Short summary
Short summary
Accurately reproducing the interannual variations in vegetation gross primary production (GPP) is a major challenge. A global GPP dataset was generated by integrating the regulations of several major environmental variables with long-term changes. The dataset can effectively reproduce the spatial, seasonal, and particularly interannual variations in global GPP. Our study will contribute to accurate carbon flux estimates at long timescales.
D. Chen, X. Zhang, N. Chen, J. Yang, and J. Gong
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2020, 115–121, https://doi.org/10.5194/isprs-annals-V-4-2020-115-2020, https://doi.org/10.5194/isprs-annals-V-4-2020-115-2020, 2020
Han Liu, Peng Gong, Jie Wang, Nicholas Clinton, Yuqi Bai, and Shunlin Liang
Earth Syst. Sci. Data, 12, 1217–1243, https://doi.org/10.5194/essd-12-1217-2020, https://doi.org/10.5194/essd-12-1217-2020, 2020
Short summary
Short summary
We built the first set of 5 km resolution CDRs to record the annual dynamics of global land cover (GLASS-GLC) from 1982 to 2015. The average overall accuracy is 82 %. By conducting long-term change analysis, significant land cover changes and spatiotemporal patterns at various scales were found, which can improve our understanding of global environmental change and help achieve sustainable development goals. This will be further applied in Earth system modeling to facilitate relevant studies.
Aolin Jia, Shunlin Liang, Dongdong Wang, Bo Jiang, and Xiaotong Zhang
Atmos. Chem. Phys., 20, 881–899, https://doi.org/10.5194/acp-20-881-2020, https://doi.org/10.5194/acp-20-881-2020, 2020
Short summary
Short summary
The Tibetan Plateau (TP) plays a vital role in regional and global climate change due to its location and orography. After generating a long-term surface radiation (SR) dataset, we characterized the SR spatiotemporal variation along with temperature. Evidence from multiple data sources indicated that the TP dimming was primarily driven by increased aerosols from human activities, and the cooling effect of aerosol loading offsets TP surface warming, revealing the human impact on regional warming.
Xiongxin Xiao, Tingjun Zhang, Xinyue Zhong, Xiaodong Li, and Yuxing Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-300, https://doi.org/10.5194/tc-2019-300, 2019
Manuscript not accepted for further review
Short summary
Short summary
Seasonal snow cover is an important component of the climate system and global water cycle that stores large amounts of freshwater. Our research attempts to develop a long-term Northern Hemisphere daily snow depth and snow water equivalent product data using a new algorithm applying in historical passive microwave dataset from 1992 to 2016. Our further analysis showed that snow cover has a significant declining trend across the Northern Hemisphere, especially beginning in the new century.
Tanguang Gao, Jie Liu, Tingjun Zhang, Yuantao Hu, Jianguo Shang, Shufa Wang, Xiongxin Xiao, Chuankun Liu, Shichang Kang, Mika Sillanpää, and Yulan Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-176, https://doi.org/10.5194/tc-2017-176, 2017
Preprint retracted
Short summary
Short summary
Understanding the interactions between groundwater and surface water in permafrost regions is essential to the understanding of flood frequencies and river water quality of high latitude/altitude basins. Thus, we analyzed the interaction between surface water and groundwater in a permafrost region in the northern Tibetan Plateau by using heat tracing methods.
X. Xie, S. Meng, S. Liang, and Y. Yao
Hydrol. Earth Syst. Sci., 18, 3923–3936, https://doi.org/10.5194/hess-18-3923-2014, https://doi.org/10.5194/hess-18-3923-2014, 2014
Q. Shi and S. Liang
Atmos. Chem. Phys., 14, 5659–5677, https://doi.org/10.5194/acp-14-5659-2014, https://doi.org/10.5194/acp-14-5659-2014, 2014
N. F. Liu, Q. Liu, L. Z. Wang, S. L. Liang, J. G. Wen, Y. Qu, and S. H. Liu
Hydrol. Earth Syst. Sci., 17, 2121–2129, https://doi.org/10.5194/hess-17-2121-2013, https://doi.org/10.5194/hess-17-2121-2013, 2013
T. R. Xu, S. M. Liu, Z. W. Xu, S. Liang, and L. Xu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-3927-2013, https://doi.org/10.5194/hessd-10-3927-2013, 2013
Preprint withdrawn
Related subject area
Discipline: Snow | Subject: Remote Sensing
Snow water equivalent change mapping from slope-correlated synthetic aperture radar interferometry (InSAR) phase variations
Sentinel-1 time series for mapping snow cover depletion and timing of snowmelt in Arctic periglacial environments: case study from Zackenberg and Kobbefjord, Greenland
Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps
Characterizing tundra snow sub-pixel variability to improve brightness temperature estimation in satellite SWE retrievals
Mapping liquid water content in snow at the millimeter scale: an intercomparison of mixed-phase optical property models using hyperspectral imaging and in situ measurements
Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service
Potential of X-band polarimetric SAR co-polar phase difference for Arctic snow depth estimation
Evaluation of snow extent time series derived from Advanced Very High Resolution Radiometer global area coverage data (1982–2018) in the Hindu Kush Himalayas
Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements
Impact of dynamic snow density on GlobSnow snow water equivalent retrieval accuracy
The retrieval of snow properties from SLSTR Sentinel-3 – Part 1: Method description and sensitivity study
The retrieval of snow properties from SLSTR Sentinel-3 – Part 2: Results and validation
Tree canopy and snow depth relationships at fine scales with terrestrial laser scanning
Snow depth mapping with unpiloted aerial system lidar observations: a case study in Durham, New Hampshire, United States
Mapping avalanches with satellites – evaluation of performance and completeness
Snow depth time series retrieval by time-lapse photography: Finnish and Italian case studies
Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping
Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain
Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica
Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data
Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques
Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions
Comparison of modeled snow properties in Afghanistan, Pakistan, and Tajikistan
Effect of snow microstructure variability on Ku-band radar snow water equivalent retrievals
Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada
Estimating snow depth on Arctic sea ice using satellite microwave radiometry and a neural network
Suitability analysis of ski areas in China: an integrated study based on natural and socioeconomic conditions
Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards
Monitoring snow depth change across a range of landscapes with ephemeral snowpacks using structure from motion applied to lightweight unmanned aerial vehicle videos
Repeat mapping of snow depth across an alpine catchment with RPAS photogrammetry
On the reflectance spectroscopy of snow
On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales
Jayson Eppler, Bernhard Rabus, and Peter Morse
The Cryosphere, 16, 1497–1521, https://doi.org/10.5194/tc-16-1497-2022, https://doi.org/10.5194/tc-16-1497-2022, 2022
Short summary
Short summary
We introduce a new method for mapping changes in the snow water equivalent (SWE) of dry snow based on differences between time-repeated synthetic aperture radar (SAR) images. It correlates phase differences with variations in the topographic slope which allows the method to work without any "reference" targets within the imaged area and without having to numerically unwrap the spatial phase maps. This overcomes the key challenges faced in using SAR interferometry for SWE change mapping.
Sebastian Buchelt, Kirstine Skov, Kerstin Krøier Rasmussen, and Tobias Ullmann
The Cryosphere, 16, 625–646, https://doi.org/10.5194/tc-16-625-2022, https://doi.org/10.5194/tc-16-625-2022, 2022
Short summary
Short summary
In this paper, we present a threshold and a derivative approach using Sentinel-1 synthetic aperture radar time series to capture the small-scale heterogeneity of snow cover (SC) and snowmelt. Thereby, we can identify start of runoff and end of SC as well as perennial snow and SC extent during melt with high spatiotemporal resolution. Hence, our approach could support monitoring of distribution patterns and hydrological cascading effects of SC from the catchment scale to pan-Arctic observations.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Julien Meloche, Alexandre Langlois, Nick Rutter, Alain Royer, Josh King, Branden Walker, Philip Marsh, and Evan J. Wilcox
The Cryosphere, 16, 87–101, https://doi.org/10.5194/tc-16-87-2022, https://doi.org/10.5194/tc-16-87-2022, 2022
Short summary
Short summary
To estimate snow water equivalent from space, model predictions of the satellite measurement (brightness temperature in our case) have to be used. These models allow us to estimate snow properties from the brightness temperature by inverting the model. To improve SWE estimate, we proposed incorporating the variability of snow in these model as it has not been taken into account yet. A new parameter (coefficient of variation) is proposed because it improved simulation of brightness temperature.
Christopher Donahue, S. McKenzie Skiles, and Kevin Hammonds
The Cryosphere, 16, 43–59, https://doi.org/10.5194/tc-16-43-2022, https://doi.org/10.5194/tc-16-43-2022, 2022
Short summary
Short summary
The amount of water within a snowpack is important information for predicting snowmelt and wet-snow avalanches. From within a controlled laboratory, the optimal method for measuring liquid water content (LWC) at the snow surface or along a snow pit profile using near-infrared imagery was determined. As snow samples melted, multiple models to represent wet-snow reflectance were assessed against a more established LWC instrument. The best model represents snow as separate spheres of ice and water.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Joëlle Voglimacci-Stephanopoli, Anna Wendleder, Hugues Lantuit, Alexandre Langlois, Samuel Stettner, Jean-Pierre Dedieu, Achim Roth, and Alain Royer
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-314, https://doi.org/10.5194/tc-2021-314, 2021
Revised manuscript accepted for TC
Short summary
Short summary
Changes in the state of the snowpack in the context of observed global warming must be considered to improve our understanding of the processes within the cryosphere. This study aims to characterize an arctic snowpack using TerraSAR-X satellite. Using a high spatial resolution vegetation classification, we were able to quantify the variability of snow depth as well as the topographic soil wetness index which provided a better understanding of the electromagnetic wave-ground interaction.
Xiaodan Wu, Kathrin Naegeli, Valentina Premier, Carlo Marin, Dujuan Ma, Jingping Wang, and Stefan Wunderle
The Cryosphere, 15, 4261–4279, https://doi.org/10.5194/tc-15-4261-2021, https://doi.org/10.5194/tc-15-4261-2021, 2021
Short summary
Short summary
We performed a comprehensive accuracy assessment of an Advanced Very High Resolution Radiometer global area coverage snow-cover extent time series dataset for the Hindu Kush Himalayan (HKH) region. The sensor-to-sensor consistency, the accuracy related to snow depth, elevations, land-cover types, slope, and aspects, and topographical variability were also explored. Our analysis shows an overall accuracy of 94 % in comparison with in situ station data, which is the same with MOD10A1 V006.
Pia Nielsen-Englyst, Jacob L. Høyer, Kristine S. Madsen, Rasmus T. Tonboe, Gorm Dybkjær, and Sotirios Skarpalezos
The Cryosphere, 15, 3035–3057, https://doi.org/10.5194/tc-15-3035-2021, https://doi.org/10.5194/tc-15-3035-2021, 2021
Short summary
Short summary
The Arctic region is responding heavily to climate change, and yet, the air temperature of Arctic ice-covered areas is heavily under-sampled when it comes to in situ measurements. This paper presents a method for estimating daily mean 2 m air temperatures (T2m) in the Arctic from satellite observations of skin temperature, providing spatially detailed observations of the Arctic. The satellite-derived T2m product covers clear-sky snow and ice surfaces in the Arctic for the period 2000–2009.
Pinja Venäläinen, Kari Luojus, Juha Lemmetyinen, Jouni Pulliainen, Mikko Moisander, and Matias Takala
The Cryosphere, 15, 2969–2981, https://doi.org/10.5194/tc-15-2969-2021, https://doi.org/10.5194/tc-15-2969-2021, 2021
Short summary
Short summary
Information about snow water equivalent (SWE) is needed in many applications, including climate model evaluation and forecasting fresh water availability. Space-borne radiometer observations combined with ground snow depth measurements can be used to make global estimates of SWE. In this study, we investigate the possibility of using sparse snow density measurement in satellite-based SWE retrieval and show that using the snow density information in post-processing improves SWE estimations.
Linlu Mei, Vladimir Rozanov, Christine Pohl, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2757–2780, https://doi.org/10.5194/tc-15-2757-2021, https://doi.org/10.5194/tc-15-2757-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 1 of two companion papers and shows the method description and sensitivity study. The paper investigates the major factors, including the assumptions of snow optical properties, snow particle distribution and atmospheric conditions (cloud and aerosol), impacting snow property retrievals from satellite observation.
Linlu Mei, Vladimir Rozanov, Evelyn Jäkel, Xiao Cheng, Marco Vountas, and John P. Burrows
The Cryosphere, 15, 2781–2802, https://doi.org/10.5194/tc-15-2781-2021, https://doi.org/10.5194/tc-15-2781-2021, 2021
Short summary
Short summary
This paper presents a new snow property retrieval algorithm from satellite observations. This is Part 2 of two companion papers and shows the results and validation. The paper performs the new retrieval algorithm on the Sea and Land
Surface Temperature Radiometer (SLSTR) instrument and compares the retrieved snow properties with ground-based measurements, aircraft measurements and other satellite products.
Ahmad Hojatimalekshah, Zachary Uhlmann, Nancy F. Glenn, Christopher A. Hiemstra, Christopher J. Tennant, Jake D. Graham, Lucas Spaete, Arthur Gelvin, Hans-Peter Marshall, James P. McNamara, and Josh Enterkine
The Cryosphere, 15, 2187–2209, https://doi.org/10.5194/tc-15-2187-2021, https://doi.org/10.5194/tc-15-2187-2021, 2021
Short summary
Short summary
We describe the relationships between snow depth, vegetation canopy, and local-scale processes during the snow accumulation period using terrestrial laser scanning (TLS). In addition to topography and wind, our findings suggest the importance of fine-scale tree structure, species type, and distributions on snow depth. Snow depth increases from the canopy edge toward the open areas, but wind and topographic controls may affect this trend. TLS data are complementary to wide-area lidar surveys.
Jennifer M. Jacobs, Adam G. Hunsaker, Franklin B. Sullivan, Michael Palace, Elizabeth A. Burakowski, Christina Herrick, and Eunsang Cho
The Cryosphere, 15, 1485–1500, https://doi.org/10.5194/tc-15-1485-2021, https://doi.org/10.5194/tc-15-1485-2021, 2021
Short summary
Short summary
This pilot study describes a proof of concept for using lidar on an unpiloted aerial vehicle to map shallow snowpack (< 20 cm) depth in open terrain and forests. The 1 m2 resolution snow depth map, generated by subtracting snow-off from snow-on lidar-derived digital terrain models, consistently had 0.5 to 1 cm precision in the field, with a considerable reduction in accuracy in the forest. Performance depends on the point cloud density and the ground surface variability and vegetation.
Elisabeth D. Hafner, Frank Techel, Silvan Leinss, and Yves Bühler
The Cryosphere, 15, 983–1004, https://doi.org/10.5194/tc-15-983-2021, https://doi.org/10.5194/tc-15-983-2021, 2021
Short summary
Short summary
Satellites prove to be very valuable for documentation of large-scale avalanche periods. To test reliability and completeness, which has not been satisfactorily verified before, we attempt a full validation of avalanches mapped from two optical sensors and one radar sensor. Our results demonstrate the reliability of high-spatial-resolution optical data for avalanche mapping, the suitability of radar for mapping of larger avalanches and the unsuitability of medium-spatial-resolution optical data.
Marco Bongio, Ali Nadir Arslan, Cemal Melih Tanis, and Carlo De Michele
The Cryosphere, 15, 369–387, https://doi.org/10.5194/tc-15-369-2021, https://doi.org/10.5194/tc-15-369-2021, 2021
Short summary
Short summary
The capability of time-lapse photography to retrieve snow depth time series was tested. We demonstrated that this method can be efficiently used in three different case studies: two in the Italian Alps and one in a forested region of Finland, with an accuracy comparable to the most common methods such as ultrasonic sensors or manual measurements. We hope that this simple method based only on a camera and a graduated stake can enable snow depth measurements in dangerous and inaccessible sites.
Lucie A. Eberhard, Pascal Sirguey, Aubrey Miller, Mauro Marty, Konrad Schindler, Andreas Stoffel, and Yves Bühler
The Cryosphere, 15, 69–94, https://doi.org/10.5194/tc-15-69-2021, https://doi.org/10.5194/tc-15-69-2021, 2021
Short summary
Short summary
In spring 2018 in the alpine Dischma valley (Switzerland), we tested different industrial photogrammetric platforms for snow depth mapping. These platforms were high-resolution satellites, an airplane, unmanned aerial systems and a terrestrial system. Therefore, this study gives a general overview of the accuracy and precision of the different photogrammetric platforms available in space and on earth and their use for snow depth mapping.
Maxim Lamare, Marie Dumont, Ghislain Picard, Fanny Larue, François Tuzet, Clément Delcourt, and Laurent Arnaud
The Cryosphere, 14, 3995–4020, https://doi.org/10.5194/tc-14-3995-2020, https://doi.org/10.5194/tc-14-3995-2020, 2020
Short summary
Short summary
Terrain features found in mountainous regions introduce large errors into the calculation of the physical properties of snow using optical satellite images. We present a new model performing rapid calculations of solar radiation over snow-covered rugged terrain that we tested over a site in the French Alps. The results of the study show that all the interactions between sunlight and the terrain should be accounted for over snow-covered surfaces to correctly estimate snow properties from space.
Tim Carlsen, Gerit Birnbaum, André Ehrlich, Veit Helm, Evelyn Jäkel, Michael Schäfer, and Manfred Wendisch
The Cryosphere, 14, 3959–3978, https://doi.org/10.5194/tc-14-3959-2020, https://doi.org/10.5194/tc-14-3959-2020, 2020
Short summary
Short summary
The angular reflection of solar radiation by snow surfaces is particularly anisotropic and highly variable. We measured the angular reflection from an aircraft using a digital camera in Antarctica in 2013/14 and studied its variability: the anisotropy increases with a lower Sun but decreases for rougher surfaces and larger snow grains. The applied methodology allows for a direct comparison with satellite observations, which generally underestimated the anisotropy measured within this study.
César Deschamps-Berger, Simon Gascoin, Etienne Berthier, Jeffrey Deems, Ethan Gutmann, Amaury Dehecq, David Shean, and Marie Dumont
The Cryosphere, 14, 2925–2940, https://doi.org/10.5194/tc-14-2925-2020, https://doi.org/10.5194/tc-14-2925-2020, 2020
Short summary
Short summary
We evaluate a recent method to map snow depth based on satellite photogrammetry. We compare it with accurate airborne laser-scanning measurements in the Sierra Nevada, USA. We find that satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountains.
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
The Cryosphere, 14, 1919–1935, https://doi.org/10.5194/tc-14-1919-2020, https://doi.org/10.5194/tc-14-1919-2020, 2020
Short summary
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Carlo Marin, Giacomo Bertoldi, Valentina Premier, Mattia Callegari, Christian Brida, Kerstin Hürkamp, Jochen Tschiersch, Marc Zebisch, and Claudia Notarnicola
The Cryosphere, 14, 935–956, https://doi.org/10.5194/tc-14-935-2020, https://doi.org/10.5194/tc-14-935-2020, 2020
Short summary
Short summary
In this paper, we use for the first time the synthetic aperture radar (SAR) time series acquired by Sentinel-1 to monitor snowmelt dynamics in alpine regions. We found that the multitemporal SAR allows the identification of the three phases that characterize the melting process, i.e., moistening, ripening and runoff, in a spatial distributed way. We believe that the presented investigation could have relevant applications for monitoring and predicting the snowmelt progress over large regions.
Edward H. Bair, Karl Rittger, Jawairia A. Ahmad, and Doug Chabot
The Cryosphere, 14, 331–347, https://doi.org/10.5194/tc-14-331-2020, https://doi.org/10.5194/tc-14-331-2020, 2020
Short summary
Short summary
Ice and snowmelt feed the Indus River and Amu Darya, but validation of estimates from satellite sensors has been a problem until recently, when we were given daily snow depth measurements from these basins. Using these measurements, estimates of snow on the ground were created and compared with models. Estimates of water equivalent in the snowpack were mostly in agreement. Stratigraphy was also modeled and showed 1 year with a relatively stable snowpack but another with multiple weak layers.
Nick Rutter, Melody J. Sandells, Chris Derksen, Joshua King, Peter Toose, Leanne Wake, Tom Watts, Richard Essery, Alexandre Roy, Alain Royer, Philip Marsh, Chris Larsen, and Matthew Sturm
The Cryosphere, 13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, https://doi.org/10.5194/tc-13-3045-2019, 2019
Short summary
Short summary
Impact of natural variability in Arctic tundra snow microstructural characteristics on the capacity to estimate snow water equivalent (SWE) from Ku-band radar was assessed. Median values of metrics quantifying snow microstructure adequately characterise differences between snowpack layers. Optimal estimates of SWE required microstructural values slightly less than the measured median but tolerated natural variability for accurate estimation of SWE in shallow snowpacks.
Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer
The Cryosphere, 13, 2693–2712, https://doi.org/10.5194/tc-13-2693-2019, https://doi.org/10.5194/tc-13-2693-2019, 2019
Short summary
Short summary
We investigate the influence of ocean–atmosphere teleconnections on the start, end, and duration of snow cover in British Columbia, Canada. We do this using daily satellite imagery from 2002 to 2018 and assess the accuracy of our methods using reported snow cover at 60 weather stations. We found that there are very strong relationships that vary by region and elevation. This improves our understanding of snow cover distribution and could be used to predict snow cover from ocean–climate indices.
Anne Braakmann-Folgmann and Craig Donlon
The Cryosphere, 13, 2421–2438, https://doi.org/10.5194/tc-13-2421-2019, https://doi.org/10.5194/tc-13-2421-2019, 2019
Short summary
Short summary
Snow on sea ice is a fundamental climate variable. We propose a novel approach to estimate snow depth on sea ice from satellite microwave radiometer measurements at several frequencies using neural networks (NNs). We evaluate our results with airborne snow depth measurements and compare them to three other established snow depth algorithms. We show that our NN results agree better with the airborne data than the other algorithms. This is also advantageous for sea ice thickness calculation.
Jie Deng, Tao Che, Cunde Xiao, Shijin Wang, Liyun Dai, and Akynbekkyzy Meerzhan
The Cryosphere, 13, 2149–2167, https://doi.org/10.5194/tc-13-2149-2019, https://doi.org/10.5194/tc-13-2149-2019, 2019
Short summary
Short summary
The Chinese ski industry is rapidly booming driven by enormous market demand and government support with the coming 2022 Beijing Winter Olympics. We evaluate the locational suitability of ski areas in China by integrating the natural and socioeconomic conditions. Corresponding development strategies for decision-makers are proposed based on the multi-criteria metrics, which will be extended to incorporate potential influences from future climate change and socioeconomic development.
Isobel R. Lawrence, Michel C. Tsamados, Julienne C. Stroeve, Thomas W. K. Armitage, and Andy L. Ridout
The Cryosphere, 12, 3551–3564, https://doi.org/10.5194/tc-12-3551-2018, https://doi.org/10.5194/tc-12-3551-2018, 2018
Short summary
Short summary
In this paper we estimate the thickness of snow cover on Arctic sea ice from space. We use data from two radar altimeter satellites, AltiKa and CryoSat-2, that have been operating synchronously since 2013. We produce maps of monthly average snow depth for the four growth seasons (October to April): 2012–2013, 2013–2014, 2014–2015, and 2015–2016. Snow depth estimates are essential for the accurate retrieval of sea ice thickness from satellite altimetry.
Richard Fernandes, Christian Prevost, Francis Canisius, Sylvain G. Leblanc, Matt Maloley, Sarah Oakes, Kiyomi Holman, and Anders Knudby
The Cryosphere, 12, 3535–3550, https://doi.org/10.5194/tc-12-3535-2018, https://doi.org/10.5194/tc-12-3535-2018, 2018
Short summary
Short summary
The use of lightweight UAV-based surveys of surface elevation to map snow depth and weekly snow depth change was evaluated over five study areas spanning a range of topography and vegetation cover. Snow depth was estimated with an accuracy of better than 10 cm in the vertical and 3 cm in the horizontal. Vegetation in the snow-free elevation map was a major source of error. As a result, the snow depth change between two dates with snow cover was estimated with an accuracy of better than 4 cm.
Todd A. N. Redpath, Pascal Sirguey, and Nicolas J. Cullen
The Cryosphere, 12, 3477–3497, https://doi.org/10.5194/tc-12-3477-2018, https://doi.org/10.5194/tc-12-3477-2018, 2018
Short summary
Short summary
A remotely piloted aircraft system (RPAS) is evaluated for mapping seasonal snow depth across an alpine basin. RPAS photogrammetry performs well at providing maps of snow depth at high spatial resolution, outperforming field measurements for resolving spatial variability. Uncertainty and error analysis reveal limitations and potential pitfalls of photogrammetric surface-change analysis. Ultimately, RPAS can be a useful tool for understanding snow processes and improving snow modelling efforts.
Alexander Kokhanovsky, Maxim Lamare, Biagio Di Mauro, Ghislain Picard, Laurent Arnaud, Marie Dumont, François Tuzet, Carsten Brockmann, and Jason E. Box
The Cryosphere, 12, 2371–2382, https://doi.org/10.5194/tc-12-2371-2018, https://doi.org/10.5194/tc-12-2371-2018, 2018
Short summary
Short summary
This work presents a new technique with which to derive the snow microphysical and optical properties from snow spectral reflectance measurements. The technique is robust and easy to use, and it does not require the extraction of snow samples from a given snowpack. It can be used in processing satellite imagery over extended fresh dry, wet and polluted snowfields.
Stefan Härer, Matthias Bernhardt, Matthias Siebers, and Karsten Schulz
The Cryosphere, 12, 1629–1642, https://doi.org/10.5194/tc-12-1629-2018, https://doi.org/10.5194/tc-12-1629-2018, 2018
Short summary
Short summary
The paper presents an approach which can be used to process satellite-based snow cover maps with a higher-than-today accuracy at the local scale. Many of the current satellite-based snow maps are using the NDSI with a threshold as a tool for deciding if there is snow on the ground or not. The presented study has shown that, firstly, using the standard threshold of 0.4 can result in significant derivations at the local scale and that, secondly, the deviations become smaller for coarser scales.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-Minute Global Relief Model:
Procedures, Data Sources and Analysis, National Geophysical Data Center,
NOAA, https://doi.org/10.7289/V5C8276M, 2009.
Arsenault, K. R., Houser, P. R., and De Lannoy, G. J. M.: Evaluation of the
MODIS snow cover fraction product, Hydrol. Process., 28, 980–998,
https://doi.org/10.1002/hyp.9636, 2014.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature,
438, 303–309, https://doi.org/10.1038/nature04141, 2005.
Belgiu, M. and Drăgu, L.: Random forest in remote sensing: A review of
applications and future directions, ISPRS J. Photogramm., 114, 24–31, https://doi.org/10.1016/j.isprsjprs.2016.01.011, 2016.
Berman, E. E., Bolton, D. K., Coops, N. C., Mityok, Z. K., Stenhouse, G. B.,
and Moore, R. D.: Daily estimates of Landsat fractional snow cover driven by
MODIS and dynamic time-warping, Remote Sens. Environ., 216, 635–646,
https://doi.org/10.1016/j.rse.2018.07.029, 2018.
Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating
snow-cover trends from space, Nat. Clim. Change, 8, 924–928,
https://doi.org/10.1038/s41558-018-0318-3, 2018.
Breiman, L.: Random Forests, Mach. Learn., 45, 5–32,
https://doi.org/10.1023/a:1010933404324, 2001.
Brodzik, M., Long, D., and Hardman, M.: Best Practices in Crafting the
Calibrated, Enhanced-Resolution Passive-Microwave EASE-Grid 2.0 Brightness
Temperature Earth System Data Record, Remote Sens.-Basel, 10, 1793, https://doi.org/10.3390/rs10111793, 2018.
Brown, R., Derksen, C., and Wang, L.: A multi-data set analysis of
variability and change in Arctic spring snow cover extent, 1967–2008,
J. Geophys. Res., 115, 751–763, https://doi.org/10.1029/2010jd013975, 2010.
Brown, R. D. and Derksen, C.: Is Eurasian October snow cover extent
increasing?, Environ. Res. Lett., 8, 024006, https://doi.org/10.1088/1748-9326/8/2/024006, 2013.
Chang, A., Foster, J., and Hall, D.: Nimbus-7 SMMR derived global snow cover
parameters, Ann. Glaciol, 9, 39–44, 1987.
Che, T., Xin, L., Jin, R., Armstrong, R., and Zhang, T.: Snow depth derived
from passive microwave remote-sensing data in China, Ann. Glaciol.,
49, 145–154, 2008.
Che, T., Dai, L., Zheng, X., Li, X., and Zhao, K.: Estimation of snow depth
from passive microwave brightness temperature data in forest regions of
northeast China, Remote Sens. Environ., 183, 334–349, 2016.
Cheng, Z., Guo, Z., Tan, Z., Yang, J., and Wang, Q.: Waste heat recovery
from high-temperature solid granular materials: Energy challenges and
opportunities, Renew. Sust. Energ. Rev., 116, 024006, https://doi.org/10.1016/j.rser.2019.109428, 2019.
Cohen, J., Lemmetyinen, J., Pulliainen, J., Heinila, K., Montomoli, F.,
Seppanen, J., and Hallikainen, M. T.: The Effect of Boreal Forest Canopy in
Satellite Snow Mapping – A Multisensor Analysis, IEEE T. Geosci. Remote, 53, 6593–6607, https://doi.org/10.1109/tgrs.2015.2444422,
2015.
Colditz, R.: An Evaluation of Different Training Sample Allocation Schemes
for Discrete and Continuous Land Cover Classification Using Decision
Tree-Based Algorithms, Remote Sens.-Basel, 7, 9655–9681, https://doi.org/10.3390/rs70809655,
2015.
Coll, J., and Li, X.: Comprehensive accuracy assessment of MODIS daily snow
cover products and gap filling methods, ISPRS J. Photogramm., 144, 435–452, https://doi.org/10.1016/j.isprsjprs.2018.08.004, 2018.
Czyzowska-Wisniewski, E. H., van Leeuwen, W. J. D., Hirschboeck, K. K.,
Marsh, S. E., and Wisniewski, W. T.: Fractional snow cover estimation in
complex alpine-forested environments using an artificial neural network,
Remote Sens. Environ., 156, 403–417, https://doi.org/10.1016/j.rse.2014.09.026,
2015.
Dai, L., Che, T., Wang, J., and Zhang, P.: Snow depth and snow water
equivalent estimation from AMSR-E data based on a priori snow
characteristics in Xinjiang, China, Remote Sens. Environ., 127,
14–29, 2012.
Dai, L., Che, T., Ding, Y., and Hao, X.: Evaluation of snow cover and snow depth on the Qinghai–Tibetan Plateau derived from passive microwave remote sensing, The Cryosphere, 11, 1933–1948, https://doi.org/10.5194/tc-11-1933-2017, 2017.
De Lannoy, G. J. M., Reichle, R. H., Arsenault, K. R., Houser, P. R., Kumar, S., Verhoest, N. E. C., and Pauwels, V. R. N.: Multiscale assimilation of
Advanced Microwave Scanning Radiometer-EOS snow water equivalent and
Moderate Resolution Imaging Spectroradiometer snow cover fraction
observations in northern Colorado, Water Resour. Res., 48, W01522, https://doi.org/10.1029/2011wr010588, 2012.
Derksen, C., LeDrew, E., Walker, A., and Goodison, B.: Influence of sensor
overpass time on passive microwave-derived snow cover parameters, Remote
Sens. Environ., 71, 297–308, 2000.
Dietz, A. J., Kuenzer, C., Gessner, U., and Dech, S.: Remote sensing of snow
– a review of available methods, Int. J. Remote Sens.,
33, 4094–4134, https://doi.org/10.1080/01431161.2011.640964, 2011.
Dobreva, I. D. and Klein, A. G.: Fractional snow cover mapping through
artificial neural network analysis of MODIS surface reflectance, Remote
Sens. Environ., 115, 3355–3366, https://doi.org/10.1016/j.rse.2011.07.018, 2011.
Dong, C. and Menzel, L.: Producing cloud-free MODIS snow cover products
with conditional probability interpolation and meteorological data, Remote
Sens. Environ., 186, 439–451, https://doi.org/10.1016/j.rse.2016.09.019, 2016.
Dong, J., Ek, M., Hall, D., Peters-Lidard, C., Cosgrove, B., Miller, J.,
Riggs, G., and Xia, Y.: Using Air Temperature to Quantitatively Predict the
MODIS Fractional Snow Cover Retrieval Errors over the Continental United
States, J. Hydrometeorol., 15, 551–562, https://doi.org/10.1175/jhm-d-13-060.1,
2014.
Du, P., Samat, A., Waske, B., Liu, S., and Li, Z.: Random Forest and
Rotation Forest for fully polarized SAR image classification using
polarimetric and spatial features, ISPRS J. Photogramm., 105, 38–53, https://doi.org/10.1016/j.isprsjprs.2015.03.002, 2015.
Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., and Tschudi, M. A.: Radiative forcing and albedo feedback from the Northern Hemisphere
cryosphere between 1979 and 2008, Nat. Geosci., 4, 151–155,
https://doi.org/10.1038/ngeo1062, 2011.
Foody, G. M.: Explaining the unsuitability of the kappa coefficient in the
assessment and comparison of the accuracy of thematic maps obtained by image
classification, Remote Sens. Environ., 239, 111630, https://doi.org/10.1016/j.rse.2019.111630, 2020.
Foster, J. L., Hall, D. K., Eylander, J. B., Riggs, G. A., Nghiem, S. V.,
Tedesco, M., Kim, E., Montesano, P. M., Kelly, R. E. J., Casey, K. A., and
Choudhury, B.: A blended global snow product using visible, passive
microwave and scatterometer satellite data, Int. J. Remote
Sens., 32, 1371–1395, https://doi.org/10.1080/01431160903548013, 2011.
Frank, E., Hall, M., Trigg, L., Holmes, G., and Witten, I. H.: Data mining
in bioinformatics using Weka, Bioinformatics, 20, 2479–2481, 2004.
Friedman, J. H.: Multivariate Adaptive Regression Splines, Ann. Stat., 19, 1–67, 1991.
Gafurov, A. and Bárdossy, A.: Cloud removal methodology from MODIS snow cover product, Hydrol. Earth Syst. Sci., 13, 1361–1373, https://doi.org/10.5194/hess-13-1361-2009, 2009.
Gascoin, S., Hagolle, O., Huc, M., Jarlan, L., Dejoux, J.-F., Szczypta, C., Marti, R., and Sánchez, R.: A snow cover climatology for the Pyrenees from MODIS snow products, Hydrol. Earth Syst. Sci., 19, 2337–2351, https://doi.org/10.5194/hess-19-2337-2015, 2015.
Gascoin, S., Grizonnet, M., Bouchet, M., Salgues, G., and Hagolle, O.: Theia Snow collection: high-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data, Earth Syst. Sci. Data, 11, 493–514, https://doi.org/10.5194/essd-11-493-2019, 2019.
Grippa, M., Mognard, N., Le Toan, T., and Josberger, E.: Siberia snow depth
climatology derived from SSM/I data using a combined dynamic and static
algorithm, Remote Sens. Environ., 93, 30–41, 2004.
Grody, N. C. and Basist, A. N.: Global identification of snowcover using
SSM/I measurements, IEEE T. Geosci. Remote, 34,
237–249, 1996.
Hall, D. K. and Riggs, G. A.: Accuracy assessment of the MODIS snow
products, Hydrol. Process., 21, 1534–1547, https://doi.org/10.1002/hyp.6715, 2007.
Hall, D. K. and Riggs, G. A.: MODIS/Terra Snow Cover Daily L3 Global 500 m
SIN Grid, Version 6, NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, Colorado USA, https://doi.org/https://doi.org/10.5067/MODIS/MOD10A1.006, 2016a.
Hall, D. K. and Riggs, G. A.: MODIS/Aqua Snow Cover Daily L3 Global 500 m
SIN Grid, Version 6., NASA National Snow and Ice Data Center Distributed
Active Archive Center, Boulder, Colorado USA, https://doi.org/10.5067/MODIS/MYD10A1.006, 2016b.
Hall, D. K., Riggs, G. A., and Salomonson, V. V.: Development of methods for
mapping global snow cover using moderate resolution imaging
spectroradiometer data, Remote Sens. Environ., 54, 127–140, 1995.
Hall, D. K., Riggs, G. A., and Salomonson, V. V.: Algorithm Theoretical
Basis Document (ATBD) for the MODIS Snow and Sea Ice-Mapping Algorithms, NASA Goddard Space Flight Center, Greenbelt, MD, USA,
2001.
Han, M., Yang, K., Qin, J., Jin, R., Ma, Y., Wen, J., Chen, Y., Zhao, L.,
Lazhu, and Tang, W.: An Algorithm Based on the Standard Deviation of Passive
Microwave Brightness Temperatures for Monitoring Soil Surface Freeze/Thaw
State on the Tibetan Plateau, IEEE T. Geosci. Remote, 53, 2775–2783, https://doi.org/10.1109/tgrs.2014.2364823, 2015.
Hao, S., Jiang, L., Shi, J., Wang, G., and Liu, X.: Assessment of
MODIS-Based Fractional Snow Cover Products Over the Tibetan Plateau, IEEE
J. Sel. Top. Appl.,
12, 533–548, https://doi.org/10.1109/jstars.2018.2879666, 2019.
Hao, X., Luo, S., Che, T., Wang, J., Li, H., Dai, L., Huang, X., and Feng, Q.: Accuracy assessment of four cloud-free snow cover products over the
Qinghai-Tibetan Plateau, Int. J. Digit. Earth, 12,
375–393, https://doi.org/10.1080/17538947.2017.1421721, 2018.
Haykin, S. O.: Neural Networks and Learning Machines, 3rd Edn., Prentice Hall, Pearson Education, New Jersey,
2009.
He, T., Liang, S., and Song, D.-X.: Analysis of global land surface albedo
climatology and spatial-temporal variation during 1981–2010 from multiple
satellite products, J. Geophys. Res.-Atmos., 119,
10281–210298, https://doi.org/10.1002/2014jd021667, 2014.
Hecht-Nielsen, R.: Theory of the backpropagation neural network, in: Neural
networks for perception, Elsevier, IJCNN, International Joint Conference, 65–93, 1992.
Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T., Kuchiki, K.,
Niwano, M., and Enomoto, H.: A 38-year (1978–2015) Northern Hemisphere
daily snow cover extent product derived using consistent objective criteria
from satellite-borne optical sensors, Remote Sens. Environ., 191,
402–418, https://doi.org/10.1016/j.rse.2017.01.023, 2017.
Huang, X., Deng, J., Ma, X., Wang, Y., Feng, Q., Hao, X., and Liang, T.: Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China, The Cryosphere, 10, 2453–2463, https://doi.org/10.5194/tc-10-2453-2016, 2016.
Huang, Y., Liu, H., Yu, B., Wu, J., Kang, E. L., Xu, M., Wang, S., Klein, A., and Chen, Y.: Improving MODIS snow products with a HMRF-based
spatio-temporal modeling technique in the Upper Rio Grande Basin, Remote
Sens. Environ., 204, 568–582, https://doi.org/10.1016/j.rse.2017.10.001, 2018.
Jin, H., Stehman, S. V., and Mountrakis, G.: Assessing the impact of
training sample selection on accuracy of an urban classification: a case
study in Denver, Colorado, Int. J. Remote Sens., 35,
2067–2081, 2014.
Josberger, E. G. and Mognard, N. M.: A passive microwave snow depth
algorithm with a proxy for snow metamorphism, Hydrol. Process., 16,
1557–1568, 2002.
Kattenborn, T., Lopatin, J., Förster, M., Braun, A. C., and Fassnacht, F. E.: UAV data as alternative to field sampling to map woody invasive
species based on combined Sentinel-1 and Sentinel-2 data, Remote Sens. Environ., 227, 61–73, https://doi.org/10.1016/j.rse.2019.03.025, 2019.
Kelly, R.: The AMSR-E snow depth algorithm: Description and initial results,
Journal of The Remote Sensing Society of Japan, 29, 307–317,
2009.
Kim, R. S., Durand, M., and Liu, D.: Spectral analysis of airborne passive
microwave measurements of alpine snowpack: Colorado, USA, Remote Sens.
Environ., 205, 469–484, https://doi.org/10.1016/j.rse.2017.07.025, 2018.
Kim, R. S., Durand, M., Li, D., Baldo, E., Margulis, S. A., Dumont, M., and
Morin, S.: Estimating alpine snow depth by combining multifrequency passive
radiance observations with ensemble snowpack modeling, Remote Sens.
Environ., 226, 1–15, https://doi.org/10.1016/j.rse.2019.03.016, 2019.
Kostadinov, T. S. and Lookingbill, T. R.: Snow cover variability in a
forest ecotone of the Oregon Cascades via MODIS Terra products, Remote
Sens. Environ., 164, 155–169, https://doi.org/10.1016/j.rse.2015.04.002, 2015.
Kuter, S., Weber, G.-W., Akyürek, Z., and Özmen, A.: Inversion of
top of atmospheric reflectance values by conic multivariate adaptive
regression splines, Inverse Probl. Sci. En., 23,
651–669, https://doi.org/10.1080/17415977.2014.933828, 2015.
Kuter, S., Akyurek, Z., and Weber, G.-W.: Retrieval of fractional snow
covered area from MODIS data by multivariate adaptive regression splines,
Remote Sens. Environ., 205, 236–252, https://doi.org/10.1016/j.rse.2017.11.021,
2018.
Lemmetyinen, J., Derksen, C., Rott, H., Macelloni, G., King, J., Schneebeli, M., Wiesmann, A., Leppänen, L., Kontu, A., and Pulliainen, J.: Retrieval
of Effective Correlation Length and Snow Water Equivalent from Radar and
Passive Microwave Measurements, Remote Sens.-Basel, 10, 170, https://doi.org/10.3390/rs10020170,
2018.
Li, X., Liu, Y., Zhu, X., Zheng, Z., and Chen, A.: Snow Cover Identification
with SSM/I Data in China, J. Appl. Meteorol. Sci., 18,
12–20, 2007.
Liang, H., Huang, X., Sun, Y., Wang, Y., and Liang, T.: Fractional
Snow-Cover Mapping Based on MODIS and UAV Data over the Tibetan Plateau,
Remote Sens.-Basel, 9, 1332, https://doi.org/10.3390/rs9121332, 2017.
Liu, X., Jiang, L., Wu, S., Hao, S., Wang, G., and Yang, J.: Assessment of
Methods for Passive Microwave Snow Cover Mapping Using FY-3C/MWRI Data in
China, Remote Sens.-Basel, 10, 524, https://doi.org/10.3390/rs10040524, 2018.
Long, D. G. and Brodzik, M. J.: Optimum Image Formation for Spaceborne
Microwave Radiometer Products, IEEE T. Geosci. Remote, 54, 2763–2779, https://doi.org/10.1109/TGRS.2015.2505677, 2016.
Luojus, K., Cohen, J., Ikonen, J., Pulliainen, J., Takala, M., Veijola, K.,
Lemmetyinen, J., Nagler, T., Derksen, C., and Brown, R.: Assessment of
Seasonal snow Cover Mass in Northern Hemisphere During the Satellite-ERA,
IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing
Symposium, 2018, Valencia, 6255–6258, https://doi.org/10.1109/IGARSS.2018.8517494, 2018.
Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., and Elith, J.: A
comparison of resampling methods for remote sensing classification and
accuracy assessment, Remote Sens. Environ., 208, 145–153,
https://doi.org/10.1016/j.rse.2018.02.026, 2018.
Marchane, A., Jarlan, L., Hanich, L., Boudhar, A., Gascoin, S., Tavernier, A., Filali, N., Le Page, M., Hagolle, O., and Berjamy, B.: Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range, Remote Sens. Environ., 160, 72–86, 2015.
Masson, T., Dumont, M., Mura, M., Sirguey, P., Gascoin, S., Dedieu, J.-P.,
and Chanussot, J.: An Assessment of Existing Methodologies to Retrieve Snow
Cover Fraction from MODIS Data, Remote Sens.-Basel, 10, 619, https://doi.org/10.3390/rs10040619,
2018.
Menne, M. J., Durre, I., Korzeniewski, B., McNeal, S., Thomas, K., Yin, X.,
Anthony, S., Ray, R., Vose, R. S., E.Gleason, B., and Houston, T. G.: Global
Historical Climatology Network – Daily (GHCN-Daily), Version 3, NOAA
National Climatic Data Center, https://doi.org/10.7289/V5D21VHZ, 2012a.
Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G.: An
Overview of the Global Historical Climatology Network-Daily Database,
J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/jtech-d-11-00103.1, 2012b.
Metsämäki, S. J., Anttila, S. T., Markus, H. J., and
Vepsäläinen, J. M.: A feasible method for fractional snow cover
mapping in boreal zone based on a reflectance model, Remote Sens.
Environ., 95, 77–95, https://doi.org/10.1016/j.rse.2004.11.013, 2005.
Millard, K. and Richardson, M.: On the Importance of Training Data Sample
Selection in Random Forest Image Classification: A Case Study in Peatland
Ecosystem Mapping, Remote Sens.-Basel, 7, 8489–8515, https://doi.org/10.3390/rs70708489, 2015.
Moosavi, V., Malekinezhad, H., and Shirmohammadi, B.: Fractional snow cover
mapping from MODIS data using wavelet-artificial intelligence hybrid models,
J. Hydrol., 511, 160–170, https://doi.org/10.1016/j.jhydrol.2014.01.015, 2014.
Mutanga, O., Adam, E., and Cho, M. A.: High density biomass estimation for
wetland vegetation using WorldView-2 imagery and random forest regression
algorithm, Int. J. Appl. Earth Obs., 18, 399–406, https://doi.org/10.1016/j.jag.2012.03.012, 2012.
Neale, C. M. U., McFarland, M. J., and Chang, K.: Land-surface-type
classification using microwave brightness temperatures from the Special
Sensor Microwave/Imager, IEEE T. Geosci. Remote,
28, 829–838, https://doi.org/10.1109/36.58970, 1990.
Nguyen, L. H., Joshi, D. R., Clay, D. E., and Henebry, G. M.: Characterizing
land cover/land use from multiple years of Landsat and MODIS time series: A
novel approach using land surface phenology modeling and random forest
classifier, Remote Sens. Environ., 238, 111017, https://doi.org/10.1016/j.rse.2018.12.016,
2018.
Pan, J., Jiang, L., and Zhang, L.: Wet snow detection in the south of China
by passive microwave remote sensing, 2012 IEEE Int. Geosci. Remote, 2012, 4863–4866, 2012.
Pan, M., Sahoo, A. K., and Wood, E. F.: Improving soil moisture retrievals
from a physically-based radiative transfer model, Remote Sens. Environ., 140, 130–140, https://doi.org/10.1016/j.rse.2013.08.020, 2014.
Parajka, J. and Blöschl, G.: Validation of MODIS snow cover images over Austria, Hydrol. Earth Syst. Sci., 10, 679–689, https://doi.org/10.5194/hess-10-679-2006, 2006.
Parajka, J. and Blöschl, G.: Spatio-temporal combination of MODIS
images – potential for snow cover mapping, Water Resour. Res., 44, 72–84, https://doi.org/10.1029/2007wr006204, 2008.
Parajka, J., Holko, L., Kostka, Z., and Blöschl, G.: MODIS snow cover mapping
accuracy in a small mountain catchment – comparison between open and forest
sites, Hydrol. Earth Syst. Sci., 16, 2365–2377,
https://doi.org/10.5194/hess-16-2365-2012, 2012.
Peng, G., Meier, W. N., Scott, D. J., and Savoie, M. H.: A long-term and reproducible passive microwave sea ice concentration data record for climate studies and monitoring, Earth Syst. Sci. Data, 5, 311–318, https://doi.org/10.5194/essd-5-311-2013, 2013.
Qu, Y., Zhu, Z., Chai, L., Liu, S., Montzka, C., Liu, J., Yang, X., Lu, Z.,
Jin, R., Li, X., Guo, Z., and Zheng, J.: Rebuilding a Microwave Soil
Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness
Temperature and SMAP over the Qinghai–Tibet Plateau, China, Remote Sens.-Basel,
11, 683, https://doi.org/10.3390/rs11060683, 2019.
Quirós, E., Felicísimo, Á., and Cuartero, A.: Testing
Multivariate Adaptive Regression Splines (MARS) as a Method of Land Cover
Classification of TERRA-ASTER Satellite Images, Sensors, 9, 9011–9028,
https://doi.org/10.3390/s91109011, 2009.
Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., and Vicente-Serrano, S. M.: Topographic control of snowpack distribution in a small catchment in the central Spanish Pyrenees: intra- and inter-annual persistence, The Cryosphere, 8, 1989–2006, https://doi.org/10.5194/tc-8-1989-2014, 2014.
Riggs, G. A. and Hall, D. K.: MODIS Snow Products Collection 6 User Guide, available at: https://modis-snow-ice.gsfc.nasa.gov/uploads/C6_MODIS Snow_User_Guide.pdf (last access: 10 February 2021),
2016.
Riggs, G. A., Hall, D. K., and Román, M. O.: Overview of NASA's MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) snow-cover Earth System Data Records, Earth Syst. Sci. Data, 9, 765–777, https://doi.org/10.5194/essd-9-765-2017, 2017.
Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., and
Rigol-Sanchez, J. P.: An assessment of the effectiveness of a random forest
classifier for land-cover classification, ISPRS J. Photogramm., 67, 93–104, https://doi.org/10.1016/j.isprsjprs.2011.11.002, 2012.
Romanov, P. and Tarpley, D.: Enhanced algorithm for estimating snow depth
from geostationary satellites, Remote Sens. Environ., 108, 97–110,
2007.
Rosenthal, W. and Dozier, J.: Automated Mapping of Montane Snow Cover at
Subpixel Resolution from the Landsat Thematic Mapper, Water Resour.
Res., 32, 115–130, https://doi.org/10.1029/95WR02718, 1996.
Saberi, N.: Snow Properties Retrieval Using Passive Microwave Observations,
Doctor of Philosophy, Geography Environmental Management, University of
Waterloo, Waterloo, Ontario, Canada, 156 pp., 2019.
Salomonson, V. V. and Appel, I.: Estimating fractional snow cover from
MODIS using the normalized difference snow index, Remote Sens. Environ., 89, 351–360, https://doi.org/10.1016/j.rse.2003.10.016, 2004.
Salomonson, V. V. and Appel, I.: Development of the Aqua MODIS NDSI
fractional snow cover algorithm and validation results, IEEE T. Geosci. Remote, 44, 1747–1756, https://doi.org/10.1109/TGRS.2006.876029,
2006.
Singh, P. R. and Gan, T. Y.: Retrieval of snow water equivalent using
passive microwave brightness temperature data, Remote Sens. Environ., 74, 275–286, 2000.
Smith, T. and Bookhagen, B.: Assessing uncertainty and sensor biases in
passive microwave data across High Mountain Asia, Remote Sens. Environ., 181, 174–185, 2016.
Sturm, M.: White water: Fifty years of snow research in WRR and the outlook
for the future, Water Resour. Res., 51, 4948–4965,
https://doi.org/10.1002/2015wr017242, 2015.
Sulla-Menashe, D. and Friedl, M. A.: Use Guide to collection 6 MODIS land
cover (MCD12Q1 and MCD12C1) Product, USGS, Reston, VA, USA, 2018.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J.,
Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating northern
hemisphere snow water equivalent for climate research through assimilation
of space-borne radiometer data and ground-based measurements, Remote Sens.
Environ., 115, 3517–3529, 2011.
Tedesco, M. and Jeyaratnam, J.: A New Operational Snow Retrieval Algorithm
Applied to Historical AMSR-E Brightness Temperatures, Remote Sens.-Basel, 8, 1037, https://doi.org/10.3390/rs8121037, 2016.
Tsai, Y., Dietz, A., Oppelt, N., and Kuenzer, C.: Wet and Dry Snow Detection Using
Sentinel-1 SAR Data for Mountainous Areas with a Machine Learning Technique,
Remote Sens.-Basel, 11, 895, https://doi.org/10.3390/rs11080895, 2019.
Wang, G., Jiang, L., Wu, S., Shi, J., Hao, S., and Liu, X.: Fractional Snow
Cover Mapping from FY-2 VISSR Imagery of China, Remote Sens.-Basel, 9, 983, https://doi.org/10.3390/rs9100983, 2017.
Wang, X., Xie, H., and Liang, T.: Evaluation of MODIS snow cover and cloud
mask and its application in Northern Xinjiang, China, Remote Sens. Environ., 112, 1497–1513, https://doi.org/10.1016/j.rse.2007.05.016, 2008.
Wang, Y., Huang, X., Wang, J., Zhou, M., and Liang, T.: AMSR2 snow depth
downscaling algorithm based on a multifactor approach over the Tibetan
Plateau, China, Remote Sens. Environ., 231, 111268, https://doi.org/10.1016/j.rse.2019.111268, 2019.
Wiesmann, A. and Mätzler, C.: Microwave Emission Model of Layered
Snowpacks, Remote Sens. Environ., 70, 307–316, 1999.
Witten, I., Frank, E., Hall, M., and Pal, C.: Data Mining: Practical Machine Learning Tools and Techniques, 4th. Edn., Morgan Kaufmann, https://doi.org/10.1016/c2009-0-19715-5, 2016.
Wolfe, R. E., Nishihama, M., Fleig, A. J., Kuyper, J. A., Roy, D. P.,
Storey, J. C., and Patt, F. S.: Achieving sub-pixel geolocation accuracy in
support of MODIS land science, Remote Sens. Environ., 83, 31–49,
https://doi.org/10.1016/S0034-4257(02)00085-8, 2002.
Xiao, X., Zhang, T., Zhong, X., Shao, W., and Li, X.: Support vector
regression snow-depth retrieval algorithm using passive microwave remote
sensing data, Remote Sens. Environ., 210, 48–64, 2018.
Xiao, X., Zhang, T., Zhong, X., and Li, X.: Spatiotemporal variation of snow
depth in the Northern Hemisphere from 1992 to 2016, Remote Sens.-Basel, 12,
2728, https://doi.org/10.3390/rs12172728, 2020.
Xu, X., Liu, X., Li, X., Xin, Q., Chen, Y., Shi, Q., and Ai, B.: Global snow
cover estimation with Microwave Brightness Temperature measurements and
one-class in situ observations, Remote Sens. Environ., 182, 227–251,
2016.
Zhang, T.: Influence of the seasonal snow cover on the ground thermal
regime: An overview, Rev. Geophys., 43, 589–590, 2005.
Zhang, W., and Goh, A. T. C.: Multivariate adaptive regression splines and
neural network models for prediction of pile drivability, Geosci.
Front., 7, 45–52, https://doi.org/10.1016/j.gsf.2014.10.003, 2016.
Zhao, W., Wu, H., Yin, G., and Duan, S.-B.: Normalization of the temporal
effect on the MODIS land surface temperature product using random forest
regression, ISPRS J. Photogramm., 152,
109–118, https://doi.org/10.1016/j.isprsjprs.2019.04.008, 2019.
Zhong, L., Hu, L., and Zhou, H.: Deep learning based multi-temporal crop
classification, Remote Sens. Environ., 221, 430–443,
https://doi.org/10.1016/j.rse.2018.11.032, 2019.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y. W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl, A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold
season emissions dominate the Arctic tundra methane budget,
P. Natl. Acad. Sci. USA, 113, 40–45, https://doi.org/10.1073/pnas.1516017113, 2016.
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for...