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Abstract. The dynamic characteristics of seasonal snow
cover are critical for hydrology management, the climate sys-
tem, and the ecosystem functions. Optical satellite remote
sensing has proven to be an effective tool for monitoring
global and regional variations in snow cover. However, ac-
curately capturing the characteristics of snow dynamics at a
finer spatiotemporal resolution continues to be problematic
as observations from optical satellite sensors are greatly im-
pacted by clouds and solar illumination. Traditional methods
of mapping snow cover from passive microwave data only
provide binary information at a spatial resolution of 25 km.
This innovative study applies the random forest regression
technique to enhanced-resolution passive microwave bright-
ness temperature data (6.25 km) to estimate fractional snow
cover over North America in winter months (January and
February). Many influential factors, including land cover, to-
pography, and location information, were incorporated into
the retrieval models. Moderate Resolution Imaging Spectro-
radiometer (MODIS) snow cover products between 2008 and
2017 were used to create the reference fractional snow cover
data as the “true” observations in this study. Although over-
estimating and underestimating around two extreme values
of fractional snow cover, the proposed retrieval algorithm
outperformed the other three approaches (linear regression,
artificial neural networks, and multivariate adaptive regres-
sion splines) using independent test data for all land cover
classes with higher accuracy and no out-of-range estimated
values. The method enabled the evaluation of the estimated
fractional snow cover using independent datasets, in which
the root mean square error of evaluation results ranged from

0.189 to 0.221. The snow cover detection capability of the
proposed algorithm was validated using meteorological sta-
tion observations with more than 310 000 records. We found
that binary snow cover obtained from the estimated fractional
snow cover was in good agreement with ground measure-
ments (kappa: 0.67). There was significant improvement in
the accuracy of snow cover identification using our algo-
rithm; the overall accuracy increased by 18 % (from 0.71
to 0.84), and the omission error was reduced by 71 % (from
0.48 to 0.14) when the threshold of fractional snow cover was
0.3. The experimental results show that passive microwave
brightness temperature data may potentially be used to esti-
mate fractional snow cover directly in that this retrieval strat-
egy offers a competitive advantage in snow cover detection.

1 Introduction

Snow cover is a critical indicator of climate change, playing
a vital role in the global energy budget (Flanner et al., 2011),
water cycle (Gao et al., 2019), and atmospheric circulation
(Henderson et al., 2018). Snow cover directly modulates the
release of carbon and methane from underlying soil (Zhang,
2005; Zona et al., 2016) and influences permafrost conditions
and active layer dynamics (Zona et al., 2016). Snowpack also
stores a huge amount of water, providing for both domestic
and industrial water needs (Sturm, 2015; Cheng et al., 2019).
Accurate and timely monitoring of the spatiotemporal vari-
ation in snow cover is beneficial for hydrologic forecasting,
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climate predictions, and water resources management (Bar-
nett et al., 2005; Bormann et al., 2018).

Snow cover data are typically obtained from meteorolog-
ical stations or in situ manual measurements, which is spa-
tially discontinuous and labor intensive. Remote sensing has
become an attractive alternative tool to ground-based mea-
surements as it is able to cover a wide area and is capa-
ble of high-frequency observations. Numerous studies have
focused on snow cover detection, and snow cover products
used optical and microwave satellite data (Tsai et al., 2019;
Liu et al., 2018; Hori et al., 2017). Most of these snow cover
products provide binary information at the pixel level: snow-
covered or snow-free. However, snow cover often varies
within a limited scale area and is characterized by high spa-
tial heterogeneity, especially in alpine terrain areas. Dobreva
and Klein (2011) demonstrated that the use of binary snow
cover classification in snow cover area estimation may pro-
duce considerable uncertainties. Binary snow cover lacking
fractional features hinders an accurate characterization of the
spatial distribution of snow cover and cannot accurately cap-
ture variations in seasonal snow cover dynamics. In terms
of the energy budget perspective, binary snow cover intro-
duces significant uncertainties into the global energy budget
estimation because of the large surface albedo differences be-
tween snow-covered and snow-free surfaces (He et al., 2014).
Thus, there is an urgent need to acquire the snow cover area at
the sub-pixel level to provide accurate snow cover informa-
tion. Fractional snow cover allows for the derivation of snow
cover area at the sub-pixel level; this is a better option com-
pared to binary snow cover (Salomonson and Appel, 2004).

Fractional snow cover maps derived from optical imagery
have been produced for over 40 years. Optical satellite ob-
servations have been recognized for their suitability in esti-
mating fractional snow cover because of their high spatial
resolution. Moderate- to high-resolution optical observations
have been popular in previous snow cover studies, includ-
ing, for example, Fengyun (FY) series sensors (0.5–4 km)
(Wang et al., 2017), Moderate Resolution Imaging Spectrora-
diometer (MODIS) (500 m) (Kuter et al., 2018), and Landsat
(30 m) (Berman et al., 2018). There are also many predictive
methods for fractional snow cover, such as linear regression
(Salomonson and Appel, 2004, 2006), spectral mixture anal-
ysis (Wang et al., 2017; Rosenthal and Dozier, 1996), ma-
chine learning (e.g., artificial neural network, ANN) (Liang
et al., 2017; Moosavi et al., 2014), and multivariate adaptive
regression splines (MARS) (Kuter et al., 2018). A simple lin-
ear regression cannot fully describe the complex relationship
between satellite observations and fractional snow cover. As
such, nonlinear approaches have recently been developed to
replace this traditional method (Berman et al., 2018). Kuter
et al. (2018) estimated fractional snow cover from MODIS
data using the MARS technique, for which the Landsat 8 bi-
nary snow cover data served as the reference fractional snow
cover data. They found that the estimated fractional snow
cover using the MARS method was in good agreement with

the reference fractional snow cover, with the average correla-
tion coefficient beingR = 0.93 (Kuter et al., 2018). However,
polar regions contend with clouds and limited solar illumi-
nation which are the greatest challenges for snow cover de-
tection using optical satellite data. This has resulted in snow
cover maps with incomplete spatial coverage, at times with
gaps of up to 70 % (Parajka and Blöschl, 2008). Although
there have been constant efforts to fill the gaps mainly caused
by cloud contamination by fusing multi-source data (Chen
et al., 2018) such as passive microwave snow cover products
(Hao et al., 2018; Huang et al., 2016) and different spatiotem-
poral information on snow cover (Dong and Menzel, 2016;
Gafurov and Bárdossy, 2009), most studies have focused on
binary snow cover.

When there are consecutive cloudy days, the use of data
fusion technology introduces significant uncertainties in de-
tecting snow cover from optical imagery. Passive microwave
sensors are largely advantageous because they have the ca-
pacity to measure microwave radiation emitted from the
ground under the clouds and in darkness. Compared to active
microwave sensors, passive sensors have a large swath width
and generate a large amount of daily observations that extend
for several decades (Cohen et al., 2015). To date, passive mi-
crowave brightness temperature data have been widely ap-
plied in monitoring soil moisture (Qu et al., 2019), sea/lake
ice (Peng et al., 2013), frozen soil (Han et al., 2015), and
snow cover. Previous studies on snow cover have typically
focused on snow depth (Xiao et al., 2018; Che et al., 2008),
snow water equivalent (SWE) (Takala et al., 2011; Lemme-
tyinen et al., 2018), and snow cover area (Liu et al., 2018;
Xu et al., 2016). All studies on snow cover area were lim-
ited to binary information. Specifically, they involved the ap-
plication of common passive microwave snow cover map-
ping algorithms, such as Grody’s algorithm (Grody and Ba-
sist, 1996), National Aeronautics and Space Administration
(NASA) Advanced Microwave Scanning Radiometer–Earth
Observing System (AMSR-E) SWE algorithm (Kelly, 2009),
Singh’s algorithm (Singh and Gan, 2000), Neale’s algorithm
(Neale et al., 1990), the FY3 algorithm (Li et al., 2007), and
the South China algorithm (Pan et al., 2012). All these algo-
rithms utilize different thresholds for brightness temperature
to identify binary snow cover. Recently, Xu et al. (2016) ap-
plied the brightness temperatures of different channels and
their linear combinations into the presence and background
learning (PBL) algorithm to identify global binary snow
cover.

As the effect of environmental factors (e.g., vegetation,
topography, and wind) on snow cover distribution pro-
duces great heterogeneity, snow cover monitoring still bears
larger uncertainties when only using passive microwave data.
These large uncertainties may result from “patchy” (shal-
low/discontinuous) snow cover and the use of coarse resolu-
tion (25 km) (Xiao et al., 2018). Despite the coarse resolution
of passive microwave sensors, their ability to detect snow
cover in the presence of clouds demonstrates their effective-
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ness as a snow cover monitoring tool. There is an urgent need
for daily time series and full space-covered sub-pixel snow
cover area data for climate and reanalysis studies. Thus, it
is necessary to derive high resolution fractional snow cover
that can describe snow cover distribution patterns and capture
its rapid evolution processes. Brodzik et al. (2018) recently
published the Calibrated Enhanced-Resolution Passive Mi-
crowave Daily Equal-Area Scalable Earth Grid (EASE-Grid)
2.0 Brightness Temperature data (see Sect. 2.1 below), which
have high spatial resolution (3.125 and 6.25 km) depending
on frequency (Brodzik et al., 2018; Long and Brodzik, 2016).
This passive microwave data with enhanced resolution pro-
vide an opportunity for fractional snow cover estimation.

The main objective of this study is to develop a fea-
sible method utilizing the enhanced-resolution passive mi-
crowave brightness temperature data to retrieve daily frac-
tional snow cover at a 6.25 km resolution. The datasets used
in this study are described in Sect. 2, including the enhanced-
resolution passive microwave data, ground-based measure-
ments, MODIS snow cover and land cover products, and to-
pographic data. Section 3 details the proposed retrieval algo-
rithm using the random forest method as a retrieval function.
Section 4 presents the results from the comparison of meth-
ods, evaluation, and validation experiments. Finally, Sect. 5
discusses the possible factors that impact on the accuracy of
the fractional snow cover estimates derived from passive mi-
crowave data.

2 Datasets

2.1 The enhanced-resolution passive microwave data

The NASA Making Earth System Data Records for Use in
Research Environments (MEaSUREs) program provides a
new version of passive microwave brightness temperature
data known as the Calibrated Enhanced-Resolution Passive
Microwave Daily (EASE-Grid) 2.0 Brightness Temperature.
This passive microwave gridded data span from 1978 to mid-
2017 using the level 2 satellite records from multiple passive
microwave sensors (Brodzik et al., 2018). This enhanced-
resolution data may be downloaded from the National
Snow and Ice Data Center (NSIDC; https://nsidc.org/data/
NSIDC-0630/versions/1, last access: 10 February 2021). To
explore the feasibility of estimating fractional snow cover us-
ing passive microwave data, this study mainly selected Jan-
uary and February of 2008–2017 as the study period. The
Special Sensor Microwave Imager/Sounder (SSMIS) sensor
(F-16) used in this present study offers three channels (19,
37, and 91 GHz) in both horizontal (H ) and vertical (V )
polarization and 22 GHz with vertical polarization. These
datasets were gridded onto EASE-Grid 2.0 projections at two
spatial resolutions (19 and 22 GHz with 6.25 km and 37 and
91 GHz with 3.125 km). Only observations from descending
orbit (morning) were used to avoid the effects of wet snow as

much as possible (Derksen et al., 2000). To achieve a com-
mon resolution, we aggregated the 3.125 km spatial resolu-
tion data to 6.25 km by averaging the surrounding four pix-
els.

2.2 Ground measurements

Although ground measurements of snow cover have lim-
ited spatial representation in passive microwave coarse spa-
tial resolution, in situ measurements continue to be the
most authentic and reliable data source for snow depth
estimation or snow cover detection (Chen et al., 2018;
Sturm et al., 2010). Ground measurements from the Global
Historical Climatology Network-Daily (GHCN-Daily) data
were used to assess the snow cover detection capability
(Menne et al., 2012a). The GHCN-Daily dataset was pro-
vided by the National Climatic Data Center (available in
https://doi.org/10.7289/V5D21VHZ, Menne et al., 2012a),
and it integrates daily observations from approximately 30
different data sources. The new version of the dataset was
updated on 13 June 2018 and contained measurements from
over 100 000 stations worldwide. These stations record var-
ious aspects of meteorological observations, including snow
depth and snowfall (Menne et al., 2012b). More than 50 000
measurement sites across Canada and the United States were
collected, and all available records applied in the validation
stage are from approximately 18 000 sites.

2.3 MODIS land surface products

2.3.1 Snow cover product

MODIS snow cover products were considered the most suit-
able reference data because of their wide application, high
accuracy (Hall and Riggs, 2007; Zhang et al., 2019; Coll and
Li, 2018), and high spatiotemporal resolution (1 d; 500 m).
The accuracy of the version 6 MODIS snow cover products
has improved compared to that of version 5 (Dong et al.,
2014; Huang et al., 2018). The most noticeable change for
version 6 is that the Normalized Difference Snow Index
(NDSI) snow cover has replaced fractional snow cover, while
binary snow-covered area (SCA) datasets are no longer avail-
able (Riggs and Hall, 2016). A snow cover detection method
using NDSI was applied in version 6 to alleviate commis-
sion errors (Riggs et al., 2017). The NDSI index helps to
distinguish snow from other surface features and to describe
the presence of snow (Hall et al., 1998, 2001). These prod-
ucts are available from NSIDC website (MOD10A1: https:
//nsidc.org/data/MOD10A1, last access: 10 February 2021;
MYD10A1: https://nsidc.org/data/MYD10A1, last access:
10 February 2021) (Hall and Riggs, 2016a, b). The local
equatorial crossing times of MODIS on board the Terra
and Aqua satellites are approximately 10:30 and 13:30 lo-
cal time, respectively. This study used both MOD10A1 and
MYD10A1 NDSI snow cover products to generate reference
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fractional snow cover for North America. The NDSI snow
cover data were initially converted to binary snow cover for
aggregation into fractional snow cover data at 6.25 km spatial
resolution (see Sect. 3.2).

2.3.2 Land cover product

Generally, the retrieval accuracy of snow cover parameters
is strongly dependent on the land cover type (Xiao et al.,
2018; Kuter et al., 2018; Dobreva and Klein, 2011; Huang
et al., 2018). We indirectly considered the land cover ef-
fect when estimating fractional snow cover by establish-
ing retrieval models on different land cover classes derived
from MODIS land cover data (2008–2017). MODIS Land
Cover Type Yearly Product (MCD12Q1, version 6) incor-
porates five different classification schemes and is glob-
ally available at a 500 m spatial resolution spanning 2001
to the present (https://search.earthdata.nasa.gov/, last access:
10 February 2021). The International Geosphere–Biosphere
Program (IGBP) classification scheme categorizes land cover
in 17 classes (Sulla-Menashe and Friedl, 2018). In this study,
MCD12Q1 data were resampled onto the 6.25 km grid using
a simple majority method, then integrated into five classes:
forest, shrub, prairie, bare land, and water (see Xiao et al.,
2018). Fractional snow cover retrieval models were estab-
lished for four of these land cover types, excluding water.

2.4 Topographic data

Previous studies have demonstrated that topography plays an
important role in snowpack distribution (Dai et al., 2017)
and snow evolution (Savoie et al., 2009). The ETOPO1 data
were used as the topographic auxiliary data; these data have
a 1 arcmin spatial resolution and were developed by the Na-
tional Geophysical Data Center of the National Oceanic and
Atmospheric Administration (NOAA) (Amante and Eakins,
2009). This study also considered elevation, slope, and as-
pect factors. Elevation was directly acquired from ETOPO1,
which was re-projected and resampled onto the grid at
6.25 km spatial resolution. The slope and aspect data were
obtained from ETOPO1 data by ArcGIS 10. Figure 1 shows
the elevation pattern for North America, limited to Canada
and the United States in this study.

3 Methodology

Microwave radiation constantly emitted from the substratum
can be measured by passive microwave sensors. However,
the overlying snow pack attenuates the upward microwave
radiation (Chang et al., 1987). This microwave radiation
attenuation was mainly dominated by volume scatter rely-
ing on properties of the snow cover. Previous studies have
demonstrated that there is great heterogeneity in snow prop-
erties and the distribution of snow cover, both of which may
be influenced by many factors (Xiao et al., 2020), including

Figure 1. Topographic map of North America.

the most prevalent land-cover (Che et al., 2016; Kim et al.,
2019), topography (e.g., elevation, topographic relief) (Smith
and Bookhagen, 2016; Revuelto et al., 2014), time (Sturm
et al., 2010; Dai et al., 2012), and climatic conditions (e.g.,
wind speed, near-surface soil temperature, and air tempera-
ture) (Dong et al., 2014; Grippa et al., 2004; Josberger and
Mognard, 2002). Satellite sensors receive reduced upwelling
microwave radiation in proportion to a greater snow cover
area or a larger mass of snowpack (Chang et al., 1987; Di-
etz et al., 2011; Saberi, 2019). A number of published works
have demonstrated the potential to derive snow depth and
SWE using passive microwave radiation data (Kim et al.,
2019; Wang et al., 2019). Despite the high uncertainties asso-
ciated with snow depth and SWE estimations, using passive
microwave data can provide useful snow cover extent infor-
mation (Brown et al., 2010; Foster et al., 2011).

3.1 Overview

To develop a fractional snow cover prototype retrieval
method combined with optical and passive microwave data,
we only used the January and February datasets as snow
cover areas are at a maximum and snowpack properties are
relatively stable during this period (Xiao et al., 2018). The
influential factors on snow cover, including topography fac-
tor, land cover, location, and time, were indirectly or directly
considered during retrieval of the fractional snow cover. To
date, many researchers have applied machine learning tech-
niques for the retrieval of snow cover parameters to ex-
plore the relationship between passive microwave signals and
snow properties (Xiao et al., 2018; Tedesco et al., 2004).
Random forest is an ensemble learning method gaining the
attention of many researchers because it is more efficient and
robust than the single method (Breiman, 2001). As a clas-
sifier, random forest has been successfully employed to de-

The Cryosphere, 15, 835–861, 2021 https://doi.org/10.5194/tc-15-835-2021

https://search.earthdata.nasa.gov/


X. Xiao et al.: Estimating fractional snow cover from passive microwave data 839

tect snow cover (Tsai et al., 2019), land cover (Rodriguez-
Galiano et al., 2012), and woody invasive species (Katten-
born et al., 2019). The random forest regression method can
also successfully estimate land surface temperature (Zhao
et al., 2019), biomass (Mutanga et al., 2012), and soil mois-
ture (Qu et al., 2019). In this study, random forest regression
(described in Sect. 3.4.4) was selected as the retrieval method
to mine the relationship between passive microwave bright-
ness temperature and fractional snow cover. We also com-
pared random forest with three other methods (linear regres-
sion, MARS, and ANN) widely used in fractional snow cover
retrieval from optical remote sensing data in model perfor-
mance. Figure 2 provides an overview of the workflow that
consists of four parts.

First, a ground “truth” observation was necessary to pro-
duce snow cover areas at sub-pixel levels. Under clear-sky
conditions, the reference fraction of snow cover was gener-
ated within a 6.25 km pixel cell by applying the aggregation
method to the MODIS binary snow map (see Sect. 3.2). To
make the experiment fully independent, the reference frac-
tional snow cover data were divided into three parts: the data
from 2011 to 2016 used in the training stage; the data from
2010 used in the testing stage; and the independent datasets
from January and February (2008, 2009, 2017) and from De-
cember (2007, 2008, 2016) used in the evaluation stage.

Second, to the best of our knowledge, there are few at-
tempts to directly develop fractional snow cover from passive
microwave brightness temperature data. This meant a series
of sensitivity experiments of input variable selection were re-
quired. Input parameters were selected based on a series of
tests described in Sect. 3.3.1. Moreover, we conducted sev-
eral sensitivity experiments to determine the optimal train-
ing sample size for the retrieval method used in this study
(Sect. 3.3.2).

Third, many studies found that the separate estimation of
fractional snow cover (Dobreva and Klein, 2011) and snow
depth (Xiao et al., 2018) on different land cover types pro-
duced better results than those obtained from the combined
retrieval model. As such, the random forest models were de-
veloped separately for the four land cover types.

Fourth, the last stage consisted of the evaluation and val-
idation of the established model. Data from 2010 were used
to assess the performance of four different approaches (linear
regression, MARS, ANN, and random forest) for estimating
fractional snow cover. Additionally, the independent datasets
were used to evaluate the performance of the random-forest-
based retrieval algorithm for the four land cover types. Inde-
pendent validations of snow cover detection capability were
conducted using the fractional snow cover retrieval results
and station snow depth measurements across North Amer-
ica. They were compared with the results of Grody’s snow
cover mapping algorithm.

3.2 Preprocessing of MODIS snow cover products

The base data for this study were the reference fractional
snow cover data obtained from the interpretation of MODIS
snow cover products. The highest priority was to produce
daily binary snow cover area from NDSI snow cover. Pre-
vious snow cover detection studies recommend a 0.4 NDSI
threshold for global- and regional-scale snow cover inves-
tigations (Parajka et al., 2012; Hall et al., 1995); however,
for the new version of MODIS snow cover products, several
studies employed a threshold of NDSI> 0 to identify snow
cover (Dong et al., 2014; Riggs et al., 2017; Huang et al.,
2018). The NDSI of other features (e.g., cloud-contaminated
pixels at the edges of clouds, salt pans, and pixels with
very low visible reflectance) may also be greater than 0
(Riggs et al., 2017). For this reason, Zhang et al. (2019)
demonstrated that a 0.1 NDSI threshold was more reasonable
than 0.4 for snow cover identification in non-forest regions,
whereas forest-covered regions had insufficient station mea-
surements for a reliable and complete evaluation. MODIS
snow cover performance is better for non-forest landscapes
than their forest-covered counterparts, where it is less ac-
curate for snow cover identification (Hall and Riggs, 2007;
Parajka et al., 2012).

This study selected conservative NDSI thresholds of 0.1
and 0.4 for non-forest-covered areas and for forest-covered
areas, respectively (Riggs and Hall, 2016) to determine
snow-covered and snow-free areas. The original NDSI snow
cover layer classes were reclassified into five types: snow-
covered, snow-free, water, cloud, and fill value (refer to Ta-
ble S1 in the Supplement). In addition, MCD12Q1 datasets
(500 m) were used as auxiliary data to mask water bodies
(Fig. 3) in order to alleviate the uncertainty caused by frozen
water bodies when using passive microwave data to detect
snow cover (Tedesco and Jeyaratnam, 2016). The MODIS
binary snow cover data were generated based on the NDSI
snow cover basic quality assessment (QA) with values of 0
(best), 1 (good), and 2 (OK) (Liang et al., 2017).

Despite the high spatiotemporal resolution and overall ac-
curacy of snow cover detection (85 %–99 %) using MODIS
snow cover products (Parajka et al., 2012; Tran et al., 2019;
Zhang et al., 2019), the cloud effect hinders its widespread
applicability. Previous studies have reported that clouds
may cover more than 40 % of MODIS snow cover data, in
some cases exceeding 60 % (Dong and Menzel, 2016; Yu
et al., 2016; Parajka and Blöschl, 2006). As such, cloud re-
moval processing is essential to mitigate the cloud obstruc-
tion of MODIS products. This study adopted the cloud re-
moval method combining the MOD10A1 and MYD10A1
snow cover products, as proposed by Gafurov and Bárdossy
(2009). This method consists of two main filters, as shown in
Fig. 3.

1. Combining snow cover images from two sensors on a
given day. The first simple filter was applied under the
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Figure 2. Workflow diagram illustrating the processing of fractional snow cover retrieval.

Figure 3. The generation of MODIS fractional snow cover.

assumption that snowmelt and snowfall did not occur
within the two sensor observations. Whether a pixel in
the Terra (STerra

t ) or Aqua (SAqua
t ) snow cover image on

a given day (t) was observed as snow-covered or snow-
free, the pixel in the output image (MCD10A1) was as-
signed the same ground status (shown in Eq. 1). The re-
sults showed that about 3 % of cloud cover was removed
compared to MOD10A1 (Gafurov and Bárdossy, 2009).

2. Short-term temporal filter. If the status of a pixel in the
input image (MCD10A1) on a given day (t) was cloud-
covered and both the preceding (t − 1) and succeeding
(t+1) days were snow-covered (or snow-free), the pixel
in the output image (MCTD10A1) on the given day (t)
was assigned as snow-covered (or snow-free) (summa-
rized by Eq. 2). Compared to the first filter, this short-
term temporal filter may markedly reduce the number
of days (10%∼ 40 %) for cloud coverage and increase
the overall accuracy of snow cover detection (Gafurov
and Bárdossy, 2009; Tran et al., 2019).

S(output,t) =max
(
S

Aqua
t ,STerra

t

)
, (1)

S(output,t) = 1 if
(
S(t−1) = 1 and S(t+1) = 1

)
, (2)

where t is the time, S represents the ground status ob-
served in the image (0 or 1), 0 denotes cloud presence,
and 1 indicates snow-covered or snow-free.

Theoretically, the MODIS fractional snow cover map should
calculate the percentage of snow cover in a strictly delim-
ited area of the passive microwave pixel. Calculated ar-
eas should have a larger footprint area than the pixel res-
olution to avoid MODIS geolocation uncertainties (Wolfe
et al., 2002; Dobreva and Klein, 2011). In this study, a win-
dow of 15× 15 pixel of MODIS binary snow cover data
(MCTD10A1; 500 m) was used to calculate the fraction of
snow cover in a 6.25 km pixel. We adopted the most rigor-
ous pixel filtering rule, by which one clouded pixel cannot
be allowed within a 15× 15 pixel window. This is slightly
different from a previous study that allowed 10 % of clouds
(Dai et al., 2017).
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3.3 Sensitivity study

3.3.1 Selecting input variables

After determining the retrieval function, selecting the fewest
number of variables to establish an efficient estimation model
is a major challenge (Mutanga et al., 2012). Many factors in-
fluence snowpack distribution, and the consideration of all
factors in the properties of snow cover estimation is unrealis-
tic. Therefore, we conducted six scenarios to evaluate and fi-
nally screen input variables. The topographic factors (digital
elevation model, DEM, slope, aspect) (Revuelto et al., 2014)
and location information (longitude and latitude) (Xiao et al.,
2018; Sturm et al., 2010) were directly taken as the basic in-
put variables. Additionally, consideration was also given to
the passive microwave brightness temperature (19, 37, and
91 GHz; both H and V polarization) (Xiao et al., 2018; Xu
et al., 2016) and the difference in brightness temperature be-
tween different channels (Xu et al., 2016; Liu et al., 2018)
(listed in Table 1). The 22 GHz channel was excluded be-
cause it is sensitive to water vapor.

A decision tree was established using all variables shown
in Scenario 1 (Table 1) and was utilized to be compared
with five scenarios in terms of prediction performance and
efficiency. Note that these 19 input variables were deter-
mined by using the correlation attribute evaluation method
in the Waikato Environment for Knowledge Analysis 3.8.3
(WEKA) data mining software. This method evaluates the
importance of the attribute by measuring the correlation be-
tween the attribute and the target (Frank et al., 2004; Wit-
ten et al., 2016). The brightness temperature and its linear
combination can also directly be used to detect snow cover
based on the study of Xu et al. (2016); thereby, Scenario 2
only contained brightness temperature and its linear combi-
nation without consideration of the effects of location and
topographic factors. Wiesmann and Mätzler (1999) reported
that V and H polarizations were dominated by scattering
and snow stratigraphy, respectively. Thus, Kim et al. (2019)
only assimilated V polarization with an ensemble snowpack
model to estimate snow depth. Therefore, in Scenario 3, we
attempted to evaluate the performance of the established re-
trieval model by only using the brightness temperatures for
19, 37, and 91 GHz (V polarization) based on Wiesmann
and Mätzler (1999) and Kim et al. (2019). In Scenario 4, we
used similar input variables to those used for snow depth es-
timation in Xiao et al. (2018) and examined whether these
same parameters can or cannot estimate the fractional snow
cover. In Scenario 5, unlike the variables used in Scenario 4,
we attempted to use the basic input variables coupled with
the brightness temperature linear combination for fractional
snow cover retrieval.

There are other variable selection strategies based on the
importance rank when using the random forest method. For
example, Mutanga et al. (2012) implemented a backward fea-
ture elimination method to progressively eliminate less im-

portant variables, whilst Nguyen et al. (2018) summarized
the grade of the variable and selected the top eight important
variables as the input variables in the training model. Simi-
larly, this study assessed the importance of input variables on
four land cover types using the same size as the training sam-
ple (15 000) (Xiao et al., 2018). We then counted the number
of times that each variable was ranked in the top nine impor-
tant variables (summarized in Table S2 in the Supplement),
which were then used as the input variables for Scenario 6
(listed in Table 1). By assessing the performance of models
established by these six scenarios, an optimal combination of
input variables for the fractional snow cover retrieval model
may be selected (see Sect. 4.1.1). All input variables were
normalized to [0, 1].

3.3.2 Determining sample size

Although the random forest method can avoid overfitting
(Breiman, 2001), it is important to evaluate its sensitivity
to sample selection types and the size of the training sam-
ple (Belgiu and Drăgu, 2016; Millard and Richardson, 2015;
Nguyen et al., 2018; Colditz, 2015). The performance of
predicted models trained by machine learning methods is
strongly dependent on the quality of the training sample (Do-
breva and Klein, 2011). Good quality training samples indi-
cate that the sample data are not biased towards a certain
value. The distribution of the fractional snow cover value
from our dataset shows that more than 70 % of values were
near 0 and 1. As such, the use of the random selection or
equal proportional selection method (Millard and Richard-
son, 2015; Lyons et al., 2018; Nguyen et al., 2018) would
hinder the interpretation of the final fractional snow cover
estimation model by reducing the accuracy of the estimation.
To address this, we adopted stratified random sampling as
a sample selection strategy (Xiao et al., 2018; Dobreva and
Klein, 2011), in which stratification was performed on the
fractional snow cover at 0.01 increments.

From previous studies, the sample size, approximately
0.25 % of the total study area, was adopted by Colditz (2015)
when using the random forest method. This value has also
been evaluated in optical and active remote sensing studies
(Nguyen et al., 2018; Du et al., 2015). In this study, we gen-
erated the training sample datasets separately from 0.15 %
to 0.35 % of the total covered area for each land cover class
(in 0.05 % increments). Then, sensitivity tests were carried
out for the four land cover types. This means the training
dataset would represent the values of fractional snow cover
categories for each land cover type (see Sect. 4.1.2). All se-
lection operations were completely random.

3.4 Description of different estimation methods

In this study, we compared the random forest method with
the other three methods for retrieving fractional snow cover,
including linear regression, ANN, and MARS. Note that the
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Table 1. The input variables list. The line means this variable is not selected; the asterisk indicates the variable is selected. The numbers in
brackets denote the number of variables. T19H is the brightness temperature (T ) of the 19 GHz channel with H polarization. For example,
T_19V_19H denotes the difference in brightness temperature between 19V and 19H channel; the others are similarly defined.

ID Elements Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
(18) (13) (3) (11) (12) (9)

1 Latitude * – – * * *
2 Longitude * – – * * –
3 DEM * – – * * –
4 Slope * – – * * –
5 Aspect * – – * * –
6 T19H * * – * – -
7 T19V * * * * – -
8 T37H * * – * – *
9 T37V * * * * – *
10 T91H * * – * – *
11 T91V * * * * – *
12 T_19V_19H * * – – * –
13 T_19V_37V * * – – * *
14 T_19H_37H * * – – * –
15 T_22V_19V * * – – * *
16 T_22V_91V * * – – * *
17 T_37V_37H * * – – * –
18 T_37V_91V * * – – * *
References Liu et al. Xu et al. Kim et al. Xiao et al. Nguyen et al.

(2018) (2016) (2018) (2018) (2018)

four methods input the same variables selected by the sensi-
tivity test, including 12 characteristic variables and 1 target
variable (see Sects. 3.3.1 and 4.1.1).

3.4.1 Linear regression

For optical remote sensing studies, there is a classical and
general linear regression method used to estimate the sub-
pixel snow cover area in a medium- to high-spatial-resolution
image. This only involves the relationship between NDSI
and fractional snow cover derived from high-resolution snow
cover maps (Salomonson and Appel, 2004, 2006). This type
of regression method has been applied in generating the stan-
dard MODIS fractional snow cover product Collection 5.
Similarly, the multiple linear regression method was used as
a reference method in this study to estimate fractional snow
cover based on passive microwave data. The inputs were the
same as the other three methods in this study. This method
was undertaken in WEKA 3.8.3 and did not use any attribute
selection method. In the Supplement, we present the linear
regression formulas of fractional snow cover estimation for
the four land cover types (Eq. S1 and Table S6).

3.4.2 ANN

ANN is a popular machine learning technique widely applied
in remote sensing studies. Tedesco et al. (2004) developed an
SWE and snow depth retrieval algorithm based on an ANN
technique using passive microwave brightness temperature.

Xiao et al. (2018) also used ANN to derive snow depth, and
Kuter et al. (2018) and Czyzowska-Wisniewski et al. (2015)
used ANN to retrieve fractional snow cover from MODIS
data.

ANN consists of multiple layers: an input layer, one or
more hidden layers, and an output layer (Hecht-Nielsen,
1992). The network with a multilayer perceptron can easily
handle the nonlinear relationship between the input and out-
put without any prior knowledge (Haykin, 2009). The inputs
of each neuron were multiplied and summed by the connec-
tion weight. The output results were subsequently computed
using a nonlinear logistic sigmoid transfer function. For nu-
merical data, the transfer function in WEKA substitutes the
pure linear unit function for the logistic sigmoid.

Aside from data preprocessing, a crucial step in this pro-
cess is to design and optimize the ANN structure for im-
proved estimation performance and good generalization ca-
pability (Kuter et al., 2018). Kuter et al. (2018) demonstrated
that multidimensional function modeling can be success-
fully achieved with one hidden layer network. All parame-
ters were set to the default with the exception of the learn-
ing rate which was optimized through a simple trial-and-
error method. Based on the accuracy index and the model-
ing speed, Table S3 (Supplement) shows that a learning rate
of 0.2 generated the best performance for the ANN retrieval
model.
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3.4.3 MARS

The MARS technique has been applied in a number of stud-
ies and in many fields, such as classification and mapping
(Quirós et al., 2009), atmosphere correction (Kuter et al.,
2015), pile drivability prediction (Zhang and Goh, 2016), and
fractional snow cover estimation (Kuter et al., 2018). Un-
like ANN, the modeling process of MARS is flexible and
straightforward. Friedman (1991) first proposed a MARS
technique that organizes a simple model for the complex and
high-dimensional relationship between input variables and
the target by smoothly connecting piecewise linear polyno-
mials (known as basis functions, BFs). The ranges of the in-
put variables were cut into a series of sub-ranges by knots;
these were the connection points for two pieces of BFs. A
simple BF format of MARS is expressed in Eq. (3), in which
max(·) indicates that only positive parts were taken (other-
wise, it was assigned a zero), and τ is a univariate knot.

max(0,x− τ)=
{
x− τ, if x > τ
0, otherwise (3)

The MARS method involves two phrases to establish a re-
gression model: forward phase and backward phase. In the
forward phase, BFs were generated using a stepwise search
of all univariate candidate knots and all variable interactions.
These adopted knots and their corresponding pair of BFs
should produce the greatest decrease in residual error. The
BFs were successively added to the model until it reached
the maximum number of BFs, resulting in an over-fitted
and complicated model. In the backward phase, the redun-
dant BFs that contribute least to the model prediction are
completely excluded from the regression model. These two
phases are an iterative process (Kuter et al., 2018; Zhang and
Goh, 2016).

Two important parameters of MARS determine the model
“growing” and “pruning” processes: the maximum num-
ber of basis functions (max_BFs) and the maximum de-
gree of interactions among input variables (max_INT) (Kuter
et al., 2018). Kuter et al. (2018) reported that the increase
in the structural complexity of the model does not signifi-
cantly contribute to improving the performance of the MARS
model. We conducted several tests to optimize the structure
of MARS and found that more complex structures had a
longer modeling time; however, it did not significantly im-
prove model performance. Specifically, the modeling time
of the complex structure (max_BFs= 100, max_INT= 2)
was 4 times greater than the simple structure (max_BFs= 40,
max_INT= 2) based on our analysis experiments. As such,
the simple structure was chosen, as per Kuter et al. (2018).
We implemented an open MARS MATLAB source code
available from http://www.cs.rtu.lv/jekabsons/ (last access:
17 February 2021) for fractional snow cover estimation.
These codes were compiled on a 2.40 GHz Intel Xeon central
processing unit server.

3.4.4 Random forest

Random forest builds a large series of decision trees by ap-
plying the bootstrap sampling method. During the training
stage, each tree grows by randomly selecting several vari-
ables and samples from input datasets (Mutanga et al., 2012).
Input data were repeatedly split into training and test data us-
ing the bootstrapping method. Each randomly selected boot-
strap sample in each iteration contained approximately two-
thirds of the input elements. The remaining data, referred as
out-of-bag (OOB) data, were used for validation. The pre-
dicted value of OOB data was produced from all the tree
results that were generated, and the OOB error was sub-
sequently calculated. For classification, the output was de-
termined by voting for the results from all decision trees,
whereas for regression, the output results were determined
by averaging. The random forest was conducted in WEKA
3.8.3. As several attempts to optimize the parameters of ran-
dom forest structure had failed, all parameters used were the
default values.

3.5 Snow cover identification

The microwave radiation characteristics of precipitation,
cold deserts, and frozen ground are similar to those of snow
cover (Grody and Basist, 1996), and as such, snow cover
area is likely to be overestimated. Grody and Basist (1996)
proposed a snow cover identification algorithm distinguish-
ing snow cover from precipitation, cold desert, and frozen
ground. Many researchers have since used Grody’s algo-
rithm and its derivative algorithm to detect snow cover (Che
et al., 2008; Xiao et al., 2018; Wang et al., 2019). Liu
et al. (2018) reported on the assessment of different pas-
sive microwave snow cover detection algorithms and demon-
strated that Grody’s algorithm had a higher precision (pos-
itive predictive value) than that of other algorithms. We
adopted the revised snow cover decision tree of Grody’s al-
gorithm (Table 2) as the highest frequency in this study was
91 GHz instead of the 81 GHz in the Special Sensor Mi-
crowave Images/Sounder (SSMIS) sensors (Che et al., 2008).

There were two main objectives for using the revised
Grody’s algorithm (hereafter referred to as Grody’s algo-
rithm) in this study. The first was to compare the snow
cover identification capability of the proposed fractional
snow cover estimation algorithm with respect to ground snow
depth measurements (see Sect. 4.4). The second purpose was
to assess the effect of non-snow scatterers in estimating frac-
tional snow cover due to this algorithm’s special ability to
distinguish the non-snow scatterer (i.e., precipitation, cold
desert, and frozen ground). In both optical and microwave
remote sensing research, the capability assessment of snow-
free detection has been regularly neglected in most snow
cover detection studies.
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Table 2. The description of the revised Grody’s algorithm. The unit is Kelvin (K).

Scattering materials Description

Scattering signature (Tb19V−Tb37V) > 0 K
Precipitation (Tb22V≥ 259K) or (254K≤ Tb22V≤ 258K and (Tb19V−Tb37V)≤ 2K)
Cold desert (Tb19V−Tb19H)≥ 18K and (Tb19V−Tb37V)≤ 10K
Frozen ground (Tb19V−Tb19H)≥ 8K and (Tb19V−Tb37V)≤ 2K

3.6 Validation of snow cover identification

When using the in situ snow depth (or SWE) measurements
to quantitatively validate the accuracy of snow cover area
data, converting snow depth into binary snow cover using
an appropriate threshold is the first challenge. Many differ-
ent depth thresholds have been suggested in previous studies,
for instance 2 cm for 20 m spatial resolution (Gascoin et al.,
2019); 0 cm (Parajka et al., 2012), 1 cm (Zhang et al., 2019),
3 cm (Hao et al., 2018), 4 cm (Huang et al., 2018; Wang et al.,
2008), and 15 cm (Gascoin et al., 2015) for 500 m spatial res-
olution; 2.5 cm for 5 km spatial resolution (Hori et al., 2017);
3 cm (Xu et al., 2016) and 5 cm for 25 km spatial resolution
(Liu et al., 2018); and 2 cm for 0.75◦ grid resolution (Brown
and Derksen, 2013). Due to these significant disagreements
in the depth thresholds, Gascoin et al. (2019) conducted a
sensitivity experiment that tested the agreement between in
situ measurements and optical snow cover area products. The
sensitivity of passive microwave snow cover identification
results to snow depth at 6.25 km spatial resolution was also
tested by computing the accuracy metrics with snow depth
increasing from 0 to 10 cm.

Then, we needed to determine the threshold for convert-
ing fractional snow cover to binary snow cover. To date, few
studies exist on fractional snow cover from the passive mi-
crowave pixel level. Dai et al. (2017) considered snow cover
on the grid if fractional snow cover (25 km) was larger than
10 %. If the fraction of snow cover was less than 0.25, the
SWE was set to 0 mm to correct the snow cover area in
the daily SWE product based on Luojus et al. (2018). How-
ever, optical remote sensing studies often adopted 0.5 as the
threshold of fractional snow cover (Hall and Riggs, 2007).
Sensitivity experiments of fractional snow cover similar to
snow depth were conducted to obtain the optimum conver-
sion threshold. Both sensitivity experiments were carried out
using 2017 bare-land-type datasets in Sect. 4.4.

3.7 Performance accuracy assessment

When evaluating the estimation performance of fractional
snow cover in Sect. 4.1–4.3, we used conventional accuracy
metrics: correlation coefficient (R; Eq. 4), mean absolute er-
ror (MAE; Eq. 5), and root mean squire error (RMSE; Eq. 6).
Where x is the mean value of all predicted values xi , y is the
mean value of all target values, yi , and n denotes the amount

of data used.

R =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1(xi − x)
2∑n

i=1(yi − y)
2

(4)

MAE=
1
n

∑n

i=1
|xi − yi | (5)

RMSE=

√
1
n

∑n

i=1
(xi − yi)

2 (6)

We evaluated the predicted accuracy of fractional snow cover
and assessed snow cover identification performance (see
Sect. 4.4). Six accuracy assessment indices were used for
the analysis of snow cover detection capability (Liu et al.,
2018; Gascoin et al., 2019): overall accuracy (OA), preci-
sion (that is, a positive prediction value), recall, specificity
(that is, the true negative rate), F1 score (Zhong et al., 2019),
and Cohen’s kappa coefficient (Foody, 2020). OA refers to
the proportion of correctly classified pixels as snow-covered
and snow-free. The F1 score is a weighted average measure-
ment of precision and recall ranging from 0 to 1 to measure
the accuracy of binary classification. Cohen’s kappa coeffi-
cient measures the agreement between snow cover products
and ground measurements. All these indices were calculated
from the confusion matrix (Table 3). OE is the omission er-
ror, and CE is the commission error.

4 Results analysis

4.1 Sensitivity in the training sample

4.1.1 Influence of input variables on model
performance

We evaluated the results from 24 random forest fractional
snow cover retrieval models (four types times six scenar-
ios) to better understand which input variables have a good
relationship with fractional snow cover and the combina-
tion of the variables that can improve retrieval model perfor-
mance. The data used for variable sensitivity tests in this part
spanned only 2 years (2014–2015) as the 91 GHzH polariza-
tion data were missing over the area south of 50◦ N for 2016–
2017. The OOB error and 10-fold cross-validation error were
used to measure the performance of fractional snow cover
retrieval models in each scenario (Mutanga et al., 2012). Ta-
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Table 3. Confusion matrix defining the accuracy of the predicted snow cover map reference to the in situ snow cover observation. The
characters (TP, FP, FN, and TN) represent the number of snow-covered or snow-free records in a particular condition.

Ground observation (true)

Snow-covered (positive) Snow-free (negative)

Prediction Snow-covered (positive) TP (true positive) FP (false positive)
Snow-free (negative) FN (false negative) TN (true negative)

OA= (TP+TN)/(TP+TN+FN+FP)
OE= FN/(TP+FN)
CE= FP/(TP+FP)
Precision= TP/(TP+FP)= 1−CE
Recall= TP/(TP+FN)= 1−OE
Specificity= TN/(TN+FP)
F1= (2×Precision×Recall)/(Precision+Recall)

ble 4 shows the results of the six scenarios for the bare-land-
type datasets.

The variable selection tests were used to identify a bet-
ter combination of different variables (Table 4). Scenario 3,
which only involves V polarization data, yielded the smallest
R (0.590) and the largest MAE (0.197) and RMSE (0.248)
of OOB error, as well as for the 10-fold cross-validation er-
ror (R: 0.596; MAE: 0.197; RMSE: 0.246). Scenario 3 per-
formed the poorest of the six scenarios, which may be due
to the lack of further available information from input vari-
ables that could be fully exploited (Xiao et al., 2018). Sce-
nario 2, only containing passive microwave brightness tem-
perature data similar to the variables used in Xu et al. (2016),
had the second poorest performance. This shows that loca-
tion information and topographic factors play a crucial role
in snowpack distribution (Revuelto et al., 2014; Czyzowska-
Wisniewski et al., 2015; Sturm et al., 2010). In this study, the
retrieval method required these five basic input variables as
auxiliary information in order to learn the characteristics of
snow cover under different surface conditions to assist in ac-
curately estimating snow cover properties. In contrast, in the
absence of these basic input variables, the established model
has no advantage in accurately predicting the characteristics
of fractional snow cover under complex surface conditions.
The major difference between scenarios 1, 4, 5, and 6 and
scenarios 2 and 3 (Table 1) was whether or not the basic in-
put variables (location information and topographic factors)
were considered. The comparison results (i.e., scenarios 1, 4,
5, and 6 vs. scenarios 2 and 3) indicate that the effect of lo-
cation information and topography need to be considered to
estimate snow parameters. Moreover, when compared to sce-
narios 1, 4, and 5, the setting in Scenario 6, in which input
variables were selected by importance, had the third poor-
est performance with a low R and a high MAE and RMSE.
Scenarios 1, 4, and 5, generated better results; there were no
significant differences in R, MAE, and RMSE for the tests
on the four land cover types (Tables 4 and S4 and S5 in the
Supplement). The comparison between scenarios 1, 4, and 5

indirectly indicates that the variables used in Scenario 1 may
have some information redundancy that slightly weakens the
efficiency of the random forest retrieval model. Although the
selection methods of scenarios 4 and 5 performed well (in
terms of modeling time and accuracy of predicted target),
only one scenario was selected; the other may be used as an
alternative in future. To this end, the variable combinations
in Scenario 5 were selected for further analysis.

4.1.2 Determination of sample size

The datasets from 2014 to 2016 were used to examine the
sensitivity to training sample size when the accuracy metrics
used were the same as Sect. 4.1.1. As the values and variation
trends of the accuracy metrics of the OOB error and 10-fold
cross-validation error were almost equivalent, only the OOB
error is shown in Figs. 4 and S1, S2, S3 (in the Supplement).
We compared the performance of the random-forest-based
models by altering the training sample size for the four land
cover types.

Figure 4 illustrates that there is a slow increase in R and
a slight decrease in MAE and RMSE when the training
sample size increased from 0.15 % to 0.25 % on the shrub
type, whilst there was a significant increase in modeling
time. As the sample size increases from 0.25 % to 0.35 %,
the model consistently estimates fractional snow cover ac-
curately (higher R and lower MAE and RMSE). This finding
appears to be consistent with previous studies (Colditz, 2015;
Nguyen et al., 2018). An applicable and eligible sample se-
lection scheme, which can achieve an acceptable target pre-
diction accuracy and an adequate execution time, is essential
for the implementation of a random forest model with supe-
rior predictive capability. One noticeable distinction between
the three sample sizes (0.25 %–35 %) was modeling time. In-
terestingly, the 0.3 % training sample size had the shortest
modeling time of the three sample sizes (Fig. 4); Figs. S1,
S2, and S3 also exhibit similar findings on modeling time.
The reasons underpinning the difference in modeling time is
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Table 4. Variable selection tests in six scenarios on bare-land-type data for the random forest method. The accuracy indexes of the estimation
are calculated using OOB error estimates and 10-fold cross-validation (CV).

Indexes Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

OOB error R 0.776 0.679 0.590 0.778 0.774 0.708
MAE 0.152 0.178 0.197 0.150 0.152 0.170
RMSE 0.194 0.224 0.248 0.193 0.194 0.216

10-fold CV R 0.777 0.682 0.596 0.778 0.775 0.710
MAE 0.152 0.178 0.197 0.151 0.153 0.170
RMSE 0.193 0.223 0.246 0.193 0.194 0.215

Time spent modeling (seconds) 7.37 5.57 3.46 5.43 5.26 5.27

Figure 4. The performance of random forest models when increas-
ing the size of the training sample for shrub type.

beyond the scope of this study and requires further research.
We used the sample dataset covering 0.30 % of the study area
of each class as a suitable size to randomly select training
samples. We subsequently extracted the training samples for
each land cover type from the 2011–2016 dataset to establish
the retrieval models.

4.2 Comparison of the four retrieval methods

In this section, the independent testing datasets from 2010
were entirely used to assess the predictive performance of
the random-forest-based models and the other three models
(based on linear regression, ANN, and MARS). A compar-
ison of the modeling time for the four methods (Table 5)
showed that linear regression had the shortest time, with less
than 1 s for the four land cover types, followed by ANN
with approximately 51 s (forest), 22 s (shrub), 156 s (prairie),
and 35 s (bare land). Random forest modeling times were
very close to ANN modeling times for each land cover type.
In contrast, MARS was the most time consuming with the
longest time (approximately 6.5 h) for the prairie type and

the shortest (19 min) for the shrub type. The absolute value
of modeling time would vary under different computing ca-
pabilities.

Table 5 and Fig. 5 present the results of the four retrieval
methods for the four land cover types. The retrieval models
of the shrub type predominantly have the lowest RMSE in
contrast to the other three land cover types using the four
methods (Table 5; cf. Figs. 5 and S4, S5, S6 in the Supple-
ment). The random forest model had the highest R (0.916),
lowest MAE (0.202) and RMSE (0.245), and no out-of-range
records for the forest type (Table 5; Figs. 5 and 6). The dis-
tribution of and variation in MAE and RMSE for the four
methods were similar under different land cover types with
the exception of the shrub type (Table 5; Fig. 5). With the ex-
ception of ANN, the ranking of the three algorithms based on
the accuracy of results (MAE and RMSE) for the shrub test
data was also the same as under other land cover types (i.e.,
random forest>MARS> linear regression). Random forest
had the greatest R value, followed by ANN, then MARS,
and for most of the land cover types, the smallest R value
was from the linear regression. Figure 6 illustrates that the
random forest (Fig. 6d) produced a relatively small num-
ber of overestimated (∼ 0) and underestimated (∼ 1) val-
ues compared to the other three models (Fig. 6a–c). The
MAE (0.315) and RMSE (0.401) of ANN were greater than
MARS (MAE= 0.208, RMSE= 0.254). The number of out-
of-range estimated values of ANN (36.62 %; 161 260) was
also greater than MARS (2.65 %; 11 667), which may be at-
tributed to a major underestimation of the fractional snow
cover using the ANN method. The maximum and minimum
values of ANN and MARS for the forest type were 0.949
(−0.52) and 2.132 (−0.122), respectively. For the other three
land cover types, the number of out-of-range pixels of the
four methods were almost in the same order (random for-
est<ANN<MARS< linear regression).

The random-forest-based models had the best perfor-
mance with the highest R and lowest MAE and RMSE (Ta-
ble 5). Previous studies have generally neglected the anal-
ysis and evaluation of whether the estimated value is out
of range (Liang et al., 2017; Wang et al., 2017; Hao et al.,
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Table 5. Performance of linear regression, ANN, MARS, and random forest model using test datasets from 2010 for four land cover types.
FSC indicates fractional snow cover. The number outside parentheses indicates the number of pixels. The number inside brackets indicates
their percentage.

Method Land cover Time spent R MAE RMSE Max./min. FSC< 0 (%) FSC> 1 (%)
type modeling (seconds)

Linear regression Forest 0.37 0.896 0.225 0.279 1.204/−0.183 44 978 (10.21) 554 (0.13)
Shrub 0.24 0.956 0.174 0.198 1.605/−0.382 335 (0.06) 125 589 (24.17)
Prairie 0.49 0.902 0.179 0.215 1.524/−0.331 23 604 (0.87) 632 417 (23.22)
Bare land 0.29 0.892 0.177 0.213 1.647/−0.087 912 (0.10) 30 208 (3.32)

ANN Forest 51.09 0.895 0.315 0.401 0.949/−0.520 161 260 (36.62) 0 (0)
Shrub 21.73 0.966 0.103 0.146 1.251/−0.327 15 267 (2.94) 38 207 (7.35)
Prairie 156.29 0.916 0.197 0.23 1.527/−0.166 743 (0.03) 310 285 (11.39)
Bare land 35.31 0.932 0.174 0.203 1.730/0.173 0 (0) 39 491 (4.34)

MARS Forest 2518.10 0.838 0.208 0.254 2.132/−0.122 8844 (2.01) 2823 (0.64)
Shrub 1127.24 0.926 0.149 0.185 2.053/−0.239 2977 (0.57) 121 693 (23.42)
Prairie 23 406.76 0.912 0.164 0.197 1.764/−0.733 4371 (0.16) 469 416 (17.24)
Bare land 2518.10 0.911 0.156 0.191 2.253/−0.844 469 (0.05) 142 155 (15.62)

Random forest Forest 52.16 0.916 0.202 0.245 0.960/0.011 0 (0) 0 (0)
Shrub 16.76 0.975 0.118 0.162 0.999/0.023 0 (0) 0 (0)
Prairie 214.06 0.955 0.134 0.173 1.000/0.011 0 (0) 0 (0)
Bare land 38.73 0.967 0.103 0.148 0.998/0.027 0 (0) 0 (0)

Figure 5. The variation in the accuracy indexes (MAE, RMSE, and R) of the four algorithms (linear regression, ANN, MARS, and random
forest) for four land covers.

2019; Masson et al., 2018). Table 5 shows that the random
forest models for the four land cover types produced reason-
able fractional snow cover values ranging between 0 and 1.
In comparison, the estimated fractional snow cover from the
other three methods (linear regression, ANN, and MARS)
was beyond this range. From the number of out-of-range

records, the linear regression method generated the largest
number of out-of-range fractional snow cover estimates with
more than 0.85 million pixels (18.69 %). Although the num-
ber of out-of-range records of ANN (12.31 %) was less
than MARS (16.39 %), both numbers exceed 0.5 million.
Kuter et al. (2018) estimated fractional snow cover using the
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Figure 6. The color density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover for four
algorithms (linear regression, ANN, MARS, and random forest) for forest type. The accuracy metric refers to Table 5. (Note: out-of-range
fractional snow cover values of linear regression, ANN, and MARS were truncated on 0 and 1). Note that all extracted records in January
and February 2010 were used as the testing sample.

MARS and ANN techniques, which also yielded similar out-
of-range values. The linear regression method had the poor-
est performance in estimating fractional snow cover from
passive microwave data with the lowest R and the largest
number of out-of-range records. These results indicate that
nonlinear methods should first be used. Xiao et al. (2018)
demonstrated the nonlinear relationship between passive mi-
crowave brightness and snow depth. De Lannoy et al. (2012)
provided an exponential function for converting SWE to frac-
tional snow cover. Thus, it is reasonable that a nonlinear re-
lationship exists between fractional snow cover and passive
microwave brightness temperature.

4.3 Evaluation of fractional snow cover

In this part, we analyzed the results from the training and
evaluation stage for four land cover types (Table 6; Figs. 7
and 8). The independent data which were randomly selected
from the data in January and February (2008, 2009, and
2017) and whose selection rule is the same as the training

sample were used to further evaluate the predictive capability
of random forest models in all range values. Other indepen-
dent data in December (2007, 2008, 2016) were selected to
examine the predictive capability of the established retrieval
models in fractional snow cover to other months. To avoid the
influence of the evolution of snow physical properties in the
evaluation tests, we only considered December (Xiao et al.,
2018).

We first saw the evaluation results in January and February
(Evaluation 1 in Table 6). For forest type, Fig. 7a and b show
that fractional snow cover around 1 is distinctly underesti-
mated, and few are above the 1 : 1 line. The model for forest
type had the poorest performance with the lowest R (0.636)
and the highest RMSE (0.221) for the evaluation dataset (Ta-
ble 6). The retrieval model on the prairie type had the best
performance for the evaluation data (R: 0.752; MAE: 0.148;
RMSE: 0.189). In shrub and bare land types (Fig. 7c, d, g,
and h; Table 6), the retrieval models have a similar perfor-
mance in the evaluation datasets (R: 0.712 and 0.719; MAE:
0.160 and 0.165; RMSE: 0.212 and 0.216, respectively). In
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Table 6. The performance of random forest models on training and evaluation data for four land cover types. Evaluation 1 is used to evaluate
the estimation performance of the established retrieval models on fractional snow cover in January and February (Fig. 7). Evaluation 2 is
used to analyze the prediction performance of the retrieval models in December (Fig. 8).

Land cover type Training Evaluation 1 Evaluation 2

R MAE RMSE R MAE RMSE R MAE RMSE

Forest 0.702 0.166 0.207 0.636 0.180 0.221 0.658 0.180 0.222
Shrub 0.772 0.146 0.191 0.712 0.160 0.212 0.643 0.167 0.223
Prairie 0.807 0.142 0.182 0.752 0.148 0.189 0.762 0.166 0.213
Bare land 0.807 0.144 0.190 0.719 0.165 0.216 0.744 0.162 0.217

the second evaluation experiments (Evaluation 2 in Table 6;
Fig. 8), the best performance in predicted fractional snow
cover is over prairie, and the relatively large underestima-
tion can be seen over forest (MAE and RMSE). Meanwhile,
we do not see striking differences between these two evalua-
tion experiments (Evaluation 1 vs. Evaluation 2) with respect
to their RMSE values. The difference in the used evaluation
sample can explain the slight diversity in statistics metrics
(R). Most of “true” fractional snow cover values in the train-
ing and validation datasets were distributed at two polar ends
(0.0–0.3 and 0.9–1.0) in these two land cover types. When
it comes to the results in the training stage and the evalua-
tion stage, we found that the estimation performance of the
retrieval model in the evaluation datasets is highly dependent
on the quality of training sample which was used to establish
the retrieval models. Figures 7 and 8 show that the estab-
lished models in four land cover types can properly capture
the characteristics of the entire range of fractional snow cover
values.

Apart from the scatter plots and statistical analysis, Fig. 9
shows the distribution pattern of snow cover from a spatial
perspective on 27 February 2017, including MODIS com-
posite binary snow cover (Fig. 9a), MODIS fractional snow
cover (Fig. 9b), and the fractional snow cover estimated by
the proposed algorithm (Fig. 9c). When the most rigorous
pixel filtering rule at the 15× 15 pixel window was applied
(see Sect. 3.2), the large number of cloud-covered pixels (yel-
low) in Fig. 9a resulted in most areas of the MODIS frac-
tional snow cover image (Fig. 9b) being represented by a
“fill value”. Additionally, the number of intermediate val-
ues for MODIS fractional snow cover in winter would be
much lower than the number of values near the two extreme
values (0 and 1). In contrast, the estimated fractional snow
cover from passive microwave brightness temperature data
can provide almost complete coverage and continuous spa-
tial information on snow cover (Figs. 9c and S7 in the Sup-
plement). Figure 9 shows the comparison between our esti-
mated fractional snow cover and the reference MODIS frac-
tional snow cover and, more importantly, provides another
perspective for snow cover identification in Sect. 4.4. Thus,
Figs. 9b and 8c used the threshold 0.3 to define snow-covered
and snow-free area, and this threshold was adopted through

a series of experiments in Sect. 4.4. The threshold 0.5 was
selected according to previous optical remote sensing stud-
ies on fractional snow cover (Tran et al., 2019; Marchane
et al., 2015). This means that the pixel was identified as
being snow-covered when the fractional snow cover value
was greater than 0.3. From Fig. 9a–c, the spatial pattern of
estimated fractional snow cover from the proposed method
seems to accurately capture the distribution of snow cover
from MODIS under clear-sky conditions, such as the snow-
free area in most areas of North America and snow-covered
areas in northern Canada. Figure 9d presents a specific ex-
ample comparing these two fractional snow cover datasets
and MODIS composite binary snow cover products in central
Canada on 27 February 2017. We also provide another date
comparison for MODIS and the estimated fractional snow
cover on 10 January 2017 in the Supplement. Based on this
example, we find that our estimated fractional snow cover
was capable of obtaining the snow cover distribution when
most of the area was covered by cloud, which was not the
case for MODIS. This example also shows that the extent of
snowline observed in the MODIS binary snow cover image
(500 m), which was the boundary between snow-covered and
snow-free areas, was well described and exhibited by the es-
timated fractional snow cover (6.25 km).

Thus far, we have evaluated the performance of random-
forest-based models on independent datasets from 2008 to
2010 and 2017 for each land cover type. The results from
the random forest (Table 5; Figs. 6d, S4–S6, and S7) show
that the minimum estimates were higher than 0 and approx-
imately 0.01. As to this overestimation, one possible error
source is the inversion method used from which the final pre-
dicted outputs are obtained by averaging all results of the es-
tablished sub-decision trees (see Sect. 3.4.4) (Breiman, 2001;
Belgiu and Drăguţ, 2016), and this overestimation can be
found in other studies applying the random forest method
(Wei et al., 2019). Additionally, the attenuation and scatter-
ing of passive microwave radiation are not only caused by
the snowpack. The non-snow scatterers (e.g., precipitation,
cold desert, frozen ground) may be the majority error source
potentially contributing to the overestimation of snow cover
area as these scatters were easily misclassified as snow cover
in less snow cover conditions (Grody and Basist, 1996; Dai
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Figure 7. The color density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover in January
and February for four land cover types (forest: a, b; shrub: c, d; prairie: e, f; bare land: g, h). The left column is the results of the training
stage (a, c, e, g); the right column is the results of the evaluation stage (b, d, f, h). Statistics metrics refer to Table 6: Training and Evaluation
1. Note that 0.3 % of the independent evaluation dataset in January and February of 2008, 2009, and 2017 was randomly selected as the
evaluation sample with stratified random sampling.
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Figure 8. The color density scatter plots between the estimated fractional snow cover and MODIS-derived fractional snow cover in December
for four land cover types: forest (a), shrub (b), prairie (c), and bare land (d). Statistics metrics refer to Table 6: Evaluation 2. Note that 0.3 %
of the independent evaluation dataset in December of 2007, 2008, and 2016 was randomly selected as the evaluation sample with stratified
random sampling.

et al., 2017). A detailed analysis on the misclassification due
to non-snow scatterers is provided in Sect. 4.4. Although
MODIS snow cover products are highly accurate in snow
cover identification (Tran et al., 2019), the estimated results
indicate that a large number of fractional snow cover values
were overestimated (∼ 0) and underestimated (∼ 1). Some
fractional snow cover estimates, at the individual pixel level,
show a large discrete distribution near the 1 : 1 line (Fig. 7).
These misestimates are not confined to the results of the ran-
dom forest model but also appear in results of the other three
methods (Figs. 6 and S4–S6 in the Supplement). Satellite
sensors may provide completely different snow cover infor-
mation because of different satellite overpass time. In this
study, the difference in the Equator crossing time between
MODIS and the passive microwave sensor was close to 6.5
and 9.5 h (see Sect. 2.1 and 2.3.1). Generally, the error caused
by the differences in the satellite overpass time may easily be

neglected when using multi-sensor observations for data fu-
sion.

4.4 Validation using ground measurements

In winter with clouds and snow cover, the MCTD10A1 data
still contained a large number of clouds (Fig. 9a; yellow) de-
spite the implementation of the cloud removal and filling pro-
cess for MODIS snow cover data. When applying the rigor-
ous pixel filters (see Sect. 3.2), there were very little snow
cover data for further model training and results analysis in
one image (Fig. 9b). To evaluate and validate the estimated
fractional snow cover in the absence of reference MODIS
fractional snow cover, we conducted further analysis on snow
cover detection capability. The ground snow depth measure-
ments were utilized to investigate the accuracy of snow cover
identification from two snow cover datasets: the snow cover
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Figure 9. Comparison of our estimated fractional snow cover (c; 6.25 km) with the reference MODIS fractional snow cover (b; 6.25 km)
with respect to the MODIS composite binary snow cover products (a; 500 m) and a comparison example in the central Canadian area (d) on
27 February 2017 (2017058) (cf. the results in continuous value; Fig. S7 in the Supplement).

detected by Grody’s algorithm and fractional snow cover de-
rived from random forest. We collected all available mete-
orological station snow depth measurements from 2008 to
2009 and 2017 (January and February) over North America,
obtaining more than 900 000 pairs of records. This includes
the snow depth measurements, snow cover area converted
from the estimated fractional snow cover (hereafter referred
to as random forest SCA), and snow cover area derived from
Grody’s snow cover mapping algorithm (hereafter referred to
as Grody’s algorithm SCA).

The sensitivity to ground-based snow depth in the snow
cover detection results was tested by computing the accu-
racy metrics using data from 2017. Figure 10 shows that the
accuracy metrics vary with increasing snow depth, whereby
the metrics change significantly when snow depth exceeds
2 cmand reach a relative optimum when snow depth is equal
to 2 cm. Che et al. (2008) stated that snow cover may be

detected by passive microwave sensors when snow depth is
greater than 2 cm. For this reason, we adopted 2 cm as the op-
timum depth threshold to transform ground snow depth mea-
surements to snow-covered or snow-free information. We
also conducted a series of sensitivity experiments to search
for the optimum threshold for converting fractional snow
cover to binary snow cover (Fig. 11). Figure 11 shows that
recall and precision have opposing variation trends; the F1
score is up to the maximum value when FSC= 0.3 (FSC in-
dicates fractional snow cover). In addition, the other two in-
dicators (OA, kappa) also reached their maximum when the
FSC values ranged between 0.3 and 0.4. As expected, 0.3 was
used as the conversion threshold for fractional snow cover.
Nevertheless, the conversion thresholds of snow depth and
fractional snow cover need to be optimized with more data
in the future.
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Figure 10. The changes in accuracy indicators (OA, precision, recall, specificity, F1 score, kappa) for snow cover detection are the result of
two algorithms (a: Grody’ algorithm; b: random forest) with increasing in situ snow depth value.

Figure 11. The changes in accuracy indicators (OA, precision, re-
call, specificity, F1 score, kappa) for snow cover detection result in
an increasing fractional snow cover value (FSC).

We used a 2 cm snow depth threshold and a 0.3 frac-
tional snow cover threshold to calculate the confusion matrix
for Grody’s algorithm SCA and random forest SCA against
ground snow depth measurements in 2008–2009 and 2017
(Figs. 12 and S9). Figure 12 illustrates that the overall accu-
racy of snow cover identification had significantly improved
by 20 %, from 0.71 for Grody’s algorithm SCA to 0.85 for
random forest SCA, indicating that the latter’s results were
in good agreement with ground snow cover measurements
(kappa= 0.65). For the random forest SCA, precision (0.84)

Figure 12. The accuracy indicators (OA, precision, recall, speci-
ficity, F1 score, kappa) of snow cover detection from two algorithm
(Grody’s algorithm; random forest).

was lower than the recall (0.86), which means that snow
cover area was more likely to be overestimated (CE= 0.16)
than underestimated (OE= 0.14) with respect to in situ mea-
surements. In contrast, for Grody’s algorithm SCA, precision
(0.87) was larger than the recall (0.51). By utilizing the pro-
posed method, the OE of snow cover identification had been
reduced by 71 % compared to the OE for Grody’s algorithm
SCA. The snow cover identification accuracy for the four
land cover types is illustrated in Fig. S9 (in the Supplement)
by radar charts.

We subsequently explored the influence of non-snow scat-
terers in estimating fractional snow cover. The CE of Grody’s
algorithm (CE= 0.13) was lower than that of the random
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Figure 13. The mixed snow cover detection map for different condition combinations of random forest SCA and Grody’s algorithm SCA
on 27 February 2017 (2017058). (a) SCGrody = 0 and FSC≤ 0.3; (b) SCGrody = 0 and FSC> 0.3; (c) SCGrody = 1 and FSC≤ 0.3; and
(d) SCGrody = 1 and FSC> 0.3. SCGrody = 0 denotes snow-free (precipitation, cold desert, and frozen ground) determined by Grody’s
algorithm SCA; otherwise, it is snow-covered. FSC≤ 0.3 denotes snow-free cover detected by random forest SCA; otherwise, it is snow-
covered.

forest SCA (CE= 0.16). Figure 12 shows that the over-
all snow-free identification capability of Grody’s algorithm
SCA (specificity= 0.91) was significantly superior to the
random forest SCA (specificity= 0.81), which was also ap-
parent for the four land cover types (Fig. S9). This may possi-
bly be due to Grody’s algorithm filtering out non-snow scat-
ter signature (precipitation, cold desert, and frozen ground)
(Grody and Basist, 1996). We counted the number of records
in which a pixel had been detected as snow-free by the sta-
tion and Grody’s algorithm but was, however, considered
snow-covered by random forest SCA. The records which
were misclassified as snow-covered by random forest SCA,
although they are non-snow scatter components (precipita-
tion, cold desert, and frozen ground), account for 72.6 % of
total misclassification records (CE= 0.16), of which 64.3 %
come from precipitation, 7.0 % from cold desert, and 0.9 %
from frozen ground. For forest, shrub, prairie, and bare land
types, this misclassification proportion because of the non-
snow scatters were 76.0 %, 92.3 %, 68.6 %, and 65.4 %, re-
spectively. These results demonstrate that the non-snow scat-
terer is the major source of snow cover misclassification for
random forest FSC results (Grody and Basist, 1996). There-
fore, it is necessary to first distinguish the scattering signa-
ture of snow cover from other non-snow scattering signa-

tures when using passive microwave data to identify snow
cover. Similar preprocessing has been applied to snow depth
estimation to minimize its uncertainties (Xiao et al., 2018;
Wang et al., 2019; Tedesco and Jeyaratnam, 2016). An ex-
ample is given to illustrate the inconsistency and consistency
results of snow cover mapping between the random forest
SCA and Grody’s algorithm SCA (Fig. 13). Figure 13 shows
that most areas of North America have consistent snow cover
mapping results: Code A (cyan) and B (green) regions. Re-
ferring to the fractional snow cover image (Fig. S7b in the
Supplement), the inconsistencies in monitoring snow cover
extent always occur in mid-latitude regions with the value
of fractional snow cover around 0.5. According to our ex-
perimental results analysis, the mid-value of fractional snow
cover regions is one source of the omission error for Grody’s
algorithm SCA.

5 Discussions

5.1 Sensitivity to training sample size and quality

The size and quality of training samples may contribute to a
large error at the individual pixel level (Dobreva and Klein,
2011; Kuter et al., 2018; Nguyen et al., 2018; Belgiu and

The Cryosphere, 15, 835–861, 2021 https://doi.org/10.5194/tc-15-835-2021



X. Xiao et al.: Estimating fractional snow cover from passive microwave data 855

Drăgu, 2016). Previous studies have investigated the sensi-
tivity to sample size and sample quality (Nguyen et al., 2018;
Colditz, 2015; Lyons et al., 2018). While some studies indi-
cate that a larger training sample size improves the accuracy
of estimates, we found that a training sample dataset cov-
ering about 0.3 % of the total study area was sufficient to
achieve high accuracy in the estimation of fractional snow
cover. When compared to previous sensitivity tests on sam-
ple size (Nguyen et al., 2018), the major difference was tak-
ing modeling time as an index in this study.

The estimation results of the random forest model (for the
training, testing, and evaluation datasets; Sect. 4.2 and 4.3)
showed that, generally, the prediction performance of the
random forest model was closely related to the quality of the
training sample. In this study’s datasets, a greater number of
records were located near the extreme values of the fractional
snow cover (0 and 1). Thus, it is reasonable to use stratified
random sampling (Dobreva and Klein, 2011) but not the pro-
portional distribution of target values suggested by previous
studies (Nguyen et al., 2018; Millard and Richardson, 2015).
Even in these cases, the overestimation and underestimation
often occur in the results of training datasets (Fig. 7a, c, e,
and g) and evaluation datasets (Fig. 7b, d, f, and h), respec-
tively. This is mainly because the established fractional snow
cover retrieval model when using the training sample with
relatively low diversity of fractional snow cover values does
not learn the snow cover distribution characteristics of the
various surface conditions well. Therefore, it is necessary for
future studies to increase the number of samples by extend-
ing the study period to the snow accumulation and snow ab-
lation stages (Xiao et al., 2018) where there is much more
shallow snow and “patchy” snow cover. Another option is
using data from multi-source sensors to generate reference
snow cover data (e.g., Sentinel-1 Synthetic Aperture Radar
data). By doing this, the proportion of fractional snow cover
values in the training sample may be distributed as evenly as
possible (Colditz, 2015; Jin et al., 2014; Lyons et al., 2018).

5.2 Effects of vegetation

Snow cover detection can be partially or completely obscured
(or intercepted) by dense vegetation canopies. This intro-
duces major uncertainties in the accurate detection of snow
cover (Che et al., 2016; Hall et al., 2001; Parajka et al., 2012).
Forest cover is an influential factor that cannot be ignored in
optical and microwave remote sensing studies (Metsämäki
et al., 2005; Cohen et al., 2015). It is evident that fractional
snow cover retrievals typically are the least accurate under
the forest type in comparison to other land cover types (Ta-
ble 5; Figs. 6 and 7). There are two reasons that may be
attributed to this error; one is the accuracy of the reference
“true” fractional snow cover data in a forested area (Riggs
and Hall, 2016), and the other is the microwave radiation at-
tenuation caused by forests (Che et al., 2016).

Previous studies have reported that the lower accuracy of
MODIS snow cover products was found in forest-covered ar-
eas and complex terrain (Hall and Riggs, 2007; Tran et al.,
2019; Coll and Li, 2018). Several studies have validated
and evaluated the accuracy of MODIS snow cover products,
particularly in forested areas (Parajka et al., 2012; Zhang
et al., 2019; Arsenault et al., 2014; Kostadinov and Looking-
bill, 2015). In term of the NDSI threshold in forested areas
(Sect. 3.2), we used 0.4 as a conservative threshold. Accord-
ing to previous studies, our operation (merely using NDSI as
the criterion) in forest-covered areas would produce greater
commission errors compared to using the Normalized Dif-
ference Vegetation Index (NDVI) as auxiliary information
(Hall and Riggs, 2007). The retrieval results indicated that
the NDSI threshold in forested areas needs optimization us-
ing numerous datasets (Riggs et al., 2017; Xin et al., 2012).
In addition to the influence of forests on MODIS data, forests
also hamper the upwelling microwave radiation emitted from
the ground. Snow cover in forested areas may be divided into
under and above forest canopy snow cover (Xin et al., 2012).
This apparently distinguishes the interference effects of ever-
green forests and deciduous forests on snow cover (Gascoin
et al., 2019; Romanov and Tarpley, 2007). Additionally, there
are major differences in the observation means for optical
and passive microwave sensors in forested areas. The capac-
ity for optical sensors to observe above forest canopy snow
cover is mainly dependent on the vegetation canopy density
(Kuter et al., 2018), while microwave sensor may obtain in-
formation on snow cover under the vegetation canopy (under
forest canopy snow cover) (Che et al., 2016; Cohen et al.,
2015). Overall, the combination of these two effects may pro-
duce low estimation accuracy for fractional snow cover.

6 Conclusions

Many previous studies have focused on estimating fractional
snow cover utilizing optical remote sensing imagery which
suffers from cloud contamination during data acquisition. In
contrast, microwave sensors offer the attractive advantage of
working under all weather conditions. In this study, we at-
tempted to develop an algorithm for applying the enhanced-
resolution passive microwave brightness temperature data
(6.25 km) to fractional snow cover estimation during January
and February of 2010 to 2017. Using the reference fractional
snow cover stem from MODIS snow cover products as the
“true” observation, we established fractional snow cover re-
trieval models for four land cover types (forest, shrub, prairie,
and bare land) inputting 12 variables selected by 24 sensi-
tivity experiments. The proposed algorithm accounted for a
series of influential factors including topography, land cover,
and location information. Compared to the other three meth-
ods (linear regression, ANN, and MARS), the random-forest-
based algorithm had the best performance with high accuracy
(highest R and lowest MAE and RMSE) and no out-of-range
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retrievals. The results of the evaluation using the reference
fractional snow cover data in 2017 showed that our proposed
algorithm had good retrieval performance in estimating frac-
tional snow cover, with RMSEs ranging from 0.167 to 0.198.
Moreover, in situ snow depth measurements were used to val-
idate the accuracy of the proposed fractional snow cover es-
timation algorithm in snow cover mapping. The snow cover
detection capability of the random-forest-based method was
superior (OA= 0.85, kappa= 0.65) to that of Grody’s al-
gorithm, with overall accuracy increasing by 20 % (from
0.71 to 0.85) and omission error reducing by 71 % (from
0.48 to 0.14) when the fractional snow cover threshold was
0.3. Although the random-forest-based models achieved an
acceptable accuracy, the fractional snow cover was more
likely to be overestimated (CE= 0.16) than underestimated
(OE= 0.14). In addition, the effect of the non-snow scat-
terer was evaluated on fractional snow cover predictions by
means of the good prediction of Grody’s algorithm on snow-
free class; the results indicated that more than 70 % of CE
was caused by misclassifying the non-snow scatterer (pre-
cipitation, cold desert, frozen ground) as snow cover. These
models established that using several data sources in January
and February had better applicability in dry snow conditions,
while estimation results could be less accurate in wet snow
conditions.

Numerous studies have investigated the relationship be-
tween common snowpack physical properties (e.g., snow
depth and water equivalent) and passive microwave bright-
ness temperature at different frequencies and polarizations
(Chang et al., 1987; Dietz et al., 2011; Kim et al., 2019;
Xiao et al., 2018). Unlike many previous studies, this study
innovatively used passive microwave data to directly esti-
mate fractional snow cover. The results showed that it is pos-
sible to directly obtain an estimated fractional snow cover
with high accuracy from high-spatial-resolution passive mi-
crowave data (6.25 km) under all weather conditions. Further
detailed study on the use of high-spatial-resolution passive
microwave data for fractional snow cover estimation presents
itself as an interesting research direction for the develop-
ment of the studies on fractional snow cover estimation. Fur-
thermore, to reduce some of the limitations (e.g., forest ef-
fects) (Cohen et al., 2015) and deficiencies (overestimation
and underestimation) identified in this study, future studies
should pay greater attention to the prediction of the fractional
snow cover using passive microwave data. To the best of our
knowledge, this study may represent the first attempt to es-
tablish a relationship between microwave brightness temper-
ature and the reference “true” fractional snow cover using
machine learning methods. However, it also contains sig-
nificant limitations in understanding the physics that relates
fractional snow cover to the signature of passive microwave
brightness temperature (Cohen et al., 2015; Che et al., 2016).
Future studies need to use physical snowpack models and
radiation transfer theory to explore the physical mechanistic

relationships between microwave brightness temperature and
fractional snow cover (Pan et al., 2014).
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