Articles | Volume 15, issue 2
The Cryosphere, 15, 633–661, 2021
https://doi.org/10.5194/tc-15-633-2021
The Cryosphere, 15, 633–661, 2021
https://doi.org/10.5194/tc-15-633-2021
Research article
10 Feb 2021
Research article | 10 Feb 2021

ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model

William H. Lipscomb et al.

Related authors

Exploring ice sheet model sensitivity to ocean thermal forcing using the Community Ice Sheet Model (CISM)
Mira Berdahl, Gunter Leguy, William H. Lipscomb, Nathan M. Urban, and Matthew J. Hoffman
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-156,https://doi.org/10.5194/tc-2022-156, 2022
Preprint under review for TC
Short summary
Compensating errors in inversions for subglacial bed roughness: same steady state, different dynamic response
Constantijn J. Berends, Roderik S. W. van de Wal, Tim van den Akker, and William H. Lipscomb
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-103,https://doi.org/10.5194/tc-2022-103, 2022
Preprint under review for TC
Short summary
MPAS-Seaice (v1.0.0): sea-ice dynamics on unstructured Voronoi meshes
Adrian K. Turner, William H. Lipscomb, Elizabeth C. Hunke, Douglas W. Jacobsen​​​​​​​, Nicole Jeffery, Darren Engwirda, Todd D. Ringler, and Jonathan D. Wolfe
Geosci. Model Dev., 15, 3721–3751, https://doi.org/10.5194/gmd-15-3721-2022,https://doi.org/10.5194/gmd-15-3721-2022, 2022
Short summary
A comparison of the stability and performance of depth-integrated ice-dynamics solvers
Alexander Robinson, Daniel Goldberg, and William H. Lipscomb
The Cryosphere, 16, 689–709, https://doi.org/10.5194/tc-16-689-2022,https://doi.org/10.5194/tc-16-689-2022, 2022
Short summary
Marine ice sheet experiments with the Community Ice Sheet Model
Gunter R. Leguy, William H. Lipscomb, and Xylar S. Asay-Davis
The Cryosphere, 15, 3229–3253, https://doi.org/10.5194/tc-15-3229-2021,https://doi.org/10.5194/tc-15-3229-2021, 2021
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
Sensitivity of the Ross Ice Shelf to environmental and glaciological controls
Francesca Baldacchino, Mathieu Morlighem, Nicholas R. Golledge, Huw Horgan, and Alena Malyarenko
The Cryosphere, 16, 3723–3738, https://doi.org/10.5194/tc-16-3723-2022,https://doi.org/10.5194/tc-16-3723-2022, 2022
Short summary
High-resolution subglacial topography around Dome Fuji, Antarctica, based on ground-based radar surveys over 30 years
Shun Tsutaki, Shuji Fujita, Kenji Kawamura, Ayako Abe-Ouchi, Kotaro Fukui, Hideaki Motoyama, Yu Hoshina, Fumio Nakazawa, Takashi Obase, Hiroshi Ohno, Ikumi Oyabu, Fuyuki Saito, Konosuke Sugiura, and Toshitaka Suzuki
The Cryosphere, 16, 2967–2983, https://doi.org/10.5194/tc-16-2967-2022,https://doi.org/10.5194/tc-16-2967-2022, 2022
Short summary
Cosmogenic nuclide dating of two stacked ice masses: Ong Valley, Antarctica
Marie Bergelin, Jaakko Putkonen, Greg Balco, Daniel Morgan, Lee B. Corbett, and Paul R. Bierman
The Cryosphere, 16, 2793–2817, https://doi.org/10.5194/tc-16-2793-2022,https://doi.org/10.5194/tc-16-2793-2022, 2022
Short summary
Clouds drive differences in future surface melt over the Antarctic ice shelves
Christoph Kittel, Charles Amory, Stefan Hofer, Cécile Agosta, Nicolas C. Jourdain, Ella Gilbert, Louis Le Toumelin, Étienne Vignon, Hubert Gallée, and Xavier Fettweis
The Cryosphere, 16, 2655–2669, https://doi.org/10.5194/tc-16-2655-2022,https://doi.org/10.5194/tc-16-2655-2022, 2022
Short summary
Rapid fragmentation of Thwaites Eastern Ice Shelf
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022,https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary

Cited articles

Asay-Davis, X. S., Cornford, S. L., Durand, G., Galton-Fenzi, B. K., Gladstone, R. M., Gudmundsson, G. H., Hattermann, T., Holland, D. M., Holland, D., Holland, P. R., Martin, D. F., Mathiot, P., Pattyn, F., and Seroussi, H.: Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1), Geosci. Model Dev., 9, 2471–2497, https://doi.org/10.5194/gmd-9-2471-2016, 2016. a, b, c, d, e, f
Barthel, A., Agosta, C., Little, C. M., Hattermann, T., Jourdain, N. C., Goelzer, H., Nowicki, S., Seroussi, H., Straneo, F., and Bracegirdle, T. J.: CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica, The Cryosphere, 14, 855–879, https://doi.org/10.5194/tc-14-855-2020, 2020. a, b
Blatter, H.: Velocity and stress fields in grounded glaciers – a simple algorithm for including deviatoric stress gradients, J. Glaciol., 41, 333–344, 1995. a
Computational and Information Systems Laboratory: Cheyenne: HPE/SGI ICE XA System (Climate Simulation Laboratory), Boulder, CO, National Center for Atmospheric Research, https://doi.org/10.5065/D6RX99HX, 2019. a
Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. R., Le Brocq, A. M., Gladstone, R. M., Payne, A. J., Ng, E. G., and Lipscomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput. Phys., 232, 529–549, 2013. a
Download
Short summary
This paper describes Antarctic climate change experiments in which the Community Ice Sheet Model is forced with ocean warming predicted by global climate models. Generally, ice loss begins slowly, accelerates by 2100, and then continues unabated, with widespread retreat of the West Antarctic Ice Sheet. The mass loss by 2500 varies from about 150 to 1300 mm of equivalent sea level rise, based on the predicted ocean warming and assumptions about how this warming drives melting beneath ice shelves.