Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5261-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5261-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia from an 18-year Landsat–MODIS era snow reanalysis dataset
Yufei Liu
Department of Civil and Environmental Engineering, University of
California, Los Angeles, Los Angeles, CA, USA
Yiwen Fang
Department of Civil and Environmental Engineering, University of
California, Los Angeles, Los Angeles, CA, USA
Steven A. Margulis
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
California, Los Angeles, Los Angeles, CA, USA
Related authors
No articles found.
Manon von Kaenel and Steven A. Margulis
The Cryosphere, 19, 3309–3327, https://doi.org/10.5194/tc-19-3309-2025, https://doi.org/10.5194/tc-19-3309-2025, 2025
Short summary
Short summary
Accurate snow water equivalent (SWE) estimates are crucial for water management in snowmelt-dependent regions, but bias and uncertainty in precipitation data make this challenging. Here, we leverage insights from a historical SWE data product to correct these biases and yield more accurate SWE estimates and streamflow predictions. Incorporating snow depth observations further boosts accuracy. This study demonstrates an effective method to downscale and bias-correct global mountain precipitation.
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025, https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
Short summary
The European Space Agency's Snow Climate Change Initiative (Snow CCI) developed a high-quality snow cover extent and snow water equivalent (SWE) climate data record. However, gaps exist in complex terrain due to challenges in using passive microwave sensing and in situ measurements. This study presents a methodology to fill the mountain SWE gap using Snow CCI snow cover fraction within a Bayesian SWE reanalysis framework, with potential applications in untested regions and with other sensors.
Yiwen Fang, Yufei Liu, Dongyue Li, Haorui Sun, and Steven A. Margulis
The Cryosphere, 17, 5175–5195, https://doi.org/10.5194/tc-17-5175-2023, https://doi.org/10.5194/tc-17-5175-2023, 2023
Short summary
Short summary
Using newly developed snow reanalysis datasets as references, snow water storage is at high uncertainty among commonly used global products in the Andes and low-resolution products in the western United States, where snow is the key element of water resources. In addition to precipitation, elevation differences and model mechanism variances drive snow uncertainty. This work provides insights for research applying these products and generating future products in areas with limited in situ data.
Justin M. Pflug, Yiwen Fang, Steven A. Margulis, and Ben Livneh
Hydrol. Earth Syst. Sci., 27, 2747–2762, https://doi.org/10.5194/hess-27-2747-2023, https://doi.org/10.5194/hess-27-2747-2023, 2023
Short summary
Short summary
Wolverine denning habitat inferred using a snow threshold differed for three different spatial representations of snow. These differences were based on the annual volume of snow and the elevation of the snow line. While denning habitat was most influenced by winter meteorological conditions, our results show that studies applying thresholds to environmental datasets should report uncertainties stemming from different spatial resolutions and uncertainties introduced by the thresholds themselves.
Xiaoyu Ma, Dongyue Li, Yiwen Fang, Steven A. Margulis, and Dennis P. Lettenmaier
Hydrol. Earth Syst. Sci., 27, 21–38, https://doi.org/10.5194/hess-27-21-2023, https://doi.org/10.5194/hess-27-21-2023, 2023
Short summary
Short summary
We explore satellite retrievals of snow water equivalent (SWE) along hypothetical ground tracks that would allow estimation of SWE over an entire watershed. The retrieval of SWE from satellites has proved elusive, but there are now technological options that do so along essentially one-dimensional tracks. We use machine learning (ML) algorithms as the basis for a track-to-area (TTA) transformation and show that at least one is robust enough to estimate domain-wide SWE with high accuracy.
Cited articles
Ahmad, J. A., Forman, B. A., and Kwon, Y.: Analyzing Machine Learning
Predictions of Passive Microwave Brightness Temperature Spectral Difference
Over Snow-Covered Terrain in High Mountain Asia, Front. Earth Sci., 7, 249,
https://doi.org/10.3389/feart.2019.00212, 2019.
Armstrong, R. L., Rittger, K., Brodzik, M. J., Racoviteanu, A., Barrett, A.
P., Khalsa, S.-J. S., Raup, B., Hill, A. F., Khan, A. L., Wilson, A. M.,
Kayastha, R. B., Fetterer, F., and Armstrong, B.: Runoff from glacier ice and
seasonal snow in High Asia: separating melt water sources in river flow, Reg.
Environ. Change, 19, 1249–1261, 2019.
Bair, E., Stillinger, T., Rittger, K., and Skiles, M.: COVID-19 lockdowns
show reduced pollution on snow and ice in the Indus River Basin, P. Natl.
Acad. Sci. USA, 118, e2101174118, https://doi.org/10.1073/pnas.2101174118, 2021.
Bair, E. H., Abreu Calfa, A., Rittger, K., and Dozier, J.: Using machine
learning for real-time estimates of snow water equivalent in the watersheds
of Afghanistan, The Cryosphere, 12, 1579–1594,
https://doi.org/10.5194/tc-12-1579-2018, 2018.
Bair, E. H., Rittger, K., Ahmad, J. A., and Chabot, D.: Comparison of modeled
snow properties in Afghanistan, Pakistan, and Tajikistan, The Cryosphere,
14, 331–347, https://doi.org/10.5194/tc-14-331-2020, 2020.
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a
warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, 2005.
Basang, D., Barthel, K., and Olseth, J. A.: Satellite and Ground Observations of Snow Cover in Tibet during 2001–2015, Remote Sens., 9, 1201, https://doi.org/10.3390/rs9111201, 2017.
Bian, Q., Xu, Z., Zhao, L., Zhang, Y.-F., Zheng, H., Shi, C., Zhang, S., Xie, C., and Yang, Z.-L.: Evaluation and Intercomparison of Multiple Snow Water Equivalent Products over the Tibetan Plateau, J. Hydrometeorol., 20, 2043–2055, https://doi.org/10.1175/JHM-D-19-0011.1, 2019.
Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012.
Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., Immerzeel, W. W., Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., and Zhang, Y.: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region, in: The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People, edited by: Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B., Springer International Publishing, Cham, 209–255, 2019.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, J. Geophys. Res., 115, 39, https://doi.org/10.1029/2009JF001426, 2010.
Bormann, K. J., Brown, R. D., Derksen, C., and Painter, T. H.: Estimating
snow-cover trends from space, Nat. Clim. Change, 8, 924–928, 2018.
Chang, A. T. C., Foster, J. L., and Hall, D. K.: Nimbus-7 SMMR Derived Global
Snow Cover Parameters, Ann. Glaciol., 9, 39–44, 1987.
Che, T., Li, X., Jin, R., Armstrong, R., and Zhang, T.: Snow depth derived
from passive microwave remote-sensing data in China, Ann. Glaciol., 49, 145–154, 2008.
Cortés, G. and Margulis, S.: Impacts of El Niño and La Niña on
interannual snow accumulation in the Andes: Results from a high-resolution
31 year reanalysis, Geophys. Res. Lett., 44, 6859–6867,
https://doi.org/10.1002/2017GL073826, 2017.
Cortés, G., Girotto, M., and Margulis, S. A.: Analysis of sub-pixel snow
and ice extent over the extratropical Andes using spectral unmixing of
historical Landsat imagery, Remote Sens. Environ., 141, 64–78, 2014.
Dahe, Q., Shiyin, L., and Peiji, L.: Snow Cover Distribution, Variability, and Response to Climate Change in Western China, J. Climate, 19, 1820–1833, https://doi.org/10.1175/JCLI3694.1, 2006.
Dai, L., Che, T., Ding, Y., and Hao, X.: Evaluation of snow cover and snow
depth on the Qinghai–Tibetan Plateau derived from passive microwave remote
sensing, The Cryosphere, 11, 1933–1948, https://doi.org/10.5194/tc-11-1933-2017, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S.
B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dozier, J.: Spectral signature of alpine snow cover from the landsat thematic mapper, Remote Sens. Environ., 28, 9–22, https://doi.org/10.1016/0034-4257(89)90101-6, 1989.
Dozier, J., Bair, E. H., and Davis, R. E.: Estimating the spatial distribution of snow water equivalent in the world's mountains, WIREs Water,
3, 461–474, https://doi.org/10.1002/wat2.1140, 2016.
Durand, M., Molotch, N. P., and Margulis, S. A.: A Bayesian approach to snow
water equivalent reconstruction, J. Geophys. Res., 113, 872, https://doi.org/10.1029/2008JD009894, 2008.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate, 30, 5419–5454, 2017.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_flx_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Surface Flux Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [dataset], https://doi.org/10.5067/7MCPBJ41Y0K6, 2015a.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_rad_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Radiation Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [dataset], https://doi.org/10.5067/Q9QMY5PBNV1T, 2015b.
Global Modeling and Assimilation Office (GMAO): MERRA-2 tavg1_2d_slv_Nx: 2d, 1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [dataset], https://doi.org/10.5067/VJAFPLI1CSIV, 2015c.
Girotto, M., Margulis, S. A., and Durand, M.: Probabilistic SWE reanalysis as
a generalization of deterministic SWE reconstruction techniques, Hydrol. Process., 28, 3875–3895, https://doi.org/10.1002/hyp.9887, 2014.
Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr, K.
J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194, 2002.
Hansen, M. C., Defries, R. S., Townshend, J. R. G., and Sohlberg, R.: Global
land cover classification at 1 km spatial resolution using a classification
tree approach, Int. J. Remote Sens., 21, 1331–1364, https://doi.org/10.1080/014311600210209 2000.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.: The ERA5 global
reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Immerzeel, W. W. and Bierkens, M. F. P.: Asia's water balance, Nat. Geosci., 5, 841–842, 2012.
Immerzeel, W. W., Droogers, P., de Jong, S. M., and Bierkens, M. F. P.:
Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing, Remote Sens. Environ., 113, 40–49, 2009.
Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate Change
Will Affect the Asian Water Towers, Science, 328, 1382, https://doi.org/10.1126/science.1183188, 2010.
Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby, S., Davies, B. J., Elmore, A. C., Emmer, A., Feng, M.,
Fernández, A., Haritashya, U., Kargel, J. S., Koppes, M., Kraaijenbrink,
P. D. A., Kulkarni, A. V., Mayewski, P. A., Nepal, S., Pacheco, P., Painter,
T. H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.
B., Viviroli, D., Wada, Y., Xiao, C., Yao, T., and Baillie, J. E. M.: Importance and vulnerability of the world's water towers, Nature, 577, 364–369, 2020.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas, Nature, 488, 495–498, 2012.
Kim, R. S., Kumar, S., Vuyovich, C., Houser, P., Lundquist, J., Mudryk, L.,
Durand, M., Barros, A., Kim, E. J., Forman, B. A., Gutmann, E. D., Wrzesien, M. L., Garnaud, C., Sandells, M., Marshall, H. P., Cristea, N., Pflug, J. M., Johnston, J., Cao, Y., Mocko, D., and Wang, S.: Snow Ensemble Uncertainty
Project (SEUP): quantification of snow water equivalent uncertainty across
North America via ensemble land surface modeling, The Cryosphere, 15,
771–791, https://doi.org/10.5194/tc-15-771-2021, 2021.
Kirkham, J. D., Koch, I., Saloranta, T. M., Litt, M., Stigter, E. E., Møen, K., Thapa, A., Melvold, K., and Immerzeel, W. W.: Near Real-Time Measurement of Snow Water Equivalent in the Nepal Himalayas, Front. Earth Sci., 7, 677, https://doi.org/10.3389/feart.2019.00177, 2019.
Kobayashi, S., Oto, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifications and Basic Characteristics TI,
J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48, 2015.
Largeron, C., Dumont, M., Morin, S., Boone, A., Lafaysse, M., Metref, S.,
Cosme, E., Jonas, T., Winstral, A., and Margulis, S. A.: Toward Snow Cover
Estimation in Mountainous Areas Using Modern Data Assimilation Methods: A
Review, Front. Earth Sci., 8, 325, https://doi.org/10.3389/feart.2020.00325, 2020.
Lehner, B., Verdin, K., and Jarvis, A.: New Global Hydrography Derived From
Spaceborne Elevation Data, Eos Trans. AGU, 89, 93–94, https://doi.org/10.1029/2008EO100001, 2008.
Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M., and Wood, E. F.: Inroads of remote sensing into hydrologic science during the WRR era, Water Resour. Res., 51, 7309–7342, https://doi.org/10.1002/2015WR017616, 2015.
Lievens, H., Demuzere, M., Marshall, H.-P., Reichle, R. H., Brucker, L.,
Brangers, I., de Rosnay, P., Dumont, M., Girotto, M., Immerzeel, W. W., Jonas, T., Kim, E. J., Koch, I., Marty, C., Saloranta, T., Schöber, J.,
and De Lannoy, G. J. M.: Snow depth variability in the Northern Hemisphere
mountains observed from space, Nat. Commun., 10, 4629, https://doi.org/10.1038/s41467-019-12566-y, 2019.
Liston, G. E.: Representing Subgrid Snow Cover Heterogeneities in Regional and Global Models, J. Climate, 17, 1381–1397, 2004.
Liu, Y. and Margulis, S. A.: Deriving Bias and Uncertainty in MERRA-2 Snowfall Precipitation Over High Mountain Asia, Front. Earth Sci., 7, 39,
https://doi.org/10.3389/feart.2019.00280, 2019.
Liu, Y., Fang, Y., and Margulis, S. A.: High Mountain Asia UCLA Daily Snow
Reanalysis, Version 1, NASA Snow and Ice Data Center Distributed Active Archive Center [data set], Boulder, Colorado, USA, https://doi.org/10.5067/HNAUGJQXSCVU, 2021.
Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. Theor., 28, 129–137, 1982.
Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., and Bierkens, M. F. P.:
Consistent increase in High Asia's runoff due to increasing glacier melt and
precipitation, Nat. Clim. Change, 4, 587–592, 2014.
Margulis, S. A., Girotto, M., Cortés, G., and Durand, M.: A Particle Batch Smoother Approach to Snow Water Equivalent Estimation, J. Hydrometeorol., 16, 1752–1772, 2015.
Margulis, S. A., Cortés, G., Girotto, M., and Durand, M.: A Landsat-Era
Sierra Nevada Snow Reanalysis (1985–2015), J. Hydrometeorol., 17, 1203–1221, 2016.
Margulis, S. A., Liu, Y., and Baldo, E.: A Joint Landsat- and MODIS-Based
Reanalysis Approach for Midlatitude Montane Seasonal Snow Characterization,
Front. Earth Sci., 7, 4257, https://doi.org/10.3389/feart.2019.00272, 2019.
Maussion, F., Scherer, D., Finkelnburg, R., Richters, J., Yang, W., and Yao,
T.: WRF simulation of a precipitation event over the Tibetan Plateau, China
– an assessment using remote sensing and ground observations, Hydrol. Earth
Syst. Sci., 15, 1795–1817, https://doi.org/10.5194/hess-15-1795-2011, 2011.
Maussion, F., Scherer, D., Mölg, T., Collier, E., Curio, J., and Finkelnburg, R.: Precipitation Seasonality and Variability over the Tibetan
Plateau as Resolved by the High Asia Reanalysis, J. Climate, 27, 1910–1927, https://doi.org/10.1175/JCLI-D-13-00282.1, 2014.
Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R., Kelly, R., and
Tedesco, M.: Evaluation of long-term Northern Hemisphere snow water equivalent products, The Cryosphere, 14, 1579–1594,
https://doi.org/10.5194/tc-14-1579-2020, 2020.
Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown, R.: Characterization
of Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010, J. Climate, 28, 8037–8051, https://doi.org/10.1175/JCLI-D-15-0229.1, 2015.
Notarnicola, C.: Observing Snow Cover and Water Resource Changes in the High Mountain Asia Region in Comparison with Global Mountain Trends over 2000–2018, Remote Sens., 12, 3913, https://doi.org/10.3390/rs12233913, 2020.
Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., de Rosnay, P., Zhu, C., Wang, W., Senan, R., and Arduini, G.: Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations, The Cryosphere, 13,
2221–2239, https://doi.org/10.5194/tc-13-2221-2019, 2019.
Osmanoglu, B., Painter, T. H., Shean, D., Arendt, A., Kargel, J., and Margulis, S. A.: Remote sensing of the cryosphere in high mountain ASIA, in:
2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2813–2816, 23-28 July 2017, Fort Worth, TX, USA, https://doi.org/10.1109/IGARSS.2017.8127583, 2017.
Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E., and Green, R. O.:
Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data, Remote Sens. Environ., 85, 64–77, 2003.
Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and
Dozier, J.: Retrieval of subpixel snow covered area, grain size, and albedo
from MODIS, Remote Sens. Environ., 113, 868–879, 2009.
Painter, T. H., Brodzik, M. J., Racoviteanu, A., and Armstrong, R.: Automated
mapping of Earth's annual minimum exposed snow and ice with MODIS, Geophys.
Res. Lett., 39, 2012GL053340, https://doi.org/10.1029/2012GL053340, 2012.
Palazzi, E., von Hardenberg, J., and Provenzale, A.: Precipitation in the
Hindu-Kush Karakoram Himalaya: Observations and future scenarios, J. Geophys. Res.-Atmos., 118, 85–100, https://doi.org/10.1029/2012JD018697, 2013.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J.-O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S., Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B. H., Rich, J., and Sharp, M. J.: The Randolph Glacier Inventory: a globally complete inventory of glaciers, J. Glaciol., 60, 537–552, 2014.
Pu, Z., Xu, L., and Salomonson, V. V.: MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau, Geophys. Res. Lett., 34, 32141, https://doi.org/10.1029/2007GL029262, 2007.
Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen, J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolander, T., and Norberg,
J.: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018,
Nature, 581, 294–298, 2020.
Raup, B., Racoviteanu, A., Khalsa, S.-J. S., Helm, C., Armstrong, R., and
Arnaud, Y.: The GLIMS geospatial glacier database: A new tool for studying
glacier change, Global Planet. Change, 56, 101–110, 2007.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier
Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from
Space, Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-60, 2017
Rienecker, M. M., Suárez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011.
Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng,
C. J., Arsenault, K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin,
J. K., Walker, J. P., Lohmann, D., and Toll, D.: The Global Land Data
Assimilation System, B. Am. Meteorol. Soc., 85, 381–394, https://doi.org/10.1175/BAMS-85-3-381, 2004.
Rounce, D. R., Hock, R., and Shean, D. E.: Glacier Mass Change in High Mountain Asia Through 2100 Using the Open-Source Python Glacier Evolution Model (PyGEM), Front. Earth Sci., 7, 331, https://doi.org/10.3389/feart.2019.00331, 2020.
Scott, C. A., Zhang, F., Mukherji, A., Immerzeel, W., Mustafa, D., and Bharati, L.: Water in the Hindu Kush Himalaya, in: The Hindu Kush Himalaya
Assessment: Mountains, Climate Change, Sustainability and People, edited by:
Wester, P., Mishra, A., Mukherji, A., and Shrestha, A. B., Springer International Publishing, Cham, 257–299, 2019.
Sexton, J. O., Song, X.-P., Feng, M., Noojipady, P., Anand, A., Huang, C.,
Kim, D.-H., Collins, K. M., Channan, S., DiMiceli, C., and Townshend, J. R.:
Global, 30-m resolution continuous fields of tree cover: Landsat-based
rescaling of MODIS vegetation continuous fields with lidar-based estimates of error, Int. J. Digit. Earth, 6, 427–448, https://doi.org/10.1080/17538947.2013.786146, 2013.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and
Osmanoglu, B.: A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance, Front. Earth Sci., 7, 363, https://doi.org/10.3389/feart.2019.00363, 2020.
Smith, T. and Bookhagen, B.: Assessing uncertainty and sensor biases in
passive microwave data across High Mountain Asia, Remote Sensing of
Environment, 181, 174–185, 2016.
Smith, T. and Bookhagen, B.: Changes in seasonal snow water equivalent
distribution in High Mountain Asia (1987 to 2009), Sci. Adv., 4, e1701550, https://doi.org/10.1126/sciadv.1701550, 2018.
Smith, T. and Bookhagen, B.: Assessing Multi-Temporal Snow-Volume Trends in
High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave
Data, Front. Earth Sci., 8, 392, https://doi.org/10.3389/feart.2020.559175, 2020.
Sorg, A., Bolch, T., Stoffel, M., Solomina, O., and Beniston, M.: Climate
change impacts on glaciers and runoff in Tien Shan (Central Asia), Nat.
Clim. Change, 2, 725–731, 2012.
Stigter, E. E., Wanders, N., Saloranta, T. M., Shea, J. M., Bierkens, M. F. P., and Immerzeel, W. W.: Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment, The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, 2017.
Sun, S. and Xue, Y.: Implementing a new snow scheme in Simplified Simple
Biosphere Model, Adv. Atmos. Sci., 18, 335–354, 2001.
Tahir, A. A., Chevallier, P., Arnaud, Y., and Ahmad, B.: Snow cover dynamics
and hydrological regime of the Hunza River basin, Karakoram Range, Northern
Pakistan, Hydrol. Earth Syst. Sci., 15, 2275–2290,
https://doi.org/10.5194/hess-15-2275-2011, 2011.
Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyinen, J., Kärnä, J.-P., Koskinen, J., and Bojkov, B.: Estimating northern
hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements, Remote Sens. Environ., 115, 3517–3529, 2011.
Terzago, S., Hardenberg, von, J., Palazzi, E., and Provenzale, A.: Snowpack
Changes in the Hindu Kush–Karakoram–Himalaya from CMIP5 Global Climate
Models, J. Hydrometeorol., 15, 2293–2313, https://doi.org/10.1175/JHM-D-13-0196.1, 2014.
Wang, X., Wu, C., Wang, H., Gonsamo, A., and Liu, Z.: No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015, Sci. Rep., 7, 14645, https://doi.org/10.1038/s41598-017-15208-9, 2017.
Winiger, M., Gumpert, M., and Yamout, H.: Karakorum-Hindukush-western Himalaya: assessing high-altitude water resources, Hydrol. Process., 19,
2329–2338, https://doi.org/10.1002/hyp.5887, 2005.
Wrzesien, M. L., Pavelsky, T. M., Durand, M. T., Dozier, J., and Lundquist, J. D.: Characterizing Biases in Mountain Snow Accumulation From Global Data
Sets, Water Resour. Res., 55, 9873–9891, https://doi.org/10.1029/2019WR025350, 2019.
Xue, Y., Sun, S., Kahan, D. S., and Jiao, Y.: Impact of parameterizations in
snow physics and interface processes on the simulation of snow cover and
runoff at several cold region sites, J. Geophys. Res., 108, https://doi.org/10.1029/2002JD003174, 2003.
Xue, Y., Houser, P. R., Maggioni, V., Mei, Y., Kumar, S. V., and Yoon, Y.:
Assimilation of Satellite-Based Snow Cover and Freeze/Thaw Observations Over
High Mountain Asia, Front. Earth Sci., 7, 872, https://doi.org/10.3389/feart.2019.00115, 2019.
Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Change, 2, 663–667, 2012.
Short summary
We examined the spatiotemporal distribution of stored water in the seasonal snowpack over High Mountain Asia, based on a new snow reanalysis dataset. The dataset was derived utilizing satellite-observed snow information, which spans across 18 water years, at a high spatial (~ 500 m) and temporal (daily) resolution. Snow mass and snow storage distribution over space and time are analyzed in this paper, which brings new insights into understanding the snowpack variability over this region.
We examined the spatiotemporal distribution of stored water in the seasonal snowpack over High...