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Abstract. Seasonal snowpack is an essential component in
the hydrological cycle and plays a significant role in supply-
ing water resources to downstream users. Yet the snow wa-
ter equivalent (SWE) in seasonal snowpacks, and its space–
time variation, remains highly uncertain, especially over
mountainous areas with complex terrain and sparse obser-
vations, such as in High Mountain Asia (HMA). In this
work, we assessed the spatiotemporal distribution of sea-
sonal SWE, obtained from a new 18-year HMA Snow Re-
analysis (HMASR) dataset, as part of the recent NASA High
Mountain Asia Team (HiMAT) effort. A Bayesian snow re-
analysis scheme previously developed to assimilate satellite-
derived fractional snow-covered area (fSCA) products from
Landsat and MODIS platforms has been applied to develop
the HMASR dataset (at a spatial resolution of 16 arcsec (∼
500 m) and daily temporal resolution) over the joint Landsat–
MODIS period covering water years (WYs) 2000–2017.

Based on the results, the HMA-wide total SWE volume
is found to be around 163 km3 on average and ranges from
114 km3 (WY2001) to 227 km3 (WY2005) when assessed
over 18 WYs. The most abundant snowpacks are found in
the northwestern basins (e.g., Indus, Syr Darya and Amu
Darya) that are mainly affected by the westerlies, account-
ing for around 66 % of total seasonal SWE volume. Sea-
sonal snowpack in HMA is depicted by snow accumulat-
ing through October to March and April, typically peaking
around April and depleting in July–October, with variations
across basins and WYs. When examining the elevational
distribution over the HMA domain, seasonal SWE volume
peaks at mid-elevations (around 3500 m), with over 50 % of
the volume stored above 3500 m. Above-average amounts of
precipitation causes significant overall increase in SWE vol-

umes across all elevations, while an increase in air tempera-
ture (∼ 1.5 K) from cooler to normal conditions leads to an
redistribution in snow storage from lower elevations to mid-
elevations.

This work brings new insight into understanding the cli-
matology and variability of seasonal snowpack over HMA,
with the regional snow reanalysis constrained by remote-
sensing data, providing a new reference dataset for future
studies of seasonal snow and how it contributes to the wa-
ter cycle and climate over the HMA region.

1 Introduction

The High Mountain Asia (HMA) region consists of the ma-
jor mountain ranges and headwaters of the largest rivers
in Asia. It features extremely high elevation, complex to-
pography, and significant glacier and snow cover. In HMA,
glacier melt and snowmelt are vital to the hydrological cy-
cle and water supply, as they feed the major regional rivers
with over one billion people living downstream (Barnett et
al., 2005; Bookhagen and Burbank, 2010; Immerzeel et al.,
2010, 2020; Immerzeel and Bierkens, 2012; Lutz et al., 2014;
Armstrong et al., 2019; Scott et al., 2019).

Even though both seasonal snow and glaciers are crucial
to hydrology and water availability, seasonal snow has ar-
guably received less attention than glaciers in the HMA re-
gion. Many studies have addressed the status and changes
in glaciers over HMA (e.g., Bolch et al., 2012, 2019; Kääb et
al., 2012; Sorg et al., 2012; Yao et al., 2012; Lutz et al., 2014;
Rounce et al., 2020; Shean et al., 2020). For seasonal snow,
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previous studies have examined the snow extent (e.g., Dahe
et al., 2006; Pu et al., 2007; Immerzeel et al., 2009; Tahir
et al., 2011; Basang et al., 2017; Wang et al., 2017; No-
tarnicola, 2020) or snow mass and snow depth (e.g., Dahe
et al., 2006; Che et al., 2008; Terzago et al., 2014; Dai et
al., 2017; Stigter et al., 2017; Smith and Bookhagen, 2018,
2020; Ahmad et al., 2019; Kirkham et al., 2019; Xue et al.,
2019; Bair et al., 2018, 2020, 2021). In the current literature
involving seasonal snow, most of the studies have focused
on snow-covered area (or extent, which is readily available
from satellite-borne remote sensing) instead of snow mass
or have been applied at relatively localized scales (e.g., in-
dividual small to moderate sized basins) or coarse scales
(e.g., above 1 km) over larger scales. The seasonal snow wa-
ter storage and its spatiotemporal distribution across HMA
are highly uncertain, primarily due to the lack of in situ ob-
servations and fine-scale (e.g., < 1 km) snow water equiv-
alent (SWE) datasets over this large domain (Takala et al.,
2011; Kirkham et al., 2019). In fact, accurately estimating
SWE at such scales remains a great challenge worldwide,
and it is even more difficult in mountainous regions due to
the terrain complexity (Lettenmaier et al., 2015; Dozier et
al., 2016; Bormann et al., 2018).

In situ measurements are usually expensive and difficult to
install and maintain in HMA and are mostly located in low-
lying valleys, thus resulting in a sparse and potentially non-
representative network (Winiger et al., 2005; Palazzi et al.,
2013; Dozier et al., 2016; Kirkham et al., 2019). In recent
decades, satellite observations can provide large-scale esti-
mates of some snowpack properties. However, most of these
measured properties, such as snow-covered area (SCA) based
on visible and near-infrared bands (e.g., Dozier, 1989; Hall
et al., 2002; Painter et al., 2009), are only indirectly related to
snow mass. While SWE and snow depth can be directly es-
timated from passive microwave sensors (using retrieval al-
gorithms based on the brightness temperature; e.g., Chang
et al., 1987), these estimates are at coarse spatial resolu-
tion (e.g., 25 km) and are generally negatively biased in deep
snowpacks (Takala et al., 2011; Dozier et al., 2016). Recent
applications of C-band synthetic aperture radar (SAR) tech-
niques show promise for snow depth retrieval (Lievens et al.,
2019) but are available only over recent years and do not di-
rectly provide SWE.

Global atmospheric reanalysis products provide another
approach to large-scale SWE estimates as by-products of
their land surface schemes. Examples include the Global
Land Data Assimilation System (GLDAS, Rodell et al.,
2004), Modern-Era Retrospective analysis for Research and
Applications (MERRA, Rienecker et al., 2011; MERRA-2,
Gelaro et al., 2017), European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis products (ERA-
Interim, Dee et al., 2011; ERA5, Hersbach et al., 2020),
High Asia Refined analysis (HAR, Maussion et al., 2011,
2014), Japanese 55-year Reanalysis (JRA-55; Kobayashi et
al., 2015), and others. SWE estimates in these datasets are

found to be generally consistent in their interannual and sea-
sonal variations but can differ significantly in their mag-
nitudes when evaluated over different regions (Mudryk et
al., 2015; Wrzesien et al., 2019), where the uncertainties
come from different land surface models and meteorologi-
cal inputs (Mudryk et al., 2015; Mortimer et al., 2020; Kim
et al., 2021). In addition, most reanalysis datasets are not
specifically designed for SWE estimation, and only a few
of them (e.g., ERA5 and JRA55) assimilate snow observa-
tions (including in situ and remote sensing) in HMA. Bian et
al. (2019) found many reanalysis datasets overestimate SWE
compared to ground observations in the Tibetan Plateau, al-
though part of the differences may come from inconsistent
spatial resolution and elevations between in situ and grid-
ded datasets. The performance of these large-scale reanaly-
sis datasets over the full HMA domain has not been fully as-
sessed due to the sparse and uneven in situ station network.

Recent works have contributed to the development of
SWE (or snow depth) estimates covering the HMA region
based on passive microwave (e.g., Talaka et al., 2011; Smith
and Bookhagen, 2016; Dai et al., 2017; Pulliainen et al.,
2020) or active microwave measurements (Lievens et al.,
2019), with machine-learning approaches employed to im-
prove the accuracy in SWE estimation (e.g., Ahmad et al.,
2019). Alternatively, satellite-observed snow-covered area
products can also provide valuable information in SWE es-
timation. For example, fractional snow-covered area (fSCA)
products are used in SWE reconstruction methods to improve
the estimates of SWE over Indus and Amu Darya, by calcu-
lating snowmelt backward from melt-out to peak SWE tim-
ing using satellite-observed snow disappearance rates (Bair
et al., 2018, 2020). In addition, data assimilation (DA) ap-
proaches that explicitly merged snow observations with mod-
eling are effective in providing more realistic SWE estimates
and reducing SWE uncertainties especially over the moun-
tains (Xue et al., 2019; Largeron et al., 2020): both JRA-
55 and ERA5 products assimilate ground snow depth and
satellite-retrieved snow cover observations; GlobSnow (Ta-
laka et al., 2011; Pulliainen et al., 2020) products assimilate
passive-microwave-retrieved SWE along with ground snow
depth observations to provide SWE and snow extent esti-
mates, while mountain areas with high terrain complexity are
masked out. These are promising approaches to improve the
accuracy in SWE estimates over HMA, yet currently there is
still a need for large-scale SWE datasets at higher resolution,
over a longer period and covering mountainous areas in this
region.

To better understand the spatiotemporal pattern and vari-
ability in seasonal snowpack over HMA, the so-called High
Mountain Asia Snow Reanalysis (HMASR; Liu et al., 2021)
dataset is used herein to characterize the seasonal snow cli-
matology and variability over HMA. The dataset covers the
joint Landsat–MODIS era between water years (WYs) 2000
to 2017 (which will be extended to present in later ver-
sions) and was developed as part of the NASA High Moun-
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Figure 1. Map of HMA domain with HMASR tiles marked with black boxes. Major watersheds are delineated and colored on the map based
on HydroSHEDS (Lehner et al., 2008). Major mountain ranges are labeled with reference to Bolch et al. (2019). A division of the HMA
domain into northwestern (NW), northeastern (NE) and southeastern (SE) subregions, which are used for descriptive purposes in this study,
is shown in the inset.

tain Asia Team (HiMAT) activities. HiMAT is a multi-
investigator effort in developing new datasets to understand
cryosphere variability over HMA (Osmanoglu et al., 2017).
The HMASR dataset provides daily estimates of SWE, fSCA
and other snow variables, at a 16 arcsec (∼ 500 m) resolu-
tion. SWE estimates are derived by assimilating fSCA from
Landsat and MODIS platforms using a previously developed
snow reanalysis framework (Margulis et al., 2019), where the
method has been shown in previous applications to provide
realistic SWE estimates over mountainous domains in the
Sierra Nevada (Margulis et al., 2016) and Andes (Cortés and
Margulis, 2017). The HMASR aims to fill the spatiotemporal
gaps in existing SWE datasets and allow for better character-
ization of the distribution and changes in seasonal snow stor-
age, as well as provide insights into the hydrologic cycle and
water availability over HMA. Using this dataset, the spatial
distribution of SWE climatology is examined at annual and
seasonal scales over the HMA region, covering the highest
mountain ranges and the Tibetan Plateau in Asia. Integrated
SWE volumes over the full HMA domain and over the major
river basins (e.g., Syr Darya, Amu Darya, Indus, Ganges–
Brahmaputra, Yangtze and Yellow), and their variation with
elevation, are also quantified in this work. The following sci-
entific questions are addressed herein:

1. How is seasonal snow distributed spatially across the
major watersheds of HMA?

2. What is the seasonal and interannual variability in
amount of snow storage over HMA?

3. How is the amount of snow distributed across elevation,
and how does it vary under different climate conditions?

2 Data and method

This section describes the data and methods used in this
study. Section 2.1 introduces the study domain, including the
major river basins and mountain ranges in the region. Sec-
tion 2.2 and 2.3 provide a brief description of the reanalysis
method, input data and models used in the development of
the HMASR. Finally, a non-seasonal snow and ice mask ap-
plied to mask out semi-permanent snow and ice for the as-
sessment of seasonal snow is explained in Sect. 2.4.

2.1 HMA domain

The HMA domain used in this work is bounded from
27 to 45◦ N and from 60 to 105◦ E (Fig. 1), cover-
ing the highest mountain ranges and plateaus (the Tien
Shan, Pamir Mountains, Hindu Kush, Karakoram, Himalayas
and Tibetan Plateau), as well as the headwaters of the
main river basins (Syr Darya, Amu Darya, Indus, Ganges–
Brahmaputra, Yangtze and Yellow). Winter westerlies and
the summer monsoon are the major moisture sources in this
region, significantly influencing the spatiotemporal patterns
in snowfall and glacier mass balance. More specifically, the
northern and western HMA is dominated by westerlies and
receives abundant winter snowfall, while the southern and
eastern HMA is dominated by the Indian monsoon from June
to September and receives a considerable amount of summer
snowfall; the eastern edges of HMA are affected by the East
Asia monsoon but with limited impact (Bookhagen and Bur-
bank, 2010; Yao et al., 2012; Bolch et al., 2019). Note that
in HMASR, outputs are provided for each regular 1◦ by 1◦

latitude–longitude tile (within which a regular computational
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grid of 16 arcsec is used), and tiles with a tile-averaged eleva-
tion above 1500 m were selected and processed in the dataset
(Fig. 1). This tile-average threshold (1500 m) was chosen
conservatively to capture the vast majority of seasonal moun-
tain snow over HMA, avoid running a large number of tiles
with negligible snow and reduce the computational load in
product development. We acknowledge this threshold might
exclude snow in some areas of the domain (e.g., northern
HMA) and anticipate this threshold to be relaxed or removed
in future versions of this product.

For convenience in presenting results herein, the HMA
domain was divided into three large subregions, namely
the northwestern (NW), southeastern (SE) and northeast-
ern (NE) subregions (Fig. 1). Major river basins are identi-
fied in each subregion, namely those located in the NW (Syr
Darya, Amu Darya and Indus), SE (Ganges–Brahmaputra,
Salween, Mekong and Yangtze) and NE (Tarim, Inner Ti-
betan Plateau and Yellow) subregions. Similarly, the ma-
jor mountain ranges are also identified in each subregion,
namely those located in the NW (e.g., the Tien Shan,
Pamir Mountains, Hindu Kush, Karakoram and western Hi-
malayas), SE (e.g., central and eastern Himalayas, Nyain-
qêntanglha Mountains, Tanggula Shan and Hengduan Shan)
and NE (e.g., Kunlun Shan, Tibetan Interior, eastern Tibetan
mountains and Qilian Shan) subregions and are labeled in
Fig. 1.

2.2 Snow reanalysis scheme

A previously developed snow reanalysis methodology (Mar-
gulis et al., 2019) is employed in deriving the HMASR. For
brevity, only the key details are repeated here. Prior model es-
timates are obtained via the coupled Simplified Simple Bio-
sphere model, version 3 (SSiB3; Sun and Xue, 2001; Xue et
al., 2003) and the Liston (2004) snow depletion curve (SDC).
The SSiB3 model is used as the land surface model (LSM)
in this work, which has three snow layers with vegetation
canopy and soil representations. It requires hourly inputs of
forcing data (e.g., precipitation, air temperature, radiation,
wind speed, humidity and pressure) and static inputs (e.g., to-
pography, land cover, vegetation and soil type), with more
details clarified in Sect. 2.3.1. The SSiB3 model provides the
basic mass and energy fluxes for the snowpack based on me-
teorological inputs and physiographic characteristics. These
fluxes are used with the Liston SDC to derive estimates of
grid-averaged SWE and fSCA. Specifically, the Liston SDC
assumes that the subgrid distribution of SWE follows a log-
normal distribution and is a function of grid-averaged SWE,
melt and a parameter of subgrid coefficient of variation. The
SDC yields the prediction of fSCA that is compared with
satellite-observed fSCA and serves as the constraint in the
data assimilation.

As done in many data assimilation methods, an ensemble
approach is used in the snow reanalysis scheme, whereby the
model generates prior estimates of snow states (i.e., SWE,

snow depth, fSCA, etc.) with postulated uncertainties. Me-
teorological forcing inputs are bias-corrected, downscaled to
the modeling grid (16 arcsec) and perturbed with uncertainty
in the ensemble approach, using the methods described in
Durand et al. (2008) and Girotto et al. (2014). To constrain
the prior snow estimates on the remotely sensed fSCA ob-
servations, a Bayesian update is performed using the parti-
cle batch smoother (PBS; Margulis et al., 2015, 2019) ap-
proach. Posterior snow estimates are obtained in this update
step by more heavily weighting ensemble members that are
more consistent with the batch of observed fSCA in a given
water year using a Bayesian likelihood function that accounts
for model–measurement misfit and measurement error. It is
worthwhile to note that the posterior ensemble mean, me-
dian and spread (or other statistics) can be obtained via the
Bayesian update step. Herein, the posterior ensemble median
values of SWE are described when assessing the SWE over
HMA. Details of the PBS methods are described in Margulis
et al. (2015, 2019), and more details on fSCA observations
are provided in Sect. 2.3.2.

The lack of in situ SWE data over HMA prevents a thor-
ough verification of the HMASR. However, previous ap-
plications of the snow reanalysis method in similarly com-
plex terrain in the Sierra Nevada of the Western US and the
South American central Andes thoroughly compared reanal-
ysis estimates vs. in situ and airborne-derived SWE data.
Performance in both domains was positive relative to in situ
data with values of mean error, root-mean-squared error and
correlation coefficients of ∼ 3 cm, 13 cm and 0.95 for the
Sierra Nevada (Margulis et al., 2016) and ∼ 1 cm, 29 cm
and 0.73 for the Andes (Cortés and Margulis, 2017), respec-
tively. In Margulis et al. (2019), comparison with the Air-
borne Snow Observatory (ASO) SWE data in Tuolumne in
the Sierra Nevada yielded similar results (mean error, root-
mean-squared error and correlation coefficients of ∼ 5 cm,
23 cm and 0.84). Here we provide the caveat that perfor-
mance of the method may be degraded in parts of the HMA
region due to the frequent cloud-obscuring issues (see more
details in Sect. 2.3.2), compared to previous work in the
Sierra Nevada or Andes.

2.3 Input data acquisition and processing

2.3.1 Meteorological, topographic and land cover data

In HMASR, the prior surface meteorological inputs
were obtained from MERRA-2 (Global Modeling and
Assimilation Office (GMAO), 2015a, b, c; MERRA-2
tavg1_2d_flx_Nx; MERRA-2 tavg1_2d_rad_Nx; MERRA-
2 tavg1_2d_slv_Nx) at its raw resolution (0.5◦ by 0.625◦

latitude–longitude), including precipitation, air temperature,
solar radiation, specific humidity, surface pressure and wind
speed. The uncertainty models and their parameters used
to perform bias correction and uncertainty perturbation are
specified in Margulis et al. (2019) for the HMA region, ex-
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cept that prior ensemble precipitation is perturbed by a log-
normal distribution with mean of 1.54 and coefficient of vari-
ation (CV) of 0.83 based on the results from Liu and Mar-
gulis (2019).

Digital elevation model (DEM) data were obtained
from the Shuttle Radar Topography Mission (SRTM,
http://www2.jpl.nasa.gov/srtm/, last access: 28 March 2018)
1 arcsec product and aggregated to 16 arcsec (∼ 500 m)
resolution. Gaps in DEM data were filled by the Advanced
Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) Global Digital Elevation Model (GDEM,
version 2) 1 arcsec product (https://asterweb.jpl.nasa.gov/,
last access: 3 April 2018). Land cover data were obtained
from the Advanced Very High Resolution Radiometer
(AVHRR) global land cover classification dataset (Hansen
et al., 2000). Forest cover information was obtained from
the tree canopy cover (TCC) product containing the Land-
sat Vegetation Continuous Fields (https://lcluc.umd.edu/
metadata/global-30m-landsat-tree-canopy-version-4, last
access: 29 March 2018; Sexton et al., 2013).

2.3.2 fSCA data

The fSCA observations used to condition prior snow esti-
mates were retrieved from Landsat (https://www.usgs.gov/
land-resources/nli/landsat/data-tools; last access: 1 Octo-
ber 2019) and MODIS platforms, for their joint period of
WYs 2000 to 2017 (e.g., where WY2000 corresponds to
1 October 1999–30 September 2000). The (nadir-viewing)
Landsat-based fSCA data were obtained from Landsat 5,
7 and 8 satellites, retrieved using a spectral unmixing al-
gorithm (Painter et al., 2003; Cortés et al., 2014), available
at 30 m and every 16 d (excluding cloudy days). The (nadir-
and off-nadir-viewing) MODIS-based fSCA data were ob-
tained from the MODIS snow-covered area and grain size
(MODSCAG, https://snow.jpl.nasa.gov/portal/data/; last ac-
cess: 26 February 2019) product (Painter et al., 2009), avail-
able daily at 500 m, with a viewing angle between 0 and
55◦. Jointly assimilating fSCA from both platforms provides
more measurements to compensate for cloud contamination
in HMA.

Cloud screening and viewing angle screening were per-
formed as illustrated in Margulis et al. (2019), and here
we only clarify the key steps for brevity. Specifically, for
Landsat, any image with a diagnosed cloud cover fraction
of greater than 40 % is excluded entirely. For MODSCAG,
only near-nadir pixels within an image are included, and, of
those, any image with a diagnosed cloud cover fraction of
greater than 10 % is excluded entirely. This subset of Land-
sat and MODSCAG images for inclusion therefore uses a
conservative screening meant to exclude significantly cloud-
contaminated tiles. This does not prevent errors of omis-
sion/commission in cloud/snow identification but is meant to
mitigate cloud impacts by not including those deemed sig-
nificantly cloudy. It should also be noted that the snow re-

analysis method used herein is less susceptible to errors of
omission/commission when compared to SWE reconstruc-
tion methods (e.g., Bair et al., 2020) that interpolate between
fSCA measurements to estimate ablation rates. Instead, the
snow reanalysis fitting of fSCA measurements is more akin
to a least-squares type fit where measurement errors are ac-
counted for in the framework. This mitigates the propaga-
tion of errors of omission/commission compared to SWE re-
construction techniques. For images that passed through the
cloud/viewing angle screening, cloudy pixels within each im-
age were further excluded through internal cloud masks. Af-
ter screening, both Landsat and MODSCAG images were ag-
gregated to the same modeling resolution (16 arcsec).

No large systematic differences were seen when examin-
ing fSCA across different Landsat sensors, while substan-
tial differences were found in same-day fSCA images be-
tween Landsat and MODSCAG (after screening and aggre-
gation). To reconcile the inconsistency between products,
a cumulative distribution function (CDF)-matching method
was applied pixel-wise to statistically match MODSCAG im-
ages with Landsat images. Based on the analysis in Mar-
gulis et al. (2019), we specify a measurement error standard
deviation (10 % of Landsat fSCA; 15 % of CDF-matched
MODSCAG fSCA) in the reanalysis to represent retrieval er-
ror/uncertainty.

It is worthwhile to note that the fSCA data availability
is significantly affected by cloud contamination in some ar-
eas of the HMA region, especially during the monsoon sea-
son (June–September) where fSCA measurements are lim-
ited over regions such as the Himalayas (Fig. 2). The lack of
abundant fSCA data can be a potential limitation in assimi-
lating fSCA observations for these monsoon-affected regions
and therefore leads to higher uncertainty and less constrained
posterior SWE estimates (i.e., where in the limit of no avail-
able observations, the posterior will, by construct, equal the
prior estimate).

2.4 Non-seasonal snow and ice mask

A significant fraction of HMA is covered by glacier or semi-
permanent snow owing to its extremely high elevation. Thus,
it is important to distinguish seasonal vs. non-seasonal snow
over land or glacier surfaces. In particular, the reanalysis
method used in the development of the HMASR is best suited
for seasonal snow characterization, because it relies on the
signal between fSCA depletion time series and SWE via
the LSM–SDC model. Hence, those pixels where there is
not a full melt-out of snow are expected to be potentially
erroneous. So, while estimates are generated at all pixels
in the domain, the aim to focus on seasonal snow requires
masking out semi-permanent snow and ice. Glacier inven-
tories from the Global Land Ice Measurements from Space
(GLIMS; Raup et al., 2007) and the Randolph Glacier Inven-
tory (RGI; Pfeffer et al., 2014; RGI Consortium, 2017) have
been employed in previous studies to exclude glaciers from
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Figure 2. Monthly total number of available (near-nadir) MODSCAG measurements averaged over 18 years, with cloud and viewing angle
screening. Landsat measurements supplement these MODIS-derived measurements. The dark blue color is used to distinguish pixels with
zero MODSCAG measurements.

snow modeling domains (e.g., Wrzesien et al., 2019; Smith
and Bookhagen, 2018). Other studies such as Mudryk et al.
(2015) and Mortimer et al. (2020) excluded glaciers based on
estimates from the MERRA land fraction mask. Armstrong
et al. (2019) applied the MODIS Persistent Ice (MODICE;
Painter et al., 2012) algorithm to derive a minimum snow
and ice mask based on the MODSCAG product and used it
to distinguish seasonal snow from glaciers or persistent snow.

Herein a combination method was used to exclude the
non-seasonal snow and ice pixels in HMASR, based on
(1) a glacier mask derived from GLIMS to identify glacier-
ized pixels and (2) a persistent snow mask derived from the
HMASR dataset itself. We acknowledge that RGI dataset
may be more appropriate to use than GLIMS, as it obtains
glacier outlines around 2000 while GLIMS obtains those
from a larger date range. To be more specific on the sec-
ond mask, pixels with a significant amount of persistent snow
were identified by comparing the annual minimum SWE at
a particular pixel to its annual maximum SWE in each year.
If the minimum SWE exceeds 10 % of the maximum SWE
for more than once out of the 18 years, the pixel is consid-
ered to be a persistent snow pixel to be masked out in the
computation of seasonal snow estimates. The derived glacier
and persistent snow masks are combined into a non-seasonal
snow and ice mask, which is applied when presenting the
spatiotemporal patterns of seasonal SWE in the following
section.

3 Results and discussion

The HMASR dataset is designed to provide a reliable and
consistent SWE product that can be used for assessing the
spatiotemporal distribution of seasonal SWE over the re-
cent remote-sensing record. To present an overall assessment
of seasonal snowpack variability in the HMA region using
the HMASR dataset, the results are organized as follows:
(1) the spatial distribution of seasonal snowpack climatology,
at annual peak and seasonal scales; (2) the temporal distribu-
tion of seasonal snowpack volume at basin and domain-wide
scales; and (3) the elevational distribution of seasonal snow-
pack storage at HMA-wide and basin scales.

3.1 Spatial distribution of seasonal SWE climatology

The spatial distribution of SWE is valuable in assessing the
regional water storage. Given the strong seasonal signature of
snowpack processes over much of the domain, the pixel-wise
peak SWE is a useful metric to quantify the distribution of the
maximum amount of snow water mass held in the seasonal
snowpack within a given water year. Hence, the spatial dis-
tribution of peak SWE (Sect. 3.1.1) and the associated timing
(Sect. 3.1.2) are examined in this section, with seasonal evo-
lution of SWE averaged over fall, winter, spring and summer
also assessed (Sect. 3.1.3).
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Figure 3. (a) Map of pixel-wise peak seasonal SWE climatology,
with non-seasonal snow and ice pixels masked out (gray). (b) Map
of pixel-wise peak seasonal SWE climatology, without masking of
non-seasonal snow and ice pixels for reference.

3.1.1 Peak seasonal SWE climatology

The climatology (18-year average) of pixel-wise peak SWE
over the HMA region is depicted in Fig. 3, where Fig. 3a
presents only the results for seasonal snow pixels (where
non-seasonal snow and ice pixels have been masked out).
Figure 3b presents the results for all pixels for illustration
(where significantly higher amounts of SWE show up in non-
seasonal snow and ice mask pixels, corresponding to glaciers
or permanent snow), where the non-seasonal snow mask cov-
ers ∼ 4.7 % of the domain area. The non-seasonal SWE val-
ues (Fig. 3b) are expected to be unreliable because the initial
conditions for SWE at those locations at the beginning of the
dataset are unknown and the lack of full melt-out makes the
relationship between fSCA depletion and peak SWE much
less direct.

In general, seasonal snow is most abundant in the NW re-
gion that is directly exposed to westerlies (Fig. 3a). Among
the northwestern mountain ranges, the highest climatological
peak SWE values are found in the Pamir Mountains, Karako-
ram and the western Himalayas, with more than 1 m of peak
SWE estimated. A significant amount of peak SWE is also
estimated in the Tien Shan and Hindu Kush, showing peak
SWE values of 1 m or less in the Tien Shan and 0.5 m or
less in Hindu Kush in general (Fig. 3a). The estimates of
peak SWE values in Hindu Kush are consistent with mea-

surements and SWE reconstruction estimates from Salang
Pass in Afghanistan (35◦ N, 69◦ E; elevation 3366 m) that has
records of snow (Bair et al., 2018). The non-seasonal snow
and ice are most notable in Karakoram but also evident in
a few locations over the Pamir, Tien Shan and western Hi-
malayas (Fig. 3b).

In contrast, seasonal snowpack is less abundant in the
SE HMA (Fig. 3a), in part because it receives much of
its precipitation in summer from the Indian and East Asia
monsoons, while the winter westerlies have minimum im-
pact. Shallow snowpack exists over the Hengduan Shan and
Tanggula Shan, with low values of SWE estimated (less
than 0.2 m). For the Himalayas and Nyainqêntanglha moun-
tain ranges (Fig. 1), which exhibit extremely high elevation
and receive significant summer precipitation from the mon-
soons, high values of SWE are estimated in some locations
(Fig. 3b). However, those locations are largely masked out
herein through the non-seasonal snow and ice mask (Fig. 3a),
because the fSCA observations are persistently high through-
out the year (no observed melt-out), show irregular tem-
poral patterns without a clear accumulation–depletion cy-
cle (non-seasonal) or are obscured by clouds between June–
September (insufficient measurements), any of which can
contribute to estimates of SWE that are less constrained due
to cloud screening with potential errors of omission or com-
mission in fSCA estimation.

The least abundant seasonal snowpack is estimated in
the NE (Fig. 3a), where SWE is only notable over a few
mountain ranges such as the Qilian Shan, Kunlun Shan and
eastern Tibetan mountains. Despite their high elevations,
most of the NE areas are snow-free or only have shallow and
intermittent snow as a result of being further away from the
primary atmospheric moisture sources.

Previous studies have also examined the spatiotemporal
distribution in seasonal snowpack, regarding SCA (e.g., Pu
et al., 2007; Basang et al., 2017), snow depth and SWE
(e.g., Terzago et al., 2014; Bian et al., 2019; Orsolini et al.,
2019), and the overall finding is that most existing datasets
present consistent spatial patterns at large scales (e.g., re-
gional) but differ greatly in the magnitudes of SWE and snow
depth, which implies large uncertainties in snow mass esti-
mates over this data-scarce region. Similarly, HMASR ex-
hibits coherent spatial patterns compared to these previous
efforts, yet the magnitudes of SWE still show significant vari-
ability. A more comprehensive analysis of HMA SWE be-
tween multiple products will be addressed in an upcoming
intercomparison paper using HMASR.

3.1.2 Peak seasonal SWE timing

The timing of peak seasonal SWE occurrence is associ-
ated with climatological (e.g., precipitation) and topographic
(e.g., elevation) factors and therefore shows significant het-
erogeneity over HMA. Figure 4 depicts the pixel-wise peak
SWE day of water year (DOWY) climatology map. Highly
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Figure 4. Map of pixel-wise peak seasonal SWE DOWY climatol-
ogy, with non-seasonal snow and ice pixels masked out (gray). The
inset figure is the histogram of peak SWE DOWY. The three dates
labeled in the color bar (DOWY 133, DOWY 169 and DOWY 217)
correspond to the 10th, 50th and 90th percentile in the DOWY dis-
tribution and are marked with vertical dashed lines in the inset his-
togram.

intermittent snow pixels were excluded, as well as perma-
nent snow and ice pixels via the non-seasonal snow and
ice mask. Peak SWE generally occurs between DOWY 100
and DOWY 250 for seasonal snow. Specifically, the date of
peak SWE timing is characterized spatially by a median of
DOWY 169 (18 March) and an interdecile range between
DOWY 133 (10 February) and DOWY 217 (5 May), as
shown in Fig. 4. However, the peak SWE DOWY shows
a bimodal distribution (Fig. 4, inset), with the earlier peak
centered on DOWY 145 and the later peak centered on
DOWY 192.

For those mountain ranges in the NW, the northern and
western mountain slopes of the Tien Shan, the western
foothills of Pamir, the entire Hindu Kush, and the foothills
of the western Himalayas all have relatively early peak SWE
occurrences between 10 February and 18 March (Fig. 4).
In contrast, the southern mountain slopes of the Tien Shan,
the majority of the Pamir, Karakoram and western Hi-
malaya show a relatively late peak SWE occurrence between
18 March and 5 May (Fig. 4). For those mountain ranges in
the SE and NE, the peak SWE occurrence dates are more di-
verse (Fig. 4). In the SE, the central and eastern Himalayas,
Nyainqêntanglha Mountains, and Hengduan Shan generally
have later peak SWE occurrences (between 18 March and
5 May), except in the southern foothills, where peak SWE
tends to occur earlier (between 10 February and 18 March).
In the NE, the eastern Tibetan mountains show the earliest
peak SWE occurrence dates (before 10 February), while the
Qilian Shan and Kunlun Shan show the latest peak SWE oc-
currences (after 5 May).

3.1.3 Seasonal SWE evolution

The spatial patterns of seasonal evolution of SWE, aver-
aged over SON (September, October, November), DJF (De-

cember, January, February), MAM (March, April, May) and
JJA (June, July, August), are shown in Fig. 5. As expected,
higher SWE amounts are generally found in winter (DJF)
and spring (MAM), while lower SWE amounts are found in
summer (JJA) and fall (SON). Throughout the year, moun-
tains in NW hold the maximum amount of SWE compared
to other regions. In SON, the entire HMA region exhibits
minimal SWE magnitudes (0.1 m or below) and most regions
are snow-free (Fig. 5). During this period, SWE starts accu-
mulating in the Tien Shan, Pamir and western Himalayas,
which are directly facing the westerlies. SWE is also evi-
dent in the Nyainqêntanglha Mountains and Hengduan Shan,
which are associated with the summer monsoons. In DJF,
both the overall magnitude and extent of SWE grow signifi-
cantly, with mean SWE values up to 0.5 m found in the Tien
Shan, Pamir and western Himalayas (Fig. 5). The magnitude
of SWE grows even larger in MAM, with up to 1 m SWE
values estimated in the western HMA mountains and up to
0.5 m SWE values estimated in Nyainqêntanglha Mountains
and the eastern Himalayas. Meanwhile, the extent of SWE
shrinks significantly during MAM in the Hindu Kush and
Tien Shan due to the weakened westerlies in spring. In JJA,
both the magnitude and extent of SWE drop dramatically
over most of the domain, with some exceptions of more per-
sistent snowpack (with up to 0.3 m SWE) still evident in the
Pamir, Karakoram and Nyainqêntanglha Mountains, where
snow melts out slower than the surrounding regions.

3.2 Temporal distribution of seasonal SWE

Despite the significant literature on seasonal snowpack in this
region, quantification of the regional-scale SWE volume is
more difficult to obtain, partly due to the large uncertainties
in SWE estimation over this region. In this section, the tem-
poral variations in integrated seasonal SWE volumes across
the major river basins are quantified, with the climatology
presented in Sect. 3.2.1 and the interannual variations illus-
trated in Sect. 3.2.2.

3.2.1 Climatology of seasonal SWE

The climatology of the seasonal cycle in SWE volumes that
are integrated across HMA and its major river basins are
quantified and presented in Fig. 6, with the key statistics of
annual peak SWE volumes (peak of the annual time series)
summarized for the entire HMA region and each basin in Ta-
ble 1. Note again that the non-seasonal snow and ice mask
has been applied when calculating the aggregated SWE vol-
umes.

The HMA-wide SWE volume is presented in Fig. 6a,
and the 18-year average of annual peak SWE volume is
found to be 162.57 km3 (note this is higher than the peak
value in Fig. 6a, as it is the direct average of 18-year max-
ima rather than averaged across DOWY). The climatological
peak SWE volume was further assessed in each subregion
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Figure 5. Map of mean seasonal SWE climatology in SON (September, October, November), DJF (December, January, February),
MAM (March, April, May) and JJA (June, July, August), with non-seasonal snow and ice pixels masked out (gray).

Figure 6. Climatological (18-year average; solid line) daily time series of seasonal SWE volumes, aggregated to (a) HMA-wide and basins
in the (b) northwestern (NW), (c) southeastern (SE), and (d) northeastern (NE) subregions. The shaded area represents ±1 SD (standard
deviation) around the climatological mean (i.e., representing a metric of interannual variation about the mean).

(i.e., within NW, NE and SE) and compared against that over
the entire HMA (Table 1). The results show the highest peak
SWE volume occurs in NW basins (107.42 km3, ∼ 66 %
of domain-wide total), followed by SE basins (29.49 km3,
∼ 18 %) and NE basins (14.78 km3, ∼ 9 %), which is coher-
ent with the spatial pattern shown in Fig. 3a. Note that around

∼ 7 % of HMA-wide SWE volume falls in the regions out-
side of the watersheds examined (mainly in the northmost re-
gions shown in Fig. 1), which is why these basin-scale quan-
tities do not sum up to 100 % of the HMA-wide totals.

For the NW basins, the maximum amount of SWE volume
is found in the Indus basin, followed by Amu Darya and Syr
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Table 1. Summary statistics for HMA-wide and basin-scale annual peak SWE volume (peak of annual time series) assessed from the 18-year
HMASR. The HMA-wide values are shown in the bold text. The subregional peak SWE volumes and their fractions relative to HMA-wide
peak SWE volume are shown in the bold text as well.

Region Basin name Peak SWE volume (peak of annual time series)

Climatology Interannual variability

Mean Total of Standard Coefficient Max Min Max Min
(km3) subregional deviation of variation (km3) (km3) year year

mean (km3) (km3)

HMA-wide HMA-wide 162.57 162.57 26.53 0.16 227.12 114.10 2005 2001
(100 %)

Northwestern Syr Darya 21.16 107.42 5.19 0.25 29.88 13.61 2010 2000
(NW) basins Amu Darya 37.31 (66 %) 7.10 0.19 48.31 25.92 2017 2008

Indus 48.95 10.27 0.21 63.97 23.71 2009 2001

Southeastern Ganges–Brahmaputra 15.59 29.49 3.84 0.25 25.40 10.69 2005 2009
(SE) basins Salween 3.97 (18 %) 1.23 0.31 6.71 2.21 2005 2002

Mekong 1.92 0.77 0.40 3.56 1.02 2000 2004
Yangtze 8.02 2.97 0.37 14.79 3.32 2005 2015

Northeastern Tarim 8.78 14.78 2.45 0.28 12.92 4.81 2017 2007
(NE) basins Inner Tibetan Plateau 2.35 (9 %) 0.99 0.42 4.98 0.57 2013 2004

Yellow 3.65 1.25 0.34 6.10 1.76 2005 2004

Darya (Fig. 6b). The seasonality of basin-scale SWE in NW
displays similar features to the HMA-wide SWE, with snow
accumulating from October to March/April and depleting un-
til the end of the WY. Meanwhile, the peak SWE volume is
found to occur earlier and disappear faster in the Syr Darya
basin, followed by Amu Darya and Indus. This is potentially
attributed to their geographic locations, where Syr Darya is
located further north and only affected by the winter wester-
lies; Indus is located further south and is partially affected by
the summer monsoons.

For the SE basins, higher SWE volumes are found
in Ganges–Brahmaputra, followed by Yangtze, Salween
and Mekong (Fig. 6c). It is worthwhile to note that
Ganges–Brahmaputra has an average peak SWE volume
of 15.59 km3, with an average carryover SWE volume of
around 2 km3 at the end of the WY (Fig. 6c). This amount of
carryover SWE volume in Ganges–Brahmaputra is a result of
the fact that (1) its mountain ranges (Himalayas) have higher
elevation than those in other basins and (2) based on the non-
seasonal snow and ice criterion (Sect. 2.4), a carryover SWE
within 10 % of the maximum SWE in each year is allowed.
Meanwhile, the seasonality in basin-scale SWE over SE is
distinct across basins, e.g., the Ganges–Brahmaputra and
Salween show more unimodal features (with obvious peak-
ing in April–May), while the Yangtze and Mekong show
more bimodal/uniform features, which are likely to be as-
sociated with the intermittent snowpack and summer mon-
soons.

For the NE basins over HMA, the overall magnitude of
SWE volumes is smallest (Fig. 6d). These basins all have

relatively large areas but are mostly snow-free or covered
by shallow snow as depicted in Fig. 3a. Distinct seasonal
features are also observed in these basins; e.g., a unimodal
seasonal cycle of SWE is found in Tarim with an obvious
peak in mid-April, while the Inner Tibetan Plateau and Yel-
low River basin show more uniform features that are poten-
tially attributed to the intermittent snow, as they are further
away from the moisture sources (limited influence by west-
erlies and monsoons).

3.2.2 Interannual variations in SWE and timing

In addition to the 18-year climatology of SWE volumes
in Sect. 3.2.1, the interannual variations in HMA-wide and
basin-scale peak SWE and its timing are further illustrated
in Figs. 7–9 and Table 1. The aggregated seasonal SWE
volume across HMA-wide or basin scales are visualized in
the 18-year time series (Fig. 7), which illustrates a strong
seasonal cycle and significant interannual variations in peak
SWE. Over the record examined, the HMA-wide annual peak
SWE volume (Table 1; Fig. 7) is found to be largest in
WY 2005 with a value of 227.12 km3, is found to be small-
est in WY 2001 with a value of 114.10 km3, and has a stan-
dard deviation of 26.53 km3 (i.e., a coefficient of variation of
16 %). Basin-scale annual peak SWE volumes also exhibit
significant variations, with their standard deviations rang-
ing from 0.77 km3 (coefficient of variation of 40 %) in the
Mekong to 10.27 km3 (coefficient of variation of 21 %) in
the Indus. Moreover, different maximum/minimum years of
peak SWE are found in each basin and are not always syn-
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Figure 7. Daily time series of seasonal SWE volumes aggregated to (a) HMA-wide, (b) northwestern (NW), (c) southeastern (SE) and
(d) northeastern (NE) basin totals.

chronous with the maximum/minimum years found in HMA-
wide SWE (Table 1; Fig. 7).

When focusing on the HMA-wide seasonal cycle across
different WYs (Fig. 8), it is found that snowpack quickly
accumulates to over 10 km3 in SWE volume during Octo-
ber, approaching ∼ 50 % of its peak SWE volume in Jan-
uary for most WYs and reaching a peak SWE volume within
March and April, with an averaged timing of DOWY 168
(17 March) when averaged over 18 WYs. After peaking,
the seasonal snowpack starts depleting and declines back to
∼ 50 % of its peak volume in May and June for most WYs.
Snowpack depletes to under 10 km3 in SWE volume be-
tween July and September, except in WYs 2009, 2010
and 2014, which have persistent snow across the entire year.
The interannual variations across WYs are evident in (1) the
variation in peak SWE volume and the peak dates, which
range from 114 to 227 km3 in volume and from late Febru-
ary (DOWY 146) to mid-April (DOWY 195); (2) the vari-
ation in the temporal window where the snow storage is
more than 50 % of the peak SWE, which spans between

3.5 months (WY 2003) and 5.5 months (WY 2016); and
(3) the variation in timing when snowpack depletes to un-
der 10 km3 in SWE volume, which ranges between July and
October.

The basin-scale results (Fig. 9) show more variation com-
pared to the HMA-wide results, with divergent peak SWE
dates across basins and across WYs. The seasonal cycle ob-
served in the NW and many other basins (Syr Darya, Amu
Darya, Indus, Ganges–Brahmaputra and Tarim) is clearly in-
fluenced by winter westerlies, with SWE typically peaking
around April and depleting in July–October, and that season-
ality is consistent when examined across different WYs. The
interannual variations in these basins are mainly reflected by
(1) the overall magnitude of SWE volumes and (2) timing of
snowpack occurrences/disappearances, while the peak SWE
dates are closely centered around the climatological mean
dates (∼April). However, different seasonal cycles are ob-
served in the other basins (Mekong, Yangtze, Inner Tibetan
Plateau and Yellow) that are more influenced by the summer
monsoons, when examined across different WYs. For exam-
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Figure 8. Daily time series of HMA-wide SWE volumes displayed as functions of DOWY and WY. The symbol “x” is used to mark the
date of peak SWE volume occurrence, with the corresponding peak SWE volume labeled in each WY. The symbol “o” is used to mark the
dates when 50 % of the peak SWE volume is reached in each WY. The vertical red line is used to indicate the 18-year average timing of
HMA-wide peak SWE volume.

Figure 9. Daily time series of basin-scale SWE volumes displayed as functions of DOWY and WY. The symbol “x” is used to mark the date
of basin-scale peak SWE volume occurrence in each WY. The vertical red line is used to indicate the 18-year average timing of basin-scale
peak SWE volume.

ple, peak SWE may occur as early as October and as late
as July within the same basin. The persistence of snow also
varies across basins and WYs, with SWE being either persis-
tently high across several months or intermittent over a short
period of time. These factors explain the bimodal or uniform

features in the SWE time series and its climatology (Figs. 6
and 7).

It is also worthwhile to note that the average peak SWE
dates are in March and April for most basins, while it is
not necessarily representative for some basins (e.g., Inner

The Cryosphere, 15, 5261–5280, 2021 https://doi.org/10.5194/tc-15-5261-2021



Y. Liu et al.: Spatiotemporal distribution of seasonal snow water equivalent in High Mountain Asia 5273

Tibetan Plateau and Yellow) that have highly varying dates
across years. Moreover, the average dates in many basins
appear to be later than the HMA-wide average peak SWE
date (17 March), mainly because a portion of the HMA-wide
SWE falls in the northmost regions that is outside of the
watersheds examined (above Syr Darya), and those regions
are most influenced by the winter westerlies and reach peak
SWE very early (before 19 March; Fig. 4).

3.3 Elevational distribution of seasonal SWE

The pixel-wise peak SWE distribution vs. elevation was as-
sessed, both in terms of its 18-year averaged climatology
(Sect. 3.3.1) and its variations under different climate con-
ditions (Sect. 3.3.2). The HMA-wide domain and each basin
were divided into 5-percentile elevation bins, so that the ag-
gregated SWE volumes are calculated over comparable ar-
eas, following the method in Smith and Bookhagen (2018).
The non-seasonal snow and ice pixels were removed when
calculating peak seasonal SWE volume, and its fractional
areal coverage within a given elevation band is computed to
assess the relative elevational contributions to total seasonal
SWE volume.

3.3.1 Seasonal peak SWE climatology

When examining the SWE climatology over the full HMA
domain (Fig. 10), the seasonal pixel-wise peak SWE volume
was found to be largest at mid-elevations (3000–4000 m),
with peak SWE values occurring at elevations around 3500 m
(Fig. 10a and b, top row). The large increase in SWE from
lower to mid-elevations is indicative of orographic enhance-
ment, where the decrease at higher elevations is indicative of
moisture limitations on orographic effects and/or increasing
amounts of non-seasonal snow and ice. The presence of non-
seasonal snow and ice becomes evident at elevations above
3500 m, and it increases dramatically above 5000 m, with a
value up to 35 % (Fig. 10c, top row). When assessing the cu-
mulative fraction of SWE volume as a function of elevation,
it was found that over 50 % of HMA-wide seasonal SWE
volume is stored at elevations above 3500 m, and less than
10 % of seasonal SWE volume is stored at elevations below
2000 m (Fig. 10d, top row).

The subregional elevational distribution of pixel-wise peak
SWE climatology and its volume vary in each basin, com-
pared to the HMA-wide results (Fig. 10). Relatively similar
characteristics are observed in the NW basins (Syr Darya,
Amu Darya and Indus), Tarim in the NE, and Ganges–
Brahmaputra and Yangtze in the SE, where the pixel-wise
peak SWE volumes (Fig. 10b) generally increase with el-
evation (below ∼ 4000 m) and then decline with eleva-
tion (above ∼ 4000 m), reaching their maximum values at
mid-elevations (3000–4000 m). While the SWE distribution
(Fig. 10a) is generally consistent with the SWE volume dis-
tribution (Fig. 10b) within these basins, the SWE values at

high elevations (e.g., ∼ 6000 m) are large, contributing to a
non-negligible amount of seasonal SWE volume at high ele-
vations, despite the relatively high coverage of non-seasonal
snow and ice (up to 60 %; Fig. 10c) above 4000 m in these
basins. Moreover, for the cumulative fraction of SWE vol-
umes above a specified elevation (Fig. 10d), unique median
values are found within each basin, e.g., ∼ 4000 m (Indus,
Ganges–Brahmaputra, Tarim), ∼ 3500 m (Amu Darya) or
∼ 2800 m (Syr Darya).

Other basins in SE (Salween, Mekong) and NE (Yel-
low, Inner Tibetan Plateau) generally show monotonically in-
creasing SWE and SWE volumes against elevation (Fig. 10a
and b). These basins feature relatively small SWE volumes
and low coverage of non-seasonal snow and ice coverage
(mostly under 25 %; Fig. 10c) at high elevations. For the cu-
mulative fraction of SWE volumes above a specified eleva-
tion (Fig. 10d), the median values are found at higher eleva-
tions for SE and NE (between 4000–5200 m) basins.

3.3.2 Variations under different climate conditions

The elevational distribution of peak SWE was also examined
under different climate conditions (e.g., warm vs. cool years,
wet vs. dry years) relative to normal conditions. Such anal-
ysis identifies whether different climate conditions affect the
overall snow storage distribution across different elevations.
For categorizing the different climate conditions, the HMA-
wide winter precipitation and (near-surface) air temperature
were used (Table 2), where winter (DJF) denotes the period
from 1 December to 1 March. A “k-means” clustering anal-
ysis method (Lloyd, 1982) was used to seek classification of
different climate conditions, based on the normalized win-
ter precipitation and air temperature (subtracting the mean
values and dividing by the standard deviations). The num-
ber of clusters to be classified is an input to the method;
five clusters were specified in an attempt to group annual re-
alizations into “normal”, “wet”, “dry”, “warm” and “cool”
categories. The classified clusters are displayed in Fig. 11,
where the five clusters are logically grouped and interpreted
as the categories mentioned above. It should be noted that
there is a slight correlation (correlation coefficient of 0.29
with a p value of 0.25) between annual realizations of pre-
cipitation and air temperature, indicating warmer years tend
to be wetter years (but statistically insignificant due to the
limited number of years).

Based on these clusters, the average pixel-wise peak SWE
volumes under the same climate conditions are computed.
The cluster-averaged peak SWE volumes under dry, normal
and wet years are 209.6, 260.5 and 355.6 km3, respectively.
As shown in Fig. 12a, as expected, in spanning from dry
to wet years there are marked increases in peak SWE vol-
ume over all elevations, particularly over the mid-elevations
to low elevations (e.g., below 4000 m). In drier years, while
Fig. 12a shows smaller SWE volumes across all elevations,
the fractional SWE volumes are not always smallest, as
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Figure 10. Pixel-wise peak seasonal (a) SWE climatology, (b) SWE volume climatology, (c) fractional areal coverage of non-seasonal snow
and ice within each elevation band, and (d) cumulative fraction of SWE volume above the specified elevation, within HMA, northwest-
ern (NW), southeastern (SE) and northeastern (NE) basins. Elevation is discretized into 5-percentile bins.

Figure 11. Category of different climate conditions from clustering
analysis, based on the normalized winter precipitation and winter
air temperature. Five clusters were identified as normal, wet, dry
warm and cool conditions, with the centroid of each cluster marked
with the “+” symbol.

shown in Fig. 12b. It can be observed that the fractional SWE
volumes in dry years are smaller than those in normal years,
in the low elevations to mid-elevations (∼ 1500–3600 m). At

mid-to-high elevations (∼ 3600–5500 m), the dry years show
greater fractional SWE volumes, compared to normal years.
On the contrary, wet years show larger fractional SWE vol-
umes below ∼ 3000 m and smaller fractional SWE volumes
above ∼ 3000 m, when compared to normal years. Such dif-
ferences in the fractional SWE volumes may be due to two
potential factors: (1) the dry conditions generally have less
humid air, which may have accelerated evaporation and snow
sublimation at lower elevations prior to peak timing; and (2) a
slight shift in snowfall/precipitation towards higher eleva-
tions during drier years due to orographic effects – i.e., pre-
cipitation tends to occur at higher elevations where the moist
and less humid air is cold enough to reach condensation.
Note that the cluster-averaged air temperature is quite con-
sistent under wet/dry/normal conditions, which should mini-
mize the effect of air temperature differences on snow distri-
bution in Fig. 12a and b.

Similarly, the pixel-wise peak SWE distribution under
warm, normal, and cool years are examined. The cluster-
averaged peak SWE volumes under warm, normal and cool
years are 285.34, 260.47 and 256.91 km3, respectively, with
cluster-averaged air temperatures of 263.30, 262.44 and
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Figure 12. Cluster-averaged pixel-wise peak SWE volume (and its relative fraction, i.e., normalized with total SWE volume) distribution
vs. elevation under different climate conditions in HMA. Here panels (a) and (b) show the distribution under dry, normal and wet conditions;
panels (c) and (d) show the distribution under warm, normal and cool conditions. Difference curves with reference to the normal condition
are also provided in panels (b) and (d) as shown with dashed lines.

261.01 K. It should be noted that the warm year cluster has
greater peak SWE volumes (by ∼ 25 km3) than the normal
and cool years, which is reflected by the slightly higher pre-
cipitation in the warm year cluster (Fig. 11). Therefore, we
put more emphasis on the fractional peak SWE distribution
(Fig. 12d) here to eliminate the effect of overall snow volume
on snow distribution. The results indicate that warm and nor-
mal years have very consistent distributions, when the frac-
tional SWE volumes are examined (Fig. 12d). It is most no-
table that cool years have higher fractions of snow stored at
lower elevations (e.g., below 3000 m) and smaller fractions
of snow stored at mid-elevations (3000–4000 m) compared
to normal and warm years (Fig. 12d, dotted lines). As the dif-
ference in air temperature between normal and cool years is
∼ 1.5 K, this may indicate that the low-elevation snow stor-
age tends to shift towards higher elevations (e.g., to mid-
elevations) with 1.5 K of warming (from cool to normal con-
ditions), when the overall snow storage is the same.

4 Conclusions

A first-order spatiotemporal analysis of seasonal SWE over
the HMA region is presented in this paper, using a new 18-
year snow reanalysis dataset (HMASR; Liu et al., 2021).

This HMASR dataset is derived based on a previously de-
veloped snow reanalysis scheme (Margulis et al., 2019) that
jointly assimilates fSCA observations from both Landsat and
MODSCAG products, which has daily outputs of SWE and
other snow variables, with a spatial resolution of 16 arcsec
(∼ 500 m), over the joint period of Landsat and MODIS from
WYs 2000 to 2017.

This work herein used the new HMASR dataset to ad-
dress scientific questions aimed at characterizing how sea-
sonal SWE and snow storage is distributed spatially, tem-
porally and elevationally across and within HMA. In terms
of the spatial distribution, seasonal snow is most abundant
in the NW, with over 1 m of peak SWE observed over the
mountain ranges. Seasonal snow is also significant in the SE,
where both relatively deep snowpacks (with peak SWE val-
ues up to 1 m or above) and shallow snowpacks (with peak
SWE up to 0.2 m) are found. Seasonal snow is less abundant
in the NE where most areas are snow-free or only covered
by shallow snowpacks (with peak SWE values below 0.2 m).
The domain-wide median date of peak SWE is estimated to
be 18 March with significant heterogeneity across this re-
gion, linked with climatological drivers and topography.

When aggregating the total SWE volumes across the
full HMA domain and its basins, the climatological peak
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Table 2. HMA pixel-wise peak SWE volume, winter precipitation
volume and winter air temperature, with each year categorized as
dry/normal/wet/warm/cool based on clustering classification.

WY Peak SWE Winter Clustering

volume Precipitation Air category
pixel-wise volume temperature

(km3) (km3) (K)

2000 214.08 251.51 261.65 dry
2001 187.97 204.28 262.21 dry
2002 240.66 309.23 262.60 normal
2003 266.22 330.72 262.71 normal
2004 235.36 313.29 262.31 normal
2005 355.55 422.90 262.14 wet
2006 254.80 318.94 263.04 warm
2007 224.51 303.16 262.43 normal
2008 249.79 316.56 260.73 cool
2009 294.83 339.96 263.19 warm
2010 313.81 331.18 262.53 normal
2011 237.69 294.65 261.54 cool
2012 283.24 282.77 260.77 cool
2013 263.14 337.68 262.01 normal
2014 273.41 292.81 262.19 normal
2015 266.62 330.90 262.71 normal
2016 226.62 258.84 262.48 dry
2017 306.40 351.42 263.68 warm

seasonal SWE volume was found to be 163 km3, with
NW basins accounting for around 66 % of that volume, fol-
lowed by SE (∼ 18 %) and NE (∼ 9 %) basins. The seasonal
cycle of HMA-wide SWE is depicted by snow accumulat-
ing through October to March and April, typically peaking
around April and depleting in July–October. When exam-
ined at basin scales, similar seasonality is observed in the
westerly-affected basins (e.g., in NW), while different SWE
seasonality is observed in monsoon-affected basins (in SE
and NE). Interannual variations in HMA-wide or basin-scale
SWE are also evident, with peak SWE volumes ranging from
114 to 227 km3 and peak dates ranging from late Febru-
ary (DOWY 146) to mid-April (DOWY 195), when exam-
ined over the HMA scale. The basin-scale SWE is more dif-
ferent from the HMA-wide SWE, where peak SWE may oc-
cur as early as October and as late as July, and is divergent
across basins and across WYs.

The climatology of HMA-wide seasonal peak SWE is
found to be most abundant at mid-elevations (3000–4000 m),
with over 50 % of the seasonal SWE volume stored at eleva-
tions above 3500 m. When comparing wet, normal and dry
years, we found that years with above-average amounts of
precipitation cause a significant overall increase in SWE vol-
umes across all elevations. Meanwhile, a slight increase in
air temperature (e.g., ∼ 1.5 K) from cooler to normal years
mainly leads to a redistribution in snow storage from lower
elevations to mid-elevations, when the overall snow volume
is the same.

This HMASR dataset is presented to augment the spa-
tiotemporal gaps in previous SWE datasets and provide bet-
ter characterization of spatiotemporal patterns in seasonal
snowpack over the HMA region, especially over the moun-
tainous areas with complex terrain where existing products
tend to underestimate SWE and present large uncertainties
(Wrzesien et al., 2019; Kim et al., 2021). It should prove
useful in providing more insight into the role of seasonal
snowpack in the regional hydrological cycle, as a verification
dataset for atmospheric and other models, and in other ap-
plications where a space–time continuous snow dataset con-
strained by remote-sensing data is needed.

It should be noted that the reanalysis method is generally
expected to work best for seasonal snow where there is a
strong signature between snow disappearance and measured
fSCA. Hence an important caveat is that non-seasonal snow
pixels are likely to be more erroneous than the seasonal snow
pixels. The use of a non-seasonal vs. seasonal snow mask is
used in this paper to highlight the part of snow storage that
is deemed seasonal snow. In the raw dataset, all pixels are
provided and so users are free to take advantage of the non-
seasonal snow estimates (with the caveat mentioned above).
For the purposes of highlighting a new estimate of seasonal
snow climatology in this paper, we focus on seasonal snow
alone.

It is also acknowledged that the reanalysis method is best
designed for non-ephemeral snow where there is a strong
seasonal cycle and signal between snow disappearance and
measured fSCA that can be captured at the frequency of
the fSCA measurements. Hence ephemeral snow (i.e., shal-
low and intermittent) may not be fully captured. Finally,
the accuracy of fSCA retrievals is likely not as high in the
monsoon-dominated parts of HMA, which in our case ex-
cludes many more Landsat/MODSCAG measurements, re-
sulting in higher uncertainty in SWE estimation over af-
fected subregions like the Himalayas. Other remote-sensing
approaches (e.g., active microwave measurements) that could
penetrate clouds may potentially aid in reducing the uncer-
tainties for SWE estimation over those areas. More research
can be done to address such issues and improve the accuracy
of SWE estimates for those regions in the future.

Data availability. The HMASR dataset used in this paper is pub-
licly available on National Snow and Ice Data Center (NSIDC)
HiMAT data repository, entitled High Mountain Asia UCLA
Daily Snow Reanalysis, Version 1. It can be accessed through
https://nsidc.org/data/HMA_SR_D/ (last access: 22 April 2021) or
https://doi.org/10.5067/HNAUGJQXSCVU (Liu et al., 2021). The
dataset is provided as NetCDF files for each 1◦× 1◦ tile shown in
Fig. 1, available at 16 arcsec (∼ 500 m) and daily resolution from
WYs 2000 to 2017. Posterior estimates of other key snowpack prop-
erties (i.e., in addition to SWE) not focused on herein (e.g., snow
depth, fSCA, snowmelt, sublimation and snow albedo) along with
posterior forcing variables are included in this dataset. Data quality
information, containing a classification mask and the non-seasonal
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snow/ice mask, can be found in the dataset as well. Future versions
of the dataset could extend it to include other years, provide es-
timates at higher spatial resolutions, and better characterize uncer-
tainties through inclusion of other meteorological forcings and other
inputs to the reanalysis framework.
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