Articles | Volume 15, issue 11
https://doi.org/10.5194/tc-15-5187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5187-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf
Centre for Earth Observation Science, Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
Christian T. Wild
College of earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Adrian Luckman
Department of Geography, Swansea University, Swansea, UK
Ted A. Scambos
Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Martin Truffer
Geophysical Institute and Department of Physics, University of Alaska Fairbanks, Fairbanks, AK, USA
Erin C. Pettit
College of earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
Atsuhiro Muto
Department of Earth and Environmental Science, Temple University, Philadelphia, PA, USA
Bruce Wallin
National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA
Marin Klinger
National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA
Tyler Sutterley
Polar Science Center, University of Washington, Seattle, WA, USA
Sarah F. Child
Earth Science and Observation Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
Cyrus Hulen
Department of Earth Sciences, College of Wooster, Wooster, OH, USA
Jan T. M. Lenaerts
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Michelle Maclennan
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Eric Keenan
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Devon Dunmire
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Related authors
Gabriela Collao-Barrios, Ted A. Scambos, Christian T. Wild, Martin Truffer, Karen E. Alley, and Erin C. Pettit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1895, https://doi.org/10.5194/egusphere-2024-1895, 2024
Preprint archived
Short summary
Short summary
Destabilization of ice shelves frequently leads to significant acceleration and greater mass loss, affecting rates of sea level rise. Our results show a relation between tides, flow direction, and grounding-zone acceleration that result from changing stresses in the ice margins and around a nunatak in Dotson Ice Shelf. The study describes a new way tides can influence ice shelf dynamics, an effect that could become more common as ice shelves thin and weaken around Antarctica.
Alberto C. Naveira Garabato, Carl P. Spingys, Andrew J. Lucas, Tiago S. Dotto, Christian T. Wild, Scott W. Tyler, Ted A. Scambos, Christopher B. Kratt, Ethan F. Williams, Mariona Claret, Hannah E. Glover, Meagan E. Wengrove, Madison M. Smith, Michael G. Baker, Giuseppe Marra, Max Tamussino, Zitong Feng, David Lloyd, Liam Taylor, Mikael Mazur, Maria-Daphne Mangriotis, Aaron Micallef, Jennifer Ward Neale, Oleg A. Godin, Matthew H. Alford, Emma P. M. Gregory, Michael A. Clare, Angel Ruiz Angulo, Kathryn L. Gunn, Ben I. Moat, Isobel A. Yeo, Alessandro Silvano, Arthur Hartog, and Mohammad Belal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3624, https://doi.org/10.5194/egusphere-2025-3624, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Distributed optical fibre sensing (DOFS) is a technology that enables continuous, real-time measurements of environmental parameters along a fibre optic cable. Here, we review the recently emerged applications of DOFS in physical oceanography, and offer a perspective on the technology’s potential for future growth in the field.
Lucas Boeykens, Devon Dunmire, Jonas-Frederik Jans, Willem Waegeman, Gabriëlle De Lannoy, Ezra Beernaert, Niko E. C. Verhoest, and Hans Lievens
EGUsphere, https://doi.org/10.5194/egusphere-2025-3327, https://doi.org/10.5194/egusphere-2025-3327, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We used AI to better estimate the height of the snowpack present on the ground across the European Alps, by using novel satellite data, complemented by weather information or snow depth estimates from a computer model. We found that both combinations improve the accuracy of our AI-based snow depth estimates, performing almost equally well. This helps us better monitor how much water is stored as snow, which is vital for drinking water, farming, and clean energy production in Europe.
Douglas J. Brinkerhoff, Brandon S. Tober, Michael Daniel, Victor Devaux-Chupin, Michael S. Christoffersen, John W. Holt, Christopher F. Larsen, Mark Fahnestock, Michael G. Loso, Kristin M. F. Timm, Russell C. Mitchell, and Martin Truffer
The Cryosphere, 19, 2321–2353, https://doi.org/10.5194/tc-19-2321-2025, https://doi.org/10.5194/tc-19-2321-2025, 2025
Short summary
Short summary
Sít' Tlein is one of the largest glaciers in the world outside of the polar regions, and we know that it has been rapidly thinning. To forecast how this glacier will change in the future, we combine a computer model of ice flow with measurements from many different sources. Our model tells us that with high probability, Sít' Tlein's lower reaches are going to disappear in the next century and a half, creating a new bay or lake along Alaska's coastline.
Laurel A. Sindewald, Ryan Lagerquist, Matthew D. Cross, Theodore A. Scambos, Peter J. Anthamatten, and Diana F. Tomback
EGUsphere, https://doi.org/10.5194/egusphere-2025-970, https://doi.org/10.5194/egusphere-2025-970, 2025
Short summary
Short summary
We used high-resolution satellite imagery and artificial intelligence models to identify six tree and shrub species commonly found at alpine treeline in the Rocky Mountains with accuracies from 44.1% to 86.2%. We are the first to attempt species identification using satellite imagery in treeline systems, where trees are small and difficult to identify remotely. Our work provides a method to identify species with satellite imagery over a broader geographic range than can be achieved with drones.
Devon Dunmire, Michel Bechtold, Lucas Boeykens, and Gabriëlle J. M. De Lannoy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2306, https://doi.org/10.5194/egusphere-2025-2306, 2025
Short summary
Short summary
Snow is vital for society and the climate, yet estimates of snowpack remain uncertain due to observational and modeling limitations. Data assimilation (DA) helps by integrating observations with models. Here, we integrate snow depth retrievals into a physically-based snow model across the European Alps. This work offers advancements for snow data assimilation, such as incorporating a dynamic observational uncertainty, which is essential for forecasting and water resource management.
Christian T. Wild, Tasha Snow, Tiago S. Dotto, Peter E. D. Davis, Scott Tyler, Ted A. Scambos, Erin C. Pettit, and Karen J. Heywood
EGUsphere, https://doi.org/10.5194/egusphere-2025-1675, https://doi.org/10.5194/egusphere-2025-1675, 2025
Short summary
Short summary
Thwaites Glacier is retreating due to warm ocean water melting it from below, but its thick ice shelf makes this heat hard to monitor. Using hot water drilling, we placed sensors beneath the floating ice, revealing how surface freezing in Pine Island Bay influences heat at depth. Alongside gradual warming, we found bursts of heat that could speed up melting at the grounding zone, which may become more common as sea ice declines.
Natalie Lützow, Bretwood Higman, Martin Truffer, Bodo Bookhagen, Friedrich Knuth, Oliver Korup, Katie E. Hughes, Marten Geertsema, John J. Clague, and Georg Veh
The Cryosphere, 19, 1085–1102, https://doi.org/10.5194/tc-19-1085-2025, https://doi.org/10.5194/tc-19-1085-2025, 2025
Short summary
Short summary
As the atmosphere warms, thinning glacier dams impound smaller lakes at their margins. Yet, some lakes deviate from this trend and have instead grown over time, increasing the risk of glacier floods to downstream populations and infrastructure. In this article, we examine the mechanisms behind the growth of an ice-dammed lake in Alaska. We find that the growth in size and outburst volumes is more controlled by glacier front downwaste than by overall mass loss over the entire glacier surface.
Benjamin E. Smith, Michael Studinger, Tyler Sutterley, Zachary Fair, and Thomas Neumann
The Cryosphere, 19, 975–995, https://doi.org/10.5194/tc-19-975-2025, https://doi.org/10.5194/tc-19-975-2025, 2025
Short summary
Short summary
This study investigates errors (biases) that may result when green lasers are used to measure the elevation of glaciers and ice sheets. These biases are important because if the snow or ice on top of the ice sheet changes, it can make the elevation of the ice appear to change by the wrong amount. We measure these biases over the Greenland Ice Sheet with a laser system on an airplane and explore how the use of satellite data can let us correct for the biases.
Alex S. Gardner, Chad A. Greene, Joseph H. Kennedy, Mark A. Fahnestock, Maria Liukis, Luis A. López, Yang Lei, Ted A. Scambos, and Amaury Dehecq
EGUsphere, https://doi.org/10.5194/egusphere-2025-392, https://doi.org/10.5194/egusphere-2025-392, 2025
Short summary
Short summary
The NASA MEaSUREs Inter-mission Time Series of Land Ice Velocity and Elevation (ITS_LIVE) project provides glacier and ice sheet velocity products for the full Landsat, Sentinel-1 and Sentinel-2 satellite archives, and will soon include data from Sentinel 1C and NISAR satellites. This paper describes the ITS_LIVE processing chain and provides guidance for working with the cloud-optimized velocity data it produces.
Andrew O. Hoffman, Michelle L. Maclennan, Jan Lenaerts, Kristine M. Larson, and Knut Christianson
The Cryosphere, 19, 713–730, https://doi.org/10.5194/tc-19-713-2025, https://doi.org/10.5194/tc-19-713-2025, 2025
Short summary
Short summary
Traditionally, glaciologists use global navigation satellite systems (GNSSs) to measure the surface elevation and velocity of glaciers to understand processes associated with ice flow. Using the interference of GNSS signals that bounce off of the ice sheet surface, we measure the surface height change near GNSS receivers in the Amundsen Sea Embayment (ASE). From surface height change, we infer daily accumulation rates that we use to understand the drivers of extreme precipitation in the ASE.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Ella Gilbert, Denis Pishniak, José Abraham Torres, Andrew Orr, Michelle Maclennan, Nander Wever, and Kristiina Verro
The Cryosphere, 19, 597–618, https://doi.org/10.5194/tc-19-597-2025, https://doi.org/10.5194/tc-19-597-2025, 2025
Short summary
Short summary
We use three sophisticated climate models to examine extreme precipitation in a critical region of West Antarctica. We found that rainfall probably occurred during the two cases we examined and that it was generated by the interaction of air with steep topography. Our results show that kilometre-scale models are useful tools for exploring extreme precipitation in this region and that more observations of rainfall are needed.
Christian T. Wild, Reinhard Drews, Niklas Neckel, Joohan Lee, Sihyung Kim, Hyangsun Han, Won Sang Lee, Veit Helm, Sebastian Harry Reid Rosier, Oliver J. Marsh, and Wolfgang Rack
EGUsphere, https://doi.org/10.5194/egusphere-2024-3593, https://doi.org/10.5194/egusphere-2024-3593, 2024
Short summary
Short summary
The stability of the Antarctic Ice Sheet depends on how resistance along the sides of large glaciers slows down the flow of ice into the ocean. We present a method to map ice strength using the effect of ocean tides on floating ice shelves. Incorporating weaker ice in shear zones improves the accuracy of model predictions compared to satellite observations. This demonstrates the untapped potential of radar satellites to map ice stiffness in the most critical areas for ice sheet stability.
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024, https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Short summary
Water in some glacier environments contains salt, which increases its density and lowers its freezing point, allowing saline water to exist where freshwater cannot. Previous subglacial hydrology models do not consider saline fluid. We model the flow of saline fluid from a subglacial lake through a circular channel at the glacier bed, finding that higher salinities lead to less melting at the channel walls and lower discharge rates. We also observe the impact of increased fluid density on flow.
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024, https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Short summary
This study uses radar imagery from the Sentinel-1 satellite to derive snow depth from increases in the returning energy. These retrieved depths are then compared to nine lidar-derived snow depths across the western United State to assess the ability of this technique to be used to monitor global snow distributions. We also qualitatively compare the changes in underlying Sentinel-1 amplitudes against both the total lidar snow depths and nine automated snow monitoring stations.
Gabriela Collao-Barrios, Ted A. Scambos, Christian T. Wild, Martin Truffer, Karen E. Alley, and Erin C. Pettit
EGUsphere, https://doi.org/10.5194/egusphere-2024-1895, https://doi.org/10.5194/egusphere-2024-1895, 2024
Preprint archived
Short summary
Short summary
Destabilization of ice shelves frequently leads to significant acceleration and greater mass loss, affecting rates of sea level rise. Our results show a relation between tides, flow direction, and grounding-zone acceleration that result from changing stresses in the ice margins and around a nunatak in Dotson Ice Shelf. The study describes a new way tides can influence ice shelf dynamics, an effect that could become more common as ice shelves thin and weaken around Antarctica.
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024, https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary
Short summary
To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains. The reflections were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The results demonstrate that C-band radar is sensitive to seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy and snow wetness may complicate satellite-based snow depth retrievals.
Michael Studinger, Benjamin E. Smith, Nathan Kurtz, Alek Petty, Tyler Sutterley, and Rachel Tilling
The Cryosphere, 18, 2625–2652, https://doi.org/10.5194/tc-18-2625-2024, https://doi.org/10.5194/tc-18-2625-2024, 2024
Short summary
Short summary
We use green lidar data and natural-color imagery over sea ice to quantify elevation biases potentially impacting estimates of change in ice thickness of the polar regions. We complement our analysis using a model of scattering of light in snow and ice that predicts the shape of lidar waveforms reflecting from snow and ice surfaces based on the shape of the transmitted pulse. We find that biased elevations exist in airborne and spaceborne data products from green lidars.
Naomi E. Ochwat, Ted A. Scambos, Alison F. Banwell, Robert S. Anderson, Michelle L. Maclennan, Ghislain Picard, Julia A. Shates, Sebastian Marinsek, Liliana Margonari, Martin Truffer, and Erin C. Pettit
The Cryosphere, 18, 1709–1731, https://doi.org/10.5194/tc-18-1709-2024, https://doi.org/10.5194/tc-18-1709-2024, 2024
Short summary
Short summary
On the Antarctic Peninsula, there is a small bay that had sea ice fastened to the shoreline (
fast ice) for over a decade. The fast ice stabilized the glaciers that fed into the ocean. In January 2022, the fast ice broke away. Using satellite data we found that this was because of low sea ice concentrations and a high long-period ocean wave swell. We find that the glaciers have responded to this event by thinning, speeding up, and retreating by breaking off lots of icebergs at remarkable rates.
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024, https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary
Short summary
The Brunt Ice Shelf has accelerated rapidly after calving an iceberg in January 2023. A decade of GPS data show that the rate of acceleration in August 2023 was 30 times higher than before calving, and velocity has doubled in 6 months. Satellite velocity maps show the extent of the change. The acceleration is due to loss of contact between the ice shelf and a pinning point known as the McDonald Ice Rumples. The observations highlight how iceberg calving can directly impact ice shelves.
Jenna A. Epifanio, Edward J. Brook, Christo Buizert, Erin C. Pettit, Jon S. Edwards, John M. Fegyveresi, Todd A. Sowers, Jeffrey P. Severinghaus, and Emma C. Kahle
The Cryosphere, 17, 4837–4851, https://doi.org/10.5194/tc-17-4837-2023, https://doi.org/10.5194/tc-17-4837-2023, 2023
Short summary
Short summary
The total air content (TAC) of polar ice cores has long been considered a potential proxy for past ice sheet elevation. This study presents a high-resolution record of TAC from the South Pole ice core. The record reveals orbital- and millennial-scale variability that cannot be explained by elevation changes. The orbital- and millennial-scale changes are likely a product of firn grain metamorphism near the surface of the ice sheet, due to summer insolation changes or local accumulation changes.
Rajashree Tri Datta, Adam Herrington, Jan T. M. Lenaerts, David P. Schneider, Luke Trusel, Ziqi Yin, and Devon Dunmire
The Cryosphere, 17, 3847–3866, https://doi.org/10.5194/tc-17-3847-2023, https://doi.org/10.5194/tc-17-3847-2023, 2023
Short summary
Short summary
Precipitation over Antarctica is one of the greatest sources of uncertainty in sea level rise estimates. Earth system models (ESMs) are a valuable tool for these estimates but typically run at coarse spatial resolutions. Here, we present an evaluation of the variable-resolution CESM2 (VR-CESM2) for the first time with a grid designed for enhanced spatial resolution over Antarctica to achieve the high resolution of regional climate models while preserving the two-way interactions of ESMs.
Eric Keenan, Nander Wever, Jan T. M. Lenaerts, and Brooke Medley
Geosci. Model Dev., 16, 3203–3219, https://doi.org/10.5194/gmd-16-3203-2023, https://doi.org/10.5194/gmd-16-3203-2023, 2023
Short summary
Short summary
Ice sheets gain mass via snowfall. However, snowfall is redistributed by the wind, resulting in accumulation differences of up to a factor of 5 over distances as short as 5 km. These differences complicate estimates of ice sheet contribution to sea level rise. For this reason, we have developed a new model for estimating wind-driven snow redistribution on ice sheets. We show that, over Pine Island Glacier in West Antarctica, the model improves estimates of snow accumulation variability.
Megan Thompson-Munson, Nander Wever, C. Max Stevens, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 17, 2185–2209, https://doi.org/10.5194/tc-17-2185-2023, https://doi.org/10.5194/tc-17-2185-2023, 2023
Short summary
Short summary
To better understand the Greenland Ice Sheet’s firn layer and its ability to buffer sea level rise by storing meltwater, we analyze firn density observations and output from two firn models. We find that both models, one physics-based and one semi-empirical, simulate realistic density and firn air content when compared to observations. The models differ in their representation of firn air content, highlighting the uncertainty in physical processes and the paucity of deep-firn measurements.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Michelle L. Maclennan, Jan T. M. Lenaerts, Christine A. Shields, Andrew O. Hoffman, Nander Wever, Megan Thompson-Munson, Andrew C. Winters, Erin C. Pettit, Theodore A. Scambos, and Jonathan D. Wille
The Cryosphere, 17, 865–881, https://doi.org/10.5194/tc-17-865-2023, https://doi.org/10.5194/tc-17-865-2023, 2023
Short summary
Short summary
Atmospheric rivers are air masses that transport large amounts of moisture and heat towards the poles. Here, we use a combination of weather observations and models to quantify the amount of snowfall caused by atmospheric rivers in West Antarctica which is about 10 % of the total snowfall each year. We then examine a unique event that occurred in early February 2020, when three atmospheric rivers made landfall over West Antarctica in rapid succession, leading to heavy snowfall and surface melt.
Benjamin E. Smith, Brooke Medley, Xavier Fettweis, Tyler Sutterley, Patrick Alexander, David Porter, and Marco Tedesco
The Cryosphere, 17, 789–808, https://doi.org/10.5194/tc-17-789-2023, https://doi.org/10.5194/tc-17-789-2023, 2023
Short summary
Short summary
We use repeated satellite measurements of the height of the Greenland ice sheet to learn about how three computational models of snowfall, melt, and snow compaction represent actual changes in the ice sheet. We find that the models do a good job of estimating how the parts of the ice sheet near the coast have changed but that two of the models have trouble representing surface melt for the highest part of the ice sheet. This work provides suggestions for how to better model snowmelt.
Sarah S. Thompson, Bernd Kulessa, Adrian Luckman, Jacqueline A. Halpin, Jamin S. Greenbaum, Tyler Pelle, Feras Habbal, Jingxue Guo, Lenneke M. Jong, Jason L. Roberts, Bo Sun, and Donald D. Blankenship
The Cryosphere, 17, 157–174, https://doi.org/10.5194/tc-17-157-2023, https://doi.org/10.5194/tc-17-157-2023, 2023
Short summary
Short summary
We use satellite imagery and ice penetrating radar to investigate the stability of the Shackleton system in East Antarctica. We find significant changes in surface structures across the system and observe a significant increase in ice flow speed (up to 50 %) on the floating part of Scott Glacier. We conclude that knowledge remains woefully insufficient to explain recent observed changes in the grounded and floating regions of the system.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere, 16, 4701–4725, https://doi.org/10.5194/tc-16-4701-2022, https://doi.org/10.5194/tc-16-4701-2022, 2022
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers, but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behaviour and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Devon Dunmire, Jan T. M. Lenaerts, Rajashree Tri Datta, and Tessa Gorte
The Cryosphere, 16, 4163–4184, https://doi.org/10.5194/tc-16-4163-2022, https://doi.org/10.5194/tc-16-4163-2022, 2022
Short summary
Short summary
Earth system models (ESMs) are used to model the climate system and the interactions of its components (atmosphere, ocean, etc.) both historically and into the future under different assumptions of human activity. The representation of Antarctica in ESMs is important because it can inform projections of the ice sheet's contribution to sea level rise. Here, we compare output of Antarctica's surface climate from an ESM with observations to understand strengths and weaknesses within the model.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Douglas I. Benn, Adrian Luckman, Jan A. Åström, Anna J. Crawford, Stephen L. Cornford, Suzanne L. Bevan, Thomas Zwinger, Rupert Gladstone, Karen Alley, Erin Pettit, and Jeremy Bassis
The Cryosphere, 16, 2545–2564, https://doi.org/10.5194/tc-16-2545-2022, https://doi.org/10.5194/tc-16-2545-2022, 2022
Short summary
Short summary
Thwaites Glacier (TG), in West Antarctica, is potentially unstable and may contribute significantly to sea-level rise as global warming continues. Using satellite data, we show that Thwaites Eastern Ice Shelf, the largest remaining floating extension of TG, has started to accelerate as it fragments along a shear zone. Computer modelling does not indicate that fragmentation will lead to imminent glacier collapse, but it is clear that major, rapid, and unpredictable changes are underway.
Johannes Oerlemans, Jack Kohler, and Adrian Luckman
The Cryosphere, 16, 2115–2126, https://doi.org/10.5194/tc-16-2115-2022, https://doi.org/10.5194/tc-16-2115-2022, 2022
Short summary
Short summary
Tunabreen is a 26 km long tidewater glacier. It is the most frequently surging glacier in Svalbard, with four documented surges in the past 100 years. We have modelled this glacier to find out how it reacts to future climate change. Careful calibration was done against the observed length record for the past 100 years. For a 50 m increase in the equilibrium line altitude (ELA) the length of the glacier will be shortened by 10 km after about 100 years.
Christian T. Wild, Karen E. Alley, Atsuhiro Muto, Martin Truffer, Ted A. Scambos, and Erin C. Pettit
The Cryosphere, 16, 397–417, https://doi.org/10.5194/tc-16-397-2022, https://doi.org/10.5194/tc-16-397-2022, 2022
Short summary
Short summary
Thwaites Glacier has the potential to significantly raise Antarctica's contribution to global sea-level rise by the end of this century. Here, we use satellite measurements of surface elevation to show that its floating part is close to losing contact with an underwater ridge that currently acts to stabilize. We then use computer models of ice flow to simulate the predicted unpinning, which show that accelerated ice discharge into the ocean follows the breakup of the floating part.
Andy Aschwanden, Timothy C. Bartholomaus, Douglas J. Brinkerhoff, and Martin Truffer
The Cryosphere, 15, 5705–5715, https://doi.org/10.5194/tc-15-5705-2021, https://doi.org/10.5194/tc-15-5705-2021, 2021
Short summary
Short summary
Estimating how much ice loss from Greenland and Antarctica will contribute to sea level rise is of critical societal importance. However, our analysis shows that recent efforts are not trustworthy because the models fail at reproducing contemporary ice melt. Here we present a roadmap towards making more credible estimates of ice sheet melt.
Madison L. Ghiz, Ryan C. Scott, Andrew M. Vogelmann, Jan T. M. Lenaerts, Matthew Lazzara, and Dan Lubin
The Cryosphere, 15, 3459–3494, https://doi.org/10.5194/tc-15-3459-2021, https://doi.org/10.5194/tc-15-3459-2021, 2021
Short summary
Short summary
We investigate how melt occurs over the vulnerable ice shelves of West Antarctica and determine that the three primary mechanisms can be evaluated using archived numerical weather prediction model data and satellite imagery. We find examples of each mechanism: thermal blanketing by a warm atmosphere, radiative heating by thin clouds, and downslope winds. Our results signify the potential to make a multi-decadal assessment of atmospheric stress on West Antarctic ice shelves in a warming climate.
Suzanne L. Bevan, Adrian J. Luckman, Douglas I. Benn, Susheel Adusumilli, and Anna Crawford
The Cryosphere, 15, 3317–3328, https://doi.org/10.5194/tc-15-3317-2021, https://doi.org/10.5194/tc-15-3317-2021, 2021
Short summary
Short summary
The stability of the West Antarctic ice sheet depends on the behaviour of the fast-flowing glaciers, such as Thwaites, that connect it to the ocean. Here we show that a large ocean-melted cavity beneath Thwaites Glacier has remained stable since it first formed, implying that, in line with current theory, basal melt is now concentrated close to where the ice first goes afloat. We also show that Thwaites Glacier continues to thin and to speed up and that continued retreat is therefore likely.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Devon Dunmire, Alison F. Banwell, Nander Wever, Jan T. M. Lenaerts, and Rajashree Tri Datta
The Cryosphere, 15, 2983–3005, https://doi.org/10.5194/tc-15-2983-2021, https://doi.org/10.5194/tc-15-2983-2021, 2021
Short summary
Short summary
Here, we automatically detect buried lakes (meltwater lakes buried below layers of snow) across the Greenland Ice Sheet, providing insight into a poorly studied meltwater feature. For 2018 and 2019, we compare areal extent of buried lakes. We find greater buried lake extent in 2019, especially in northern Greenland, which we attribute to late-summer surface melt and high autumn temperatures. We also provide evidence that buried lakes form via different processes across Greenland.
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary
Short summary
The grounding zone marks the transition from a grounded ice sheet to a floating ice shelf. Like Earth's coastlines, the grounding zone is home to interactions between the ocean, fresh water, and geology but also has added complexity and importance due to the overriding ice. Here we use seismic surveying – sending sound waves down through the ice – to image the grounding zone of Whillans Ice Stream in West Antarctica and learn more about the nature of this important transition zone.
Alan Huston, Nicholas Siler, Gerard H. Roe, Erin Pettit, and Nathan J. Steiger
The Cryosphere, 15, 1645–1662, https://doi.org/10.5194/tc-15-1645-2021, https://doi.org/10.5194/tc-15-1645-2021, 2021
Short summary
Short summary
We simulate the past 1000 years of glacier length variability using a simple glacier model and an ensemble of global climate model simulations. Glaciers with long response times are more likely to record global climate changes caused by events like volcanic eruptions and greenhouse gas emissions, while glaciers with short response times are more likely to record natural variability. This difference stems from differences in the frequency spectra of natural and forced temperature variability.
Eric Keenan, Nander Wever, Marissa Dattler, Jan T. M. Lenaerts, Brooke Medley, Peter Kuipers Munneke, and Carleen Reijmer
The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, https://doi.org/10.5194/tc-15-1065-2021, 2021
Short summary
Short summary
Snow density is required to convert observed changes in ice sheet volume into mass, which ultimately drives ice sheet contribution to sea level rise. However, snow properties respond dynamically to wind-driven redistribution. Here we include a new wind-driven snow density scheme into an existing snow model. Our results demonstrate an improved representation of snow density when compared to observations and can therefore be used to improve retrievals of ice sheet mass balance.
Alia L. Khan, Heidi M. Dierssen, Ted A. Scambos, Juan Höfer, and Raul R. Cordero
The Cryosphere, 15, 133–148, https://doi.org/10.5194/tc-15-133-2021, https://doi.org/10.5194/tc-15-133-2021, 2021
Short summary
Short summary
We present radiative forcing (RF) estimates by snow algae in the Antarctic Peninsula (AP) region from multi-year measurements of solar radiation and ground-based hyperspectral characterization of red and green snow algae collected during a brief field expedition in austral summer 2018. Mean daily RF was double for green (~26 W m−2) vs. red (~13 W m−2) snow algae during the peak growing season, which is on par with midlatitude dust attributions capable of advancing snowmelt.
Tessa Gorte, Jan T. M. Lenaerts, and Brooke Medley
The Cryosphere, 14, 4719–4733, https://doi.org/10.5194/tc-14-4719-2020, https://doi.org/10.5194/tc-14-4719-2020, 2020
Short summary
Short summary
In this paper, we analyze several spatial and temporal criteria to assess the ability of models in the CMIP5 and CMIP6 frameworks to recreate past Antarctic surface mass balance. We then compared a subset of the top performing models to all remaining models to refine future surface mass balance predictions under different forcing scenarios. We found that the top performing models predict lower surface mass balance by 2100, indicating less buffering than otherwise expected of sea level rise.
Marie G. P. Cavitte, Quentin Dalaiden, Hugues Goosse, Jan T. M. Lenaerts, and Elizabeth R. Thomas
The Cryosphere, 14, 4083–4102, https://doi.org/10.5194/tc-14-4083-2020, https://doi.org/10.5194/tc-14-4083-2020, 2020
Short summary
Short summary
Surface mass balance (SMB) and surface air temperature (SAT) are correlated at the regional scale for most of Antarctica, SMB and δ18O. Areas with low/no correlation are where wind processes (foehn, katabatic wind warming, and erosion) are sufficiently active to overwhelm the synoptic-scale snow accumulation. Measured in ice cores, the link between SMB, SAT, and δ18O is much weaker. Random noise can be removed by core record averaging but local processes perturb the correlation systematically.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Suzanne Bevan, Adrian Luckman, Harry Hendon, and Guomin Wang
The Cryosphere, 14, 3551–3564, https://doi.org/10.5194/tc-14-3551-2020, https://doi.org/10.5194/tc-14-3551-2020, 2020
Short summary
Short summary
In February 2020, along with record-breaking high temperatures in the region, satellite images showed that the surface of the largest remaining ice shelf on the Antarctic Peninsula was experiencing a lot of melt. Using archived satellite data we show that this melt was greater than any in the past 40 years. The extreme melt followed unusual weather patterns further north, highlighting the importance of long-range links between the tropics and high latitudes and the impact on ice-shelf stability.
Thore Kausch, Stef Lhermitte, Jan T. M. Lenaerts, Nander Wever, Mana Inoue, Frank Pattyn, Sainan Sun, Sarah Wauthy, Jean-Louis Tison, and Willem Jan van de Berg
The Cryosphere, 14, 3367–3380, https://doi.org/10.5194/tc-14-3367-2020, https://doi.org/10.5194/tc-14-3367-2020, 2020
Short summary
Short summary
Ice rises are elevated parts of the otherwise flat ice shelf. Here we study the impact of an Antarctic ice rise on the surrounding snow accumulation by combining field data and modeling. Our results show a clear difference in average yearly snow accumulation between the windward side, the leeward side and the peak of the ice rise due to differences in snowfall and wind erosion. This is relevant for the interpretation of ice core records, which are often drilled on the peak of an ice rise.
Tom A. Jordan, David Porter, Kirsty Tinto, Romain Millan, Atsuhiro Muto, Kelly Hogan, Robert D. Larter, Alastair G. C. Graham, and John D. Paden
The Cryosphere, 14, 2869–2882, https://doi.org/10.5194/tc-14-2869-2020, https://doi.org/10.5194/tc-14-2869-2020, 2020
Short summary
Short summary
Linking ocean and ice sheet processes allows prediction of sea level change. Ice shelves form a floating buffer between the ice–ocean systems, but the water depth beneath is often a mystery, leaving a critical blind spot in our understanding of how these systems interact. Here, we use airborne measurements of gravity to reveal the bathymetry under the ice shelves flanking the rapidly changing Thwaites Glacier and adjacent glacier systems, providing new insights and data for future models.
Julie Z. Miller, David G. Long, Kenneth C. Jezek, Joel T. Johnson, Mary J. Brodzik, Christopher A. Shuman, Lora S. Koenig, and Ted A. Scambos
The Cryosphere, 14, 2809–2817, https://doi.org/10.5194/tc-14-2809-2020, https://doi.org/10.5194/tc-14-2809-2020, 2020
Cited articles
Alley, K. E., Scambos, T. A., Anderson, R. S., Rajaram, H., Pope, A., and Haran, T. M.:
Continent-wide estimates of Antarctic strain rates from Landsat 8-derived velocity grids,
J. Glaciol.,
64, 321–332, https://doi.org/10.1017/jog.2018.23, 2018.
Alley, K. E., Wild, C. T., Scambos, T. A., Muto, A., Pettit, E.,Truffer, M., Wallin, B., and Klinger, M.: Two-year velocity and strain-rate averages from the Thwaites Eastern Ice Shelf, 2001–2020 U.S. Antarctic Program (USAP) Data Center [data set],
https://doi.org/10.15784/601478, 2021.
Bell, B., Hersbach, H., Berrisford, P., Dahlgren, P., Horányi, A., Sabater, J. M., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C., and Thépaut, J.-N.:
ERA5 hourly data on single levels from 1950 to 1978 (preliminary version), Copernicus Climate Change Service (C3S) Climate Data Store (CDS),
available at: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (last access: 9 November 2021),
2020.
Bindschadler, R., Choi, H., Wichlacz, A., Bingham, R., Bohlander, J., Brunt, K., Corr, H., Drews, R., Fricker, H., Hall, M., Hindmarsh, R., Kohler, J., Padman, L., Rack, W., Rotschky, G., Urbini, S., Vornberger, P., and Young, N.: Getting around Antarctic: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year, The Cryosphere, 5, 569–588, https://doi.org/10.5194/tc-5-569-2011, 2011.
Borsa, A. A., Moholdt, G., Fricker, H. A., and Brunt, K. M.: A range correction for ICESat and its potential impact on ice-sheet mass balance studies, The Cryosphere, 8, 345–357, https://doi.org/10.5194/tc-8-345-2014, 2014.
Brunt, K. M., Neumann, T. A., and Smith, B. E.:
Assessment of ICESat-2 Ice Sheet Surface Heights, Based on Comparisons Over the Interior of the Antarctic Ice Sheet,
Geophys. Res. Lett.,
46, 13072–13078, https://doi.org/10.1029/2019gl084886, 2019.
Chen, J., Ke, C., Zhou, X., Shao, Z., and Li, L.:
Surface velocity estimations of ice shelves in the northern Antarctic Peninsula derived from MODIS data,
J. Geogr. Sci.,
26, 243–256, 2016.
Dorandeu, J. and Traon, P. Y. L.:
Effects of Global Mean Atmospheric Pressure Variations on Mean Sea Level Changes from TOPEX/Poseidon,
J. Atmos. Ocean. Tech.,
16, 1279–1283, https://doi.org/10.1175/1520-0426(1999)016<1279:EOGMAP>2.0.CO;2, 1999.
Dupont, T. K. and Alley, R. B.:
Assessment of the importance of ice-shelf buttressing to ice-sheet flow,
Geophys. Res. Lett.,
32, L04503, https://doi.org/10.1029/2004gl022024, 2005.
Dutrieux, P., Stewart, C., Jenkins, A., Nicholls, K. W., Corr, H. F. J., Rignot, E., and Steffen, K.:
Basal terraces on melting ice shelves,
Geophys. Res. Lett.,
41, 5506–5513, https://doi.org/10.1002/2014gl060618, 2014.
Egbert, G. D. and Erofeeva, S. Y.:
Efficient Inverse Modeling of Barotropic Ocean Tides,
J. Atmos. Ocean. Tech.,
19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2, 2002.
Fahnestock, M., Scambos, T., Moon, T., Gardner, A., Haran, T., and Klinger, M.:
Rapid large-area mapping of ice flow using Landsat 8,
Remote Sens. Environ.,
185, 84–94, https://doi.org/10.1016/j.rse.2015.11.023, 2016.
Fürst, J. J., Durand, G., Gilet-Chaulet, F., Tavard, L., Rankl, M., Braun, M., and Gagliardini, O.:
The safety band of Antarctic ice shelves,
Nature,
6, 479–482, https://doi.org/10.1038/NCLIMATE2912, 2016.
Gardner, A. S., Fahnestock, M. A., and Scambos, T. A.:
ITS_LIVE Regional Glacier and Ice Sheet Surface Velocities, National Snow and Ice Data Center [data set], CO, https://doi.org/10.5067/6II6VW8LLWJ7, 2019.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., and Zhao, B.:
The Modern-Era Retrospective Analysis for Research Applications, Version 2 (MERRA-2),
J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Greene, C. A., Gwyther, D. E., and Blankenship, D. D.:
Antarctic Mapping Tools for Matlab,
Comput. Geosci.,
104, 151–157, https://doi.org/10.1016/j.cageo.2016.08.003, 2017.
Greene, C. A., Young, D. A., Gwyther, D. E., Galton-Fenzi, B. K., and Blankenship, D. D.: Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing, The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, 2018.
Han, H. and Lee, H.:
Tide deflection of Campbell Glacier Tongue, Antarctica, analyzed by double-differential SAR interferometry and finite element method,
Remote Sens. Environ.,
141, 201–213, https://doi.org/10.1016/j.rse.2013.11.002, 2014.
Haug, T., Kääb, A., and Skvarca, P.: Monitoring ice shelf velocities from repeat MODIS and Landsat data – a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica, The Cryosphere, 4, 161–178, https://doi.org/10.5194/tc-4-161-2010, 2010.
Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A., and Steig, E. J.:
West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing,
Nat. Geosci., 12, 718–724, https://doi.org/10.1038/s41561-019-0420-9, 2019.
Howat, I. M., Porter, C., Smith, B. E., Noh, M.-J., and Morin, P.: The Reference Elevation Model of Antarctica, The Cryosphere, 13, 665–674, https://doi.org/10.5194/tc-13-665-2019, 2019.
Hughes, T. J.:
The weak underbelly of the West Antarctic ice sheet,
J. Glaciol.,
27, 518–525, https://doi.org/10.3189/s002214300001159x, 1981.
Jenkins, A. and Doake, C. S. M.:
Ice-ocean interaction on Ronne Ice Shelf, Antarctica,
J. Geophys. Res.,
96, 791–813, https://doi.org/10.1029/90jc01952, 1991.
Joughin, I., Smith, B. E., and Medley, B.:
Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica, Science, 344, 735–738, https://doi.org/10.1126/science.1249055, 2014.
Keenan, E., Wever, N., Dattler, M., Lenaerts, J. T. M., Medley, B., Kuipers Munneke, P., and Reijmer, C.: Physics-based SNOWPACK model improves representation of near-surface Antarctic snow and firn density, The Cryosphere, 15, 1065–1085, https://doi.org/10.5194/tc-15-1065-2021, 2021.
MacGregor, J. A., Catania, G. A., Markowski, M. S., and Andrews, A. G.:
Widespread rifting and retreat of ice-shelf margins in the eastern Amundsen Sea Embayment between 1972 and 2011,
J. Glaciol.,
58, 458–466, https://doi.org/10.3189/2012jog11j262, 2012.
Mathers, E. L.:
Vistas for Geodesy in the New Millennium,
IAG 2001 Scientific Assembly, Budapest, Hungary, 2–7 September 2001, Iag Symp, 523–528, https://doi.org/10.1007/978-3-662-04709-5_88, 2002.
Mercer, J. H.:
West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster,
Nature,
271, 321–325, https://doi.org/10.1038/271321a0, 1978.
Miles, B. W. J., Stokes, C. R., Jenkins, A., Jordan, J. R., Jamieson, S. S. R., and Gudmundsson, G. H.:
Intermittent structural weakening and acceleration of the Thwaites Glacier Tongue between 2000 and 2018,
J. Glaciol.,
66, 485–495, https://doi.org/10.1017/jog.2020.20, 2020.
Milillo, P., Rignot, E., Rizzoli, P., Scheuchl, B., Mouginot, J., Bueso-Bello, J., and Prats-Iraola, P.:
Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica,
Science Advances,
5, eaau3433, https://doi.org/10.1126/sciadv.aau3433, 2019.
Morlighem, M.:
MEaSUREs BedMachine Antarctica, Version 2,
NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder [data set], CO, https://doi.org/10.5067/E1QL9HFQ7A8M, 2020.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van Ommen, T. D., van Wessem, M., and Young, D. A.:
Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet,
Nat. Geosci.,
13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Mouginot, J., Rignot, E., and Scheuchl, B.:
Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013,
Geophys. Res. Lett.,
41, 1576–1584, https://doi.org/10.1002/2013gl059069, 2014.
Mouginot, J., Scheuchl, B., and Rignot, E.:
MEaSUREs Annual Antarctic Ice Velocity Maps 2005-2017, Version 1. 2005–2013,
NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], CO, https://doi.org/10.5067/9T4EPQXTJYW9, 2017.
Nakayama, Y., Manucharyan, G., Zhang, H., Dutrieux, P., Torres, H. S., Klein, P., Seroussi, H., Schodlok, M., Rignot, E., and Menemenlis, D.:
Pathways of ocean heat towards Pine Island and Thwaites grounding lines, Sci. Rep.-UK,
9, 16649, https://doi.org/10.1038/s41598-019-53190-6, 2019.
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.:
A new tide model for the Antarctic ice shelves and seas,
Ann. Glaciol.,
34, 247–254, https://doi.org/10.3189/172756402781817752, 2002.
Padman, L., Erofeeva, S. Y., and Fricker, H. A.:
Improving Antarctic tide models by assimilation of ICESat laser altimetry over ice shelves,
Geophys. Res. Lett.,
35, https://doi.org/10.1029/2008gl035592, 2008.
Paolo, F. S., Fricker, H. A., and Padman, L.:
Constructing improved decadal records of Antarctic ice shelf height change from multiple satellite radar altimeters,
Remote Sens. Environ.,
177, 192–205, https://doi.org/10.1016/j.rse.2016.01.026, 2016.
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L.:
Antarctic ice-sheet loss driven by basal melting of ice shelves,
Nature,
484, 502–505, https://doi.org/10.1038/nature10968, 2012.
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.:
The far reach of ice-shelf thinning in Antarctica,
Nat. Clim. Change,
8, 53–57, https://doi.org/10.1038/s41558-017-0020-x, 2017.
Rignot, E.:
Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica,
J. Glaciol.,
47, 213–222, https://doi.org/10.3189/172756501781832340, 2001.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.:
Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011,
Geophys. Res. Lett.,
41, 3502–3509, https://doi.org/10.1002/2014gl060140, 2014.
Rignot, E., Mouginot, J., and Scheuchl, B.:
MEaSUREs Antarctic Grounding Line from Differential Satellite Radar Interferometry, Version 2,
NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], CO, https://doi.org/10.5067/IKBWW4RYHF1Q, 2016.
Scambos, T., Fahnestock, M., Gardner, A., and Klinger, M.:
Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE), Version 1,
NSID: National Snow and Ice Data Center, CO, https://doi.org/10.7265/N5ZP442B, 2016.
Scambos, T. A., Bohlander, J., and Raup, B.:
Images of Antarctic Ice Shelves,
National Snow and Ice Data Center [data set], CO, https://doi.org/10.7265/N5NC5Z4N, 1996.
Scambos, T. A., Bell, R. E., Alley, R. B., Anandakrishnan, S., Bromwich, D. H., Brunt, K., Christianson, K., Creyts, T., Das, S. B., DeConto, R., Dutrieux, P., Fricker, H. A., Holland, D., MacGregor, J., Medley, B., Nicolas, J. P., Pollard, D., Siegfried, M. R., Smith, A. M., Steig, E. J., Trusel, L. D., Vaughan, D. G., and Yager, P. L.:
How much, how fast? A science review and outlook for research on the instability of Antarctica's Thwaites Glacier in the 21st century,
Glob. Planet. Change,
153, 16–34, https://doi.org/10.1016/j.gloplacha.2017.04.008, 2017.
Seroussi, H., Nakayama, Y., Larour, E., Menemenlis, D., Morlighem, M., Rignot, E., and Khazendar, A.:
Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation,
Geophys. Res. Lett.,
44, 6191–6199, https://doi.org/10.1002/2017gl072910, 2017.
Smith, B., Fricker, H. A., Gardner, A., Siegfried, M. R., Adusumilli, S., Csathó, B. M., Holschuh, N., Nilsson, J., Paolo, F. S., and the ICESat-2 Science Team:
ATLAS/ICESat-2 L3A Land Ice Height, version 1,
National Snow and Ice Data Center [data set], CO, https://doi.org/10.5067/atlas/atl06.001, 2019.
Smith, B., Fricker, H. A., Gardner, A. S., Medley, B., Nilsson, J., Paolo, F. S., Holschuh, N., Adusumilli, S., Brunt, K., Csatho, B., Harbeck, K., Markus, T., Neumann, T., Siegfried, M. R., and Zwally, H. J.:
Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes,
Science,
368, 1239–1242, https://doi.org/10.1126/science.aaz5845, 2020.
Tinto, K. J. and Bell, R. E.:
Progressive unpinning of Thwaites Glacier from newly identified offshore ridge: Constraints from aerogravity,
Geophys. Res. Lett.,
38, L20503, https://doi.org/10.1029/2011gl049026, 2011.
Wåhlin A. K., Graham, A., Hogan, K. A., Queste, B. Y., Boehme,
L., Larter, R., Pettit, E., Wellner, J., and Heywood, K. J.:
Pathways and modification of warm water flowing beneath
Thwaites ice shelf, West Antarctica, Science Advances, 7, eabd7254, https://doi.org/10.1126/sciadv.abd7254, 2021.
Walker, R. T., Parizek, B. R., Alley, R. B., Anandakrishnan, S., Riverman, K. L., and Christianson, K.:
Ice-shelf tidal flexure and subglacial pressure variations,
Earth Planet. Sc. Lett.,
361, 422–428, https://doi.org/10.1016/j.epsl.2012.11.008, 2013.
Weertman, J.:
Stability of the Junction of an Ice Sheet and an Ice Shelf,
J. Glaciol.,
13, 3–11, https://doi.org/10.1017/s0022143000023327, 1974.
Wild, C. T., Marsh, O. J., and Rack, W.: Differential interferometric synthetic aperture radar for tide modelling in Antarctic ice-shelf grounding zones, The Cryosphere, 13, 3171–3191, https://doi.org/10.5194/tc-13-3171-2019, 2019.
Wolfe, R. E., Nishihama, M., Fleig, A. J., Kuyper, J. A., Roy, D. P., Storey, J. C., and Patt, F. S.:
Achieving sub-pixel geolocation accuracy in support of MODIS land science,
Remote Sens. Environ.,
83, 31–49, https://doi.org/10.1016/s0034-4257(02)00085-8, 2002.
Zwally, H. J., Schutz, R., Bentley, C., Bufton, J., Herring, T., Minster, J., Spinhirne, J., and Thomas, R.:
GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data, version 34,
National Snow and Ice Data Center [data set], CO, https://doi.org/10.5067/ICESAT/GLAS/DATA225, 2014.
Short summary
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites Eastern Ice Shelf (TEIS), the largest remaining floating extension of Thwaites Glacier (TG). TG holds the single greatest control on sea-level rise over the next few centuries, so it is important to understand changes on the TEIS, which controls much of TG's flow into the ocean. Our results suggest that the TEIS is progressively destabilizing and is likely to disintegrate over the next few decades.
We present a 20-year, satellite-based record of velocity and thickness change on the Thwaites...