Articles | Volume 15, issue 10
https://doi.org/10.5194/tc-15-5007-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5007-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wind-induced seismic noise at the Princess Elisabeth Antarctica Station
Baptiste Frankinet
CORRESPONDING AUTHOR
Seismology-Gravimetry, Royal Observatory of Belgium, Brussels, Belgium
Glaciology Laboratory, Université Libre de Bruxelles, Brussels,
Belgium
Thomas Lecocq
Seismology-Gravimetry, Royal Observatory of Belgium, Brussels, Belgium
Thierry Camelbeeck
Seismology-Gravimetry, Royal Observatory of Belgium, Brussels, Belgium
Related authors
No articles found.
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Thierry Camelbeeck, Koen Van Noten, Thomas Lecocq, and Marc Hendrickx
Solid Earth, 13, 469–495, https://doi.org/10.5194/se-13-469-2022, https://doi.org/10.5194/se-13-469-2022, 2022
Short summary
Short summary
Over the 20th century, shallow damaging seismicity occurred in and near the Hainaut coal mining area in Belgium. We provide an overview of earthquake parameters and impacts, combining felt and damage testimonies and instrumental measurements. Shallower earthquakes have a depth and timing compatible with mining activity. The most damaging events occurred deeper than the mines but could still have been triggered by mining-caused crustal changes. Our modelling can be applied to other regions.
Kasper van Wijk, Calum J. Chamberlain, Thomas Lecocq, and Koen Van Noten
Solid Earth, 12, 363–373, https://doi.org/10.5194/se-12-363-2021, https://doi.org/10.5194/se-12-363-2021, 2021
Short summary
Short summary
The Auckland Volcanic Field is monitored by a seismic network. The lockdown measures to combat COVID-19 in New Zealand provided an opportunity to evaluate the performance of seismic stations in the network and to search for small(er) local earthquakes, potentially hidden in the noise during "normal" times. Cross-correlation of template events resulted in detection of 30 new events not detected by GeoNet, but there is no evidence of an increase in detections during the quiet period of lockdown.
Andrea Cannata, Flavio Cannavò, Giuseppe Di Grazia, Marco Aliotta, Carmelo Cassisi, Raphael S. M. De Plaen, Stefano Gresta, Thomas Lecocq, Placido Montalto, and Mariangela Sciotto
Solid Earth, 12, 299–317, https://doi.org/10.5194/se-12-299-2021, https://doi.org/10.5194/se-12-299-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic, most countries put in place social interventions, aimed at restricting human mobility, which caused a decrease in the seismic noise, generated by human activities and called anthropogenic seismic noise. In densely populated eastern Sicily, we observed a decrease in the seismic noise amplitude reaching 50 %. We found similarities between the temporal patterns of seismic noise and human mobility, as quantified by mobile-phone-derived data and ship traffic data.
Cited articles
Barruol, G., Cordier, E., Bascou, J., Fontaine, F. R., Legrésy, B., and Lescarmontier, L.: Tide-induced microseismicity in the Mertz glacier
grounding area, East Antarctica: Mertz Glacier Tide-Modulated Icequakes, Geophys. Res. Lett., 40, 5412–5416, https://doi.org/10.1002/2013GL057814, 2013.
Belspo.: Construction and operation of the new Belgian Research Station,
Dronning Maud Land, Antarctica: Final Comprehensive Environmental Evaluation
Report (CEE), 135, Belgium, March 2007.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., and Wassermann, J.: ObsPy: A Python Toolbox for Seismology, Seismol. Res. Lett., 81, 530–533, https://doi.org/10.1785/gssrl.81.3.530, 2010.
Bormann, P. and Wielandt, E.: Seismic Signals and Noise, New Manual of Seismological Observatory Practice 2, Potsdam, Deutsches GeoForschungszentrum GFZ; IASPEI, (NMSOP2), 62, 2013.
Callens, D., Thonnard, N., Lenaerts, J. T. M., Van Wessem, J. M., Van de
Berg, W. J., Matsuoka, K., and Pattyn, F.: Mass balance of the Sør
Rondane glacial system, East Antarctica, Ann. Glaciol., 56, 63–69,
https://doi.org/10.3189/2015AoG70A010, 2015.
Camelbeeck, T., Lombardi, D., Collin, F., Rapagnani, G., Martin, H., and
Lecocq, T.: Contribution of the seismic monitoring at the Belgian Princess
Elisabeth base to East Antarctica ice sheet dynamics and global seismicity
studies, Bulletin Des Séances-Académie Royale Des Sciences d'outre-Mer, 63, 163-179, https://doi.org/10.5281/zenodo.3693877, 2019.
Capra, A., Frezzotti, M., Mancini, F., Radicioni, F., and Vittuari, L.:
GPS for ice sheet movement monitoring and grounding line detection, in: Geodesy on the Move, edited by:
Forsberg, R., Feissel, M., and Dietrich, R., Vol. 119, pp. 486–491, Berlin, Heidelberg, Springer Berlin Heidelberg,
https://doi.org/10.1007/978-3-642-72245-5_82, 1998.
Frankinet, B. and Lecocq, T.: ThomasLecocq/2021_Frankinet_AntNoise: Frankinet et al, 2021 – v1.0 (1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5571547, 2021.
Gorodetskaya, I., van Lipzig, N., van den Broeke, M., Boot, W., Reijmeer, C., Mangold, A., Kneifel, S., Crewell, S., and Schween, J.: Meteorological and cloud measurements at the Princess Elisabeth Belgian Antarctic Research Station, Dronning Maud Land, paper presented at the 5th Antarctic Meteorological Observation, Modeling and Forecasting Workshop, Byrd Polar Res. Cent., Ohio State Univ., Columbus, Ohio, 12–14 July 2010.
Gossart, A., Helsen, S., Lenaerts, J. T. M., Broucke, S. V., van Lipzig, N.
P. M., and Souverijns, N.: An Evaluation of Surface Climatology in
State-of-the-Art Reanalyses over the Antarctic Ice Sheet, J. Climate, 32, 6899–6915, https://doi.org/10.1175/JCLI-D-19-0030.1, 2019a.
Gossart, A., Palm, S. P., Souverijns, N., Lenaerts, J. T. M., Gorodetskaya, I. V., Lhermitte, S., and van Lipzig, N. P. M.: Blowing snow in East Antarctica: comparison of ground-based and space-borne retrievals, The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-25, 2019b.
Hammer, C., Ohrnberger, M., and Schlindwein, V.: Pattern of cryospheric
seismic events observed at Ekström Ice Shelf, Antarctica, Geophys. Res. Lett., 42, 3936–3943, https://doi.org/10.1002/2015GL064029, 2015.
Herenz, P., Wex, H., Mangold, A., Laffineur, Q., Gorodetskaya, I. V., Fleming, Z. L., Panagi, M., and Stratmann, F.: CCN measurements at the Princess Elisabeth Antarctica research station during three austral summers, Atmos. Chem. Phys., 19, 275–294, https://doi.org/10.5194/acp-19-275-2019, 2019.
Hillers, G., Ben-Zion, Y., Campillo, M., and Zigone, D.: Seasonal
variations of seismic velocities in the San Jacinto fault area observed with
ambient seismic noise, Geophys. J. Int., 202, 920–932, https://doi.org/10.1093/gji/ggv151, 2015.
Johnson, C. W., Meng, H., Vernon, F., and Ben-Zion, Y.: Characteristics of
Ground Motion Generated by Wind Interaction With Trees, Structures, and
Other Surface Obstacles, J. Geophys. Res.-Sol. Ea., 124, 8519–8539,
https://doi.org/10.1029/2018JB017151, 2019.
Kojima, S. and Shiraishi, K.: Note on the geology of the western part of the
Soer Rondane Mountains, East Antarctica, Memoirs of National Institute of Polar Research, 43, 116–131, 1986.
Lecocq, T., Caudron, C., and Brenguier, F.: MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise, Seismol. Res. Lett., 85, 715–726, https://doi.org/10.1785/0220130073, 2014.
Lepore, S., Markowicz, K., and Grad, M.: Impact of wind on ambient noise
recorded by seismic array in northern Poland, Geophys. J. Int., 205, 1406–1413, https://doi.org/10.1093/gji/ggw093, 2016.
Lipovsky, B. P. and Dunham, E. M.: Tremor during ice-stream stick slip, The Cryosphere, 10, 385–399, https://doi.org/10.5194/tc-10-385-2016, 2016.
Lombardi, D., Gorodetskaya, I., Barruol, G., and Camelbeeck, T.: Thermally
induced icequakes detected on blue ice areas of the East Antarctic ice
sheet, Ann. Glaciol., 60, 45–56, https://doi.org/10.1017/aog.2019.26, 2019.
Lott, F. F., Ritter, J. R. R., Al-Qaryouti, M., and Corsmeier, U.: On the
Analysis of Wind-Induced Noise in Seismological Recordings: Approaches to
Present Wind-Induced Noise as a Function of Wind Speed and Wind Direction, Pure Appl. Geophys., 174, 1453–1470, https://doi.org/10.1007/s00024-017-1477-2, 2017.
Matsuoka, K., Skoglund, A., Roth, G., Pomereu, J. de, Griffiths, H., Headland, R., Herried, B., Katsumata, K., Brocq, A. L., Licht, K., Morgan, F., Neff, P. D., Ritz, C., Scheinert, M., Tamura, T., Putte, A. V. de, Broeke, M. van den, Deschwanden, A. von, Deschamps-Berger, C., Liefferinge, B. V., Tronstad, S., and Melvær, Y.: Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands, 140, 105015, https://doi.org/10.1016/j.envsoft.2021.105015, 2021.
McNamara, D. E.: Ambient Noise Levels in the Continental United States, B. Seismol. Soc. Am, 94, 1517–1527, https://doi.org/10.1785/012003001, 2004.
Mohr, J. J., Reeh, N., and Madsen, S. N.: Three-dimensional glacial flow
and surface elevation measured with radar interferometry, Nature, 391,
273–276, https://doi.org/10.1038/34635, 1998.
Mouginot, J., Rignot, E., and Scheuchl, B.: Continent-Wide, Interferometric
SAR Phase, Mapping of Antarctic Ice Velocity, Geophys. Res. Lett., 46, 9710–9718, https://doi.org/10.1029/2019GL083826, 2019.
Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., and Nino,
E.: The influence of wind on measurements of seismic noise, Geophys. J. Int., 161, 303–308, https://doi.org/10.1111/j.1365-246X.2004.02561.x, 2005.
Naderyan, V., Hickey, C. J., and Raspet, R.: Wind-induced ground motion, J. Geophys. Res.-Sol. Ea., 121, 917–930, https://doi.org/10.1002/2015JB012478, 2016.
Pattyn, F.: Antarctic subglacial conditions inferred from a hybrid ice
sheet/ice stream model, Earth Planet. Sc. Lett., 295, 451–461,
https://doi.org/10.1016/j.epsl.2010.04.025, 2010.
Pattyn, F., Decleir, H., and Huybrechts, P.: Glaciation of the central part
of the Soer Rondane, Antarctica: glaciological evidence, in: Recent Progress in Antarctic Earth Science, edited by: Yoshida, Y. Kaminuma, K., and Shiraishi, K., Terrapub, ISBN 4887041098, Tokyo, 669–678, 1992.
Pattyn, F., Matsuoka, K., and Berte, J.: Glacio-meteorological
conditions in the vicinity of the Belgian Princess Elisabeth Station,
Antarctica, Antarct. Sci., 22, 79, https://doi.org/10.1017/S0954102009990344, 2010.
Peeters, K., Ertz, D., and Willems, A.: Culturable bacterial diversity at
the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East
Antarctica) harbours many new taxa, Syst. Appl. Microbiol., 34, 360–367, https://doi.org/10.1016/j.syapm.2011.02.002, 2011.
Peterson, J.: Observations and modeling of seismic background noise, U.S. Geological Survey (Open-File Report), https://doi.org/10.3133/ofr93322, 1993.
Podolskiy, E. A. and Walter, F.: Cryoseismology, Rev. Geophys., 54, 708–758, https://doi.org/10.1002/2016RG000526, 2016.
Pushkareva, E., Pessi, I. S., Namsaraev, Z., Mano, M.-J., Elster, J., and
Wilmotte, A.: Cyanobacteria inhabiting biological soil crusts of a polar
desert: Sør Rondane Mountains, Antarctica, Syst. Appl. Microbiol., 41, 363–373, https://doi.org/10.1016/j.syapm.2018.01.006, 2018.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice Flow of the Antarctic Ice
Sheet, Science, 333, 1427–1430, https://doi.org/10.1126/science.1208336, 2011.
Smith, A. M.: Basal conditions on Rutford Ice Stream, West Antarctica, from
seismic observations, J. Geophys. Res.-Sol. Ea., 102, 543–552, https://doi.org/10.1029/96JB02933, 1997.
Smith, A. M.: Microearthquakes and subglacial conditions, Geophys. Res. Lett., 33, L24501, https://doi.org/10.1029/2006GL028207, 2006.
Souverijns, N., Gossart, A., Gorodetskaya, I. V., Lhermitte, S., Mangold, A., Laffineur, Q., Delcloo, A., and van Lipzig, N. P. M.: How does the ice sheet surface mass balance relate to snowfall? Insights from a ground-based precipitation radar in East Antarctica, The Cryosphere, 12, 1987–2003, https://doi.org/10.5194/tc-12-1987-2018, 2018.
Stammler, K. and Ceranna, L.: Influence of Wind Turbines on Seismic
Records of the Gräfenberg Array, Seismol. Res. Lett., 87, 1075–1081, https://doi.org/10.1785/0220160049, 2016.
Trnkoczy, E., Bormann, P., Hanka, W., Holcomb, L., Nigbor,
R., Shinohara, M., Suyehiro, K., and Shiobara, H.: New manual of seismological observatory practice, chapter 7:
Site Selection, Preparation and Installation of Seismic Stations,
IASPEI, GFZ German Research Center for Geosciences, Potsdam, https://doi.org/10.2312/GFZ.NMSOP-2, 2012.
van den Broeke, M., Reijmer, C., and van de Wal, R.: Surface radiation balance in Antarctica as measured with automatic weather stations, 109, D09103, https://doi.org/10.1029/2003JD004394, 2004.
Walker, K. T. and Hedlin, M. A. H.: A Review of Wind-Noise Reduction
Methodologies, in: Infrasound Monitoring for Atmospheric Studies, edited by: Le Pichon, A., Blanc, E., and Hauchecorne, A., pp. 141–182, Dordrecht: Springer Netherlands, https://doi.org/10.1007/978-1-4020-9508-5_5, 2010.
Winberry, J. P., Anandakrishnan, S., Wiens, D. A., and Alley, R. B.:
Nucleation and seismic tremor associated with the glacial earthquakes of
Whillans Ice Stream, Antarctica: GLACIAL SEISMIC TREMOR, Geophys. Res. Lett. 40, 312–315, https://doi.org/10.1002/grl.50130, 2013.
Withers, M. M., Aster, R. C., Young, C. J., and Chael, E. P.:
High-Frequency Analysis of Seismic Background Noise as a Function of Wind
Speed and Shallow Depth, B. Seismol. Soc. Am., 9, 1507–1515, https://doi.org/10.1785/BSSA0860051507, 1996.
Short summary
Icequakes are the result of processes occurring within the ice mass or between the ice and its environment. Having a complete catalogue of those icequakes provides a unique view on the ice dynamics. But the instruments recording these events are polluted by different noise sources such as the wind. Using the data from multiple instruments, we found how the wind noise affects the icequake monitoring at the Princess Elisabeth Station in Antarctica.
Icequakes are the result of processes occurring within the ice mass or between the ice and its...