Articles | Volume 14, issue 11
https://doi.org/10.5194/tc-14-4103-2020
https://doi.org/10.5194/tc-14-4103-2020
Research article
 | 
18 Nov 2020
Research article |  | 18 Nov 2020

Distribution and seasonal evolution of supraglacial lakes on Shackleton Ice Shelf, East Antarctica

Jennifer F. Arthur, Chris R. Stokes, Stewart S. R. Jamieson, J. Rachel Carr, and Amber A. Leeson

Related authors

On the atmospheric budget of 1,2-dichloroethane and its impact on stratospheric chlorine and ozone (2002–2020)
Ryan Hossaini, David Sherry, Zihao Wang, Martyn P. Chipperfield, Wuhu Feng, David E. Oram, Karina E. Adcock, Stephen A. Montzka, Isobel J. Simpson, Andrea Mazzeo, Amber A. Leeson, Elliot Atlas, and Charles C.-K. Chou
Atmos. Chem. Phys., 24, 13457–13475, https://doi.org/10.5194/acp-24-13457-2024,https://doi.org/10.5194/acp-24-13457-2024, 2024
Short summary
Bayesian hierarchical model for bias-correcting climate models
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024,https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Exploring implications of input parameter uncertainties on GLOF modelling results using the state-of-the-art modelling code, r.avaflow
Sonam Rinzin, Stuart Dunning, Rachel Carr, Ashim Sattar, and Martin Mergili
EGUsphere, https://doi.org/10.5194/egusphere-2024-1819,https://doi.org/10.5194/egusphere-2024-1819, 2024
Short summary
Sensitivity to forecast surface mass balance outweighs sensitivity to basal sliding descriptions for 21st century mass loss from three major Greenland outlet glaciers
J. Rachel Carr, Emily A. Hill, and G. Hilmar Gudmundsson
The Cryosphere, 18, 2719–2737, https://doi.org/10.5194/tc-18-2719-2024,https://doi.org/10.5194/tc-18-2719-2024, 2024
Short summary
Extensive palaeo-surfaces beneath the Evans–Rutford region of the West Antarctic Ice Sheet control modern and past ice flow
Charlotte M. Carter, Michael J. Bentley, Stewart S. R. Jamieson, Guy J. G. Paxman, Tom A. Jordan, Julien A. Bodart, Neil Ross, and Felipe Napoleoni
The Cryosphere, 18, 2277–2296, https://doi.org/10.5194/tc-18-2277-2024,https://doi.org/10.5194/tc-18-2277-2024, 2024
Short summary

Related subject area

Discipline: Ice sheets | Subject: Antarctic
A fast and simplified subglacial hydrological model for the Antarctic Ice Sheet and outlet glaciers
Elise Kazmierczak, Thomas Gregov, Violaine Coulon, and Frank Pattyn
The Cryosphere, 18, 5887–5911, https://doi.org/10.5194/tc-18-5887-2024,https://doi.org/10.5194/tc-18-5887-2024, 2024
Short summary
Thwaites Glacier thins and retreats fastest where ice-shelf channels intersect its grounding zone
Allison M. Chartrand, Ian M. Howat, Ian R. Joughin, and Benjamin E. Smith
The Cryosphere, 18, 4971–4992, https://doi.org/10.5194/tc-18-4971-2024,https://doi.org/10.5194/tc-18-4971-2024, 2024
Short summary
Melt sensitivity of irreversible retreat of Pine Island Glacier
Brad Reed, J. A. Mattias Green, Adrian Jenkins, and G. Hilmar Gudmundsson
The Cryosphere, 18, 4567–4587, https://doi.org/10.5194/tc-18-4567-2024,https://doi.org/10.5194/tc-18-4567-2024, 2024
Short summary
A model framework for atmosphere–snow water vapor exchange and the associated isotope effects at Dome Argus, Antarctica – Part 1: The diurnal changes
Tianming Ma, Zhuang Jiang, Minghu Ding, Pengzhen He, Yuansheng Li, Wenqian Zhang, and Lei Geng
The Cryosphere, 18, 4547–4565, https://doi.org/10.5194/tc-18-4547-2024,https://doi.org/10.5194/tc-18-4547-2024, 2024
Short summary
The long-term sea-level commitment from Antarctica
Ann Kristin Klose, Violaine Coulon, Frank Pattyn, and Ricarda Winkelmann
The Cryosphere, 18, 4463–4492, https://doi.org/10.5194/tc-18-4463-2024,https://doi.org/10.5194/tc-18-4463-2024, 2024
Short summary

Cited articles

Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G., and MacFerrin, M.: Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties, Remote. Sens. Environ., 210, https://doi.org/10.1016/j.rse.2018.03.025, 2018. 
Arthur, J. F, Stokes, C. R., Jamieson, S. S. R, Carr, J. R, and Leeson, A. A.: Observations of supraglacial lakes on Shackleton Ice Shelf, East Antarctica from 1974 to 2020, Polar Data Centre, Nat. Environ. Res. Council, UKGB/NERC/BAS/PDC/01376, https://doi.org/10.5285/649bbe03-8109-45be-92e5-bcef44a4703a, 2020a. 
Arthur, J. F., Stokes, C. R., Jamieson, S. S. R., Carr, J. R., and Leeson, A. A.: Recent understanding of Antarctic supraglacial lakes using satellite remote sensing, Prog. Phys. Geogr., 1–32, 2020b. 
Banwell, A. F., MacAyeal, D. R., and Sergienko, O. V.: Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes, Geophys. Res. Lett, 40, 5872–5876, https://doi.org/10.1002/2013GL057694, 2013. 
Banwell, A. F. and MacAyeal, D. R.: Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes, Antarct. Sci, 27, 587–597, https://doi.org/10.1017/S0954102015000292, 2015. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Surface meltwater lakes can flex and fracture ice shelves, potentially leading to ice shelf break-up. A long-term record of lake evolution on Shackleton Ice Shelf is produced using optical satellite imagery and compared to surface air temperature and modelled surface melt. The results reveal that lake clustering on the ice shelf is linked to melt-enhancing feedbacks. Peaks in total lake area and volume closely correspond with intense snowmelt events rather than with warmer seasonal temperatures.