Articles | Volume 14, issue 6
https://doi.org/10.5194/tc-14-1919-2020
https://doi.org/10.5194/tc-14-1919-2020
Research article
 | 
15 Jun 2020
Research article |  | 15 Jun 2020

Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques

Phillip Harder, John W. Pomeroy, and Warren D. Helgason

Related authors

Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024,https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023,https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Hydrometeorological data from Marmot Creek Research Basin, Canadian Rockies
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019,https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
A simple model for local-scale sensible and latent heat advection contributions to snowmelt
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
Hydrol. Earth Syst. Sci., 23, 1–17, https://doi.org/10.5194/hess-23-1-2019,https://doi.org/10.5194/hess-23-1-2019, 2019
Short summary
Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle
Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason
The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016,https://doi.org/10.5194/tc-10-2559-2016, 2016
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Radar-equivalent snowpack: reducing the number of snow layers while retaining their microwave properties and bulk snow mass
Julien Meloche, Nicolas R. Leroux, Benoit Montpetit, Vincent Vionnet, and Chris Derksen
The Cryosphere, 19, 2949–2962, https://doi.org/10.5194/tc-19-2949-2025,https://doi.org/10.5194/tc-19-2949-2025, 2025
Short summary
Evaluating sensitivity of optical snow grain size retrievals to radiative transfer models, shape parameters, and inversion techniques
James W. Dillon, Christopher P. Donahue, Evan N. Schehrer, and Kevin D. Hammonds
The Cryosphere, 19, 2913–2933, https://doi.org/10.5194/tc-19-2913-2025,https://doi.org/10.5194/tc-19-2913-2025, 2025
Short summary
Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Christopher J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
The Cryosphere, 19, 2315–2320, https://doi.org/10.5194/tc-19-2315-2025,https://doi.org/10.5194/tc-19-2315-2025, 2025
Short summary
Evaluation of the Snow Climate Change Initiative (Snow CCI) snow-covered area product within a mountain snow water equivalent reanalysis
Haorui Sun, Yiwen Fang, Steven A. Margulis, Colleen Mortimer, Lawrence Mudryk, and Chris Derksen
The Cryosphere, 19, 2017–2036, https://doi.org/10.5194/tc-19-2017-2025,https://doi.org/10.5194/tc-19-2017-2025, 2025
Short summary
UAV LiDAR surveys and machine learning improves snow depth and water equivalent estimates in the boreal landscapes
Maiju Ylönen, Hannu Marttila, Anton Kuzmin, Pasi Korpelainen, Timo Kumpula, and Pertti Ala-Aho
EGUsphere, https://doi.org/10.5194/egusphere-2025-1297,https://doi.org/10.5194/egusphere-2025-1297, 2025
Short summary

Cited articles

Aksamit, N. and Pomeroy, J. W.: Scale Interactions in Turbulence for Mountain Blowing snow, J. Hydrometeorol., 19, 305–320, https://doi.org/10.1175/JHM-D-17-0179.1, 2018. 
Bhardwaj, A., Sam, L., Bhardwaj, A., and Martín-Torres, F. J.: LiDAR remote sensing of the cryosphere: Present applications and future prospects, Remote Sens. Environ., 177, 125–143, https://doi.org/10.1016/j.rse.2016.02.031, 2016. 
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015. 
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016. 
Busseau, B.-C., Royer, A., Roy, A., Langlois, A., and Domine, F.: Analysis of snow-vegetation interacitions in the low arctic-subarctic transition zone (northeastern Canada), Phys. Geogr., 38, 159–175, https://doi.org/10.1080/02723646.2017.1283477, 2017. 
Download
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.
Share