Articles | Volume 14, issue 6
https://doi.org/10.5194/tc-14-1919-2020
https://doi.org/10.5194/tc-14-1919-2020
Research article
 | 
15 Jun 2020
Research article |  | 15 Jun 2020

Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques

Phillip Harder, John W. Pomeroy, and Warren D. Helgason

Related authors

Measuring prairie snow water equivalent with combined UAV-borne gamma spectrometry and lidar
Phillip Harder, Warren D. Helgason, and John W. Pomeroy
The Cryosphere, 18, 3277–3295, https://doi.org/10.5194/tc-18-3277-2024,https://doi.org/10.5194/tc-18-3277-2024, 2024
Short summary
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023,https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Hydrometeorological data from Marmot Creek Research Basin, Canadian Rockies
Xing Fang, John W. Pomeroy, Chris M. DeBeer, Phillip Harder, and Evan Siemens
Earth Syst. Sci. Data, 11, 455–471, https://doi.org/10.5194/essd-11-455-2019,https://doi.org/10.5194/essd-11-455-2019, 2019
Short summary
A simple model for local-scale sensible and latent heat advection contributions to snowmelt
Phillip Harder, John W. Pomeroy, and Warren D. Helgason
Hydrol. Earth Syst. Sci., 23, 1–17, https://doi.org/10.5194/hess-23-1-2019,https://doi.org/10.5194/hess-23-1-2019, 2019
Short summary
Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle
Phillip Harder, Michael Schirmer, John Pomeroy, and Warren Helgason
The Cryosphere, 10, 2559–2571, https://doi.org/10.5194/tc-10-2559-2016,https://doi.org/10.5194/tc-10-2559-2016, 2016
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Temporal stability of a new 40-year daily AVHRR land surface temperature dataset for the pan-Arctic region
Sonia Dupuis, Frank-Michael Göttsche, and Stefan Wunderle
The Cryosphere, 18, 6027–6059, https://doi.org/10.5194/tc-18-6027-2024,https://doi.org/10.5194/tc-18-6027-2024, 2024
Short summary
Evaluating snow depth retrievals from Sentinel-1 volume scattering over NASA SnowEx sites
Zachary Hoppinen, Ross T. Palomaki, George Brencher, Devon Dunmire, Eric Gagliano, Adrian Marziliano, Jack Tarricone, and Hans-Peter Marshall
The Cryosphere, 18, 5407–5430, https://doi.org/10.5194/tc-18-5407-2024,https://doi.org/10.5194/tc-18-5407-2024, 2024
Short summary
Improved snow property retrievals by solving for topography in the inversion of at-sensor radiance measurements
Brenton A. Wilder, Joachim Meyer, Josh Enterkine, and Nancy F. Glenn
The Cryosphere, 18, 5015–5029, https://doi.org/10.5194/tc-18-5015-2024,https://doi.org/10.5194/tc-18-5015-2024, 2024
Short summary
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary

Cited articles

Aksamit, N. and Pomeroy, J. W.: Scale Interactions in Turbulence for Mountain Blowing snow, J. Hydrometeorol., 19, 305–320, https://doi.org/10.1175/JHM-D-17-0179.1, 2018. 
Bhardwaj, A., Sam, L., Bhardwaj, A., and Martín-Torres, F. J.: LiDAR remote sensing of the cryosphere: Present applications and future prospects, Remote Sens. Environ., 177, 125–143, https://doi.org/10.1016/j.rse.2016.02.031, 2016. 
Bühler, Y., Marty, M., Egli, L., Veitinger, J., Jonas, T., Thee, P., and Ginzler, C.: Snow depth mapping in high-alpine catchments using digital photogrammetry, The Cryosphere, 9, 229–243, https://doi.org/10.5194/tc-9-229-2015, 2015. 
Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016. 
Busseau, B.-C., Royer, A., Roy, A., Langlois, A., and Domine, F.: Analysis of snow-vegetation interacitions in the low arctic-subarctic transition zone (northeastern Canada), Phys. Geogr., 38, 159–175, https://doi.org/10.1080/02723646.2017.1283477, 2017. 
Download
Short summary
Unmanned-aerial-vehicle-based (UAV) structure-from-motion (SfM) techniques have the ability to map snow depths in open areas. Here UAV lidar and SfM are compared to map sub-canopy snowpacks. Snow depth accuracy was assessed with data from sites in western Canada collected in 2019. It is demonstrated that UAV lidar can measure the sub-canopy snow depth at a high accuracy, while UAV-SfM cannot. UAV lidar promises to quantify snow–vegetation interactions at unprecedented accuracy and resolution.