Articles | Volume 13, issue 1
The Cryosphere, 13, 325–350, 2019
https://doi.org/10.5194/tc-13-325-2019
The Cryosphere, 13, 325–350, 2019
https://doi.org/10.5194/tc-13-325-2019

Research article 01 Feb 2019

Research article | 01 Feb 2019

Global glacier volume projections under high-end climate change scenarios

Sarah Shannon et al.

Related authors

Linking global terrestrial CO2 fluxes and environmental drivers: inferences from the Orbiting Carbon Observatory 2 satellite and terrestrial biospheric models
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021,https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
JULES-CN: a coupled terrestrial carbon–nitrogen scheme (JULES vn5.1)
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021,https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Simulation of the mid-Pliocene Warm Period using HadGEM3: Experimental design and results from model-model and model-data comparison
Charles J. R. Williams, Alistair A. Sellar, Xin Ren, Alan M. Haywood, Peter Hopcroft, Stephen J. Hunter, William H. G. Roberts, Robin S. Smith, Emma J. Stone, Julia C. Tindall, and Daniel J. Lunt
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-40,https://doi.org/10.5194/cp-2021-40, 2021
Preprint under review for CP
Short summary
Plant phenology evaluation of CRESCENDO land surface models – Part 1: Start and end of the growing season
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021,https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Multi-sensor analysis of monthly gridded snow precipitation on alpine glaciers
Rebecca Gugerli, Matteo Guidicelli, Marco Gabella, Matthias Huss, and Nadine Salzmann
Adv. Sci. Res., 18, 7–20, https://doi.org/10.5194/asr-18-7-2021,https://doi.org/10.5194/asr-18-7-2021, 2021
Short summary

Related subject area

Discipline: Glaciers | Subject: Numerical Modelling
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020,https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Modelling the evolution of Djankuat Glacier, North Caucasus, from 1752 until 2100 CE
Yoni Verhaegen, Philippe Huybrechts, Oleg Rybak, and Victor V. Popovnin
The Cryosphere, 14, 4039–4061, https://doi.org/10.5194/tc-14-4039-2020,https://doi.org/10.5194/tc-14-4039-2020, 2020
Short summary
Brief communication: Time step dependence (and fixes) in Stokes simulations of calving ice shelves
Brandon Berg and Jeremy Bassis
The Cryosphere, 14, 3209–3213, https://doi.org/10.5194/tc-14-3209-2020,https://doi.org/10.5194/tc-14-3209-2020, 2020
Short summary
Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model
David Parkes and Hugues Goosse
The Cryosphere, 14, 3135–3153, https://doi.org/10.5194/tc-14-3135-2020,https://doi.org/10.5194/tc-14-3135-2020, 2020
Short summary
The contrasting response of outlet glaciers to interior and ocean forcing
John Erich Christian, Alexander A. Robel, Cristian Proistosescu, Gerard Roe, Michelle Koutnik, and Knut Christianson
The Cryosphere, 14, 2515–2535, https://doi.org/10.5194/tc-14-2515-2020,https://doi.org/10.5194/tc-14-2515-2020, 2020
Short summary

Cited articles

Ageta, Y. and Higuchi, K.: Estimation of mass balance components of a summer-accumulation type glacier in the Nepal Himalaya, Geogr. Ann. A, 66, 249–255, https://doi.org/10.2307/520698, 1984. 
Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume-area scaling, J. Geophys. Res.-Sol. Ea., 102, 20355–20362, https://doi.org/10.1029/97jb01696, 1997. 
Bakan, S. and Hinzpeter, H.: Landolt-Börnstein, Physical and Chemical Properties of the Air, Group V Geophysics, Volume 4B, Fischer, G., Springer-Verlag Berlin Heidelberg, Berlin, 1987. 
Bell, V. A., Kay, A. L., Jones, R. G., and Moore, R. J.: Development of a high resolution grid-based river flow model for use with regional climate model output, Hydrol. Earth Syst. Sci., 11, 532–549, https://doi.org/10.5194/hess-11-532-2007, 2007. 
Benn, D. I., Kirkbride, M., Owen, L. A., and Brazier, V.: Glaciated Valley Landsystems,  Hodder Education, Glacial landsystems, edited by: Evans, D. J. A., London, 372–406, 2005. 
Download
Short summary
We present global glacier volume projections for the end of this century, under a range of high-end climate change scenarios, defined as exceeding 2 °C global average warming. The ice loss contribution to sea level rise for all glaciers excluding those on the peripheral of the Antarctic ice sheet is 215.2 ± 21.3 mm. Such large ice losses will have consequences for sea level rise and for water supply in glacier-fed river systems.