Articles | Volume 13, issue 10
https://doi.org/10.5194/tc-13-2693-2019
https://doi.org/10.5194/tc-13-2693-2019
Research article
 | 
15 Oct 2019
Research article |  | 15 Oct 2019

Regional influence of ocean–atmosphere teleconnections on the timing and duration of MODIS-derived snow cover in British Columbia, Canada

Alexandre R. Bevington, Hunter E. Gleason, Vanessa N. Foord, William C. Floyd, and Hardy P. Griesbauer

Related authors

The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia
A. Hasler, M. Geertsema, V. Foord, S. Gruber, and J. Noetzli
The Cryosphere, 9, 1025–1038, https://doi.org/10.5194/tc-9-1025-2015,https://doi.org/10.5194/tc-9-1025-2015, 2015
Short summary

Related subject area

Discipline: Snow | Subject: Remote Sensing
Simulation of Arctic snow microwave emission in surface-sensitive atmosphere channels
Melody Sandells, Nick Rutter, Kirsty Wivell, Richard Essery, Stuart Fox, Chawn Harlow, Ghislain Picard, Alexandre Roy, Alain Royer, and Peter Toose
The Cryosphere, 18, 3971–3990, https://doi.org/10.5194/tc-18-3971-2024,https://doi.org/10.5194/tc-18-3971-2024, 2024
Short summary
Retrieval of snow and soil properties for forward radiative transfer modeling of airborne Ku-band SAR to estimate snow water equivalent: the Trail Valley Creek 2018/19 snow experiment
Benoit Montpetit, Joshua King, Julien Meloche, Chris Derksen, Paul Siqueira, J. Max Adam, Peter Toose, Mike Brady, Anna Wendleder, Vincent Vionnet, and Nicolas R. Leroux
The Cryosphere, 18, 3857–3874, https://doi.org/10.5194/tc-18-3857-2024,https://doi.org/10.5194/tc-18-3857-2024, 2024
Short summary
Evaluating L-band InSAR snow water equivalent retrievals with repeat ground-penetrating radar and terrestrial lidar surveys in northern Colorado
Randall Bonnell, Daniel McGrath, Jack Tarricone, Hans-Peter Marshall, Ella Bump, Caroline Duncan, Stephanie Kampf, Yunling Lou, Alex Olsen-Mikitowicz, Megan Sears, Keith Williams, Lucas Zeller, and Yang Zheng
The Cryosphere, 18, 3765–3785, https://doi.org/10.5194/tc-18-3765-2024,https://doi.org/10.5194/tc-18-3765-2024, 2024
Short summary
Reanalyzing the spatial representativeness of snow depth at automated monitoring stations using airborne lidar data
Jordan N. Herbert, Mark S. Raleigh, and Eric E. Small
The Cryosphere, 18, 3495–3512, https://doi.org/10.5194/tc-18-3495-2024,https://doi.org/10.5194/tc-18-3495-2024, 2024
Short summary
Tower-based C-band radar measurements of an alpine snowpack
Isis Brangers, Hans-Peter Marshall, Gabrielle De Lannoy, Devon Dunmire, Christian Mätzler, and Hans Lievens
The Cryosphere, 18, 3177–3193, https://doi.org/10.5194/tc-18-3177-2024,https://doi.org/10.5194/tc-18-3177-2024, 2024
Short summary

Cited articles

Allchin, M. I. and Déry, S. J.: A spatio-temporal analysis of trends in Northern Hemisphere snow-dominated area and duration, 1971–2014, Ann. Glaciol., 58, 21–35, https://doi.org/10.1017/aog.2017.47, 2017. a, b
Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. a, b, c
Barton, M.: Twenty-Seven years of manual fresh snowfall density measurements on Whistler Mountain, British Columbia, Atmos. Ocean, 55, 144–154, 2017. a
BCMOE: Automated Snow Weather Station Data, available at: https://www2.gov.bc.ca/gov/content/environment/air-land-water/water/water-science-data/water-data-tools/snow-survey-data/automated-snow-weather-station-data, last access: 10 Ocotber, 2019. a
BCWS: Wildfire Season Summary, available at: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-history/wildfire-season-summary (last access: 1 January 2019), 2018. a, b
Download
Short summary
We investigate the influence of ocean–atmosphere teleconnections on the start, end, and duration of snow cover in British Columbia, Canada. We do this using daily satellite imagery from 2002 to 2018 and assess the accuracy of our methods using reported snow cover at 60 weather stations. We found that there are very strong relationships that vary by region and elevation. This improves our understanding of snow cover distribution and could be used to predict snow cover from ocean–climate indices.