Articles | Volume 11, issue 1
https://doi.org/10.5194/tc-11-381-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/tc-11-381-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains
Sasha P. Carter
CORRESPONDING AUTHOR
Institute of Geophysics and Planetary Physics, Scripps Institution of
Oceanography, University of California, San Diego, CA, USA
Helen A. Fricker
Institute of Geophysics and Planetary Physics, Scripps Institution of
Oceanography, University of California, San Diego, CA, USA
Matthew R. Siegfried
Institute of Geophysics and Planetary Physics, Scripps Institution of
Oceanography, University of California, San Diego, CA, USA
Related authors
Brad T. Gooch, Sasha P. Carter, Omar Ghattas, Duncan A. Young, and Donald D. Blankenship
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-141, https://doi.org/10.5194/tc-2016-141, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Our work investigates the potential significance of groundwater flow underneath the interior of East Antarctica where the ice doesn't rapidly melt. We attempt to describe the relationship between two hydrologic systems (water under the ice and in the ground) and how they might interact along a flow path between lakes under the ice. We find that groundwater is significant in regional water transport for melt water under the ice in areas of low melting in East Antarctica.
S. P. Carter, H. A. Fricker, and M. R. Siegfried
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-2053-2015, https://doi.org/10.5194/tcd-9-2053-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We develop a model that simulated the observed filling and draining of active subglacial lakes in Antarctica that suggests the may occurs by the erosion of channels into deformable subglacial sediments, that then deform shut as lake level declines. This contrasts with ice dammed alpine lakes which drain by channels incised into ice. If active subglacial lakes require deformable sediments to fill and drain as observed, then classic radar-based methods of lake detection may fail to find them.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. Mackie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Verjan Višnjević, Rodrigo Zamora, and Alexandra Zuhr
EGUsphere, https://doi.org/10.5194/egusphere-2024-2593, https://doi.org/10.5194/egusphere-2024-2593, 2024
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative to work together on this archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica, and how this will be used to reconstruct past and predict future ice and climate behaviour.
Marnie B. Bryant, Adrian A. Borsa, Claire C. Masteller, Roger J. Michaelides, Matthew R. Siegfried, Adam P. Young, and Eric J. Anderson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1656, https://doi.org/10.5194/egusphere-2024-1656, 2024
Short summary
Short summary
We measure shoreline change across a 7-km stretch of coastline on the Alaskan Beaufort Sea Coast between 2019–2022 using multispectral imagery from Planet and satellite altimetry from ICESat-2. We find that shoreline change rates are high and variable, and that different shoreline types show distinct patterns of change in shoreline position and topography. We discuss how the observed changes may be driven by both time-varying ocean and air conditions and spatial variations in morphology.
Nicolas B. Sartore, Till J. W. Wagner, Matthew R. Siegfried, Nimish Pujara, and Lucas K. Zoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-571, https://doi.org/10.5194/egusphere-2024-571, 2024
Short summary
Short summary
We investigate how waves erode the front of Antarctica’s largest ice shelf, the Ross Ice Shelf, and how this erosion results in bending forces that can cause intermediate-scale calving (with icebergs of lengths ~100 m). We compare satellite observations to theoretical estimates of wave erosion and ice shelf bending to better understand the processes underlying this type of calving. We assess that these events may be responsible for roughly 25 % of the ice lost at the front of the Ross Ice Shelf.
Huw J. Horgan, Laurine van Haastrecht, Richard B. Alley, Sridhar Anandakrishnan, Lucas H. Beem, Knut Christianson, Atsuhiro Muto, and Matthew R. Siegfried
The Cryosphere, 15, 1863–1880, https://doi.org/10.5194/tc-15-1863-2021, https://doi.org/10.5194/tc-15-1863-2021, 2021
Short summary
Short summary
The grounding zone marks the transition from a grounded ice sheet to a floating ice shelf. Like Earth's coastlines, the grounding zone is home to interactions between the ocean, fresh water, and geology but also has added complexity and importance due to the overriding ice. Here we use seismic surveying – sending sound waves down through the ice – to image the grounding zone of Whillans Ice Stream in West Antarctica and learn more about the nature of this important transition zone.
Brad T. Gooch, Sasha P. Carter, Omar Ghattas, Duncan A. Young, and Donald D. Blankenship
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-141, https://doi.org/10.5194/tc-2016-141, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Our work investigates the potential significance of groundwater flow underneath the interior of East Antarctica where the ice doesn't rapidly melt. We attempt to describe the relationship between two hydrologic systems (water under the ice and in the ground) and how they might interact along a flow path between lakes under the ice. We find that groundwater is significant in regional water transport for melt water under the ice in areas of low melting in East Antarctica.
S. P. Carter, H. A. Fricker, and M. R. Siegfried
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-2053-2015, https://doi.org/10.5194/tcd-9-2053-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
We develop a model that simulated the observed filling and draining of active subglacial lakes in Antarctica that suggests the may occurs by the erosion of channels into deformable subglacial sediments, that then deform shut as lake level declines. This contrasts with ice dammed alpine lakes which drain by channels incised into ice. If active subglacial lakes require deformable sediments to fill and drain as observed, then classic radar-based methods of lake detection may fail to find them.
T. O. Holt, N. F. Glasser, D. J. Quincey, and M. R. Siegfried
The Cryosphere, 7, 797–816, https://doi.org/10.5194/tc-7-797-2013, https://doi.org/10.5194/tc-7-797-2013, 2013
Related subject area
Glacier Hydrology
Modeling saline-fluid flow through subglacial channels
Assessing supraglacial lake depth using ICESat-2, Sentinel-2, TanDEM-X, and in situ sonar measurements over Northeast and Southwest Greenland
The organization of subglacial drainage during the demise of the Finnish Lake District Ice Lobe
Modelling subglacial fluvial sediment transport with a graph-based model, Graphical Subglacial Sediment Transport (GraphSSeT)
Evidence of active subglacial lakes under a slowly moving coastal region of the Antarctic Ice Sheet
Hydrological response of Andean catchments to recent glacier mass loss
Characterizing sub-glacial hydrology using radar simulations
Deep clustering in subglacial radar reflectance reveals subglacial lakes
Velocity variations and hydrological drainage at Baltoro Glacier, Pakistan
Partial melting in polycrystalline ice: pathways identified in 3D neutron tomographic images
Seasonal to decadal dynamics of supraglacial lakes on debris-covered glaciers in the Khumbu region, Nepal
Evaluation of satellite methods for estimating supraglacial lake depth in southwest Greenland
A conceptual model for glacial lake bathymetric distribution
Observed and modeled moulin heads in the Pâkitsoq region of Greenland suggest subglacial channel network effects
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 1: Steady states and friction laws
The evolution of isolated cavities and hydraulic connection at the glacier bed – Part 2: A dynamic viscoelastic model
The impact of surface melt rate and catchment characteristics on Greenland Ice Sheet moulin inputs
In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland Ice Sheet
Evaporation over a glacial lake in Antarctica
Controls on Greenland moulin geometry and evolution from the Moulin Shape model
Supraglacial streamflow and meteorological drivers from southwest Greenland
A local model of snow–firn dynamics and application to the Colle Gnifetti site
Accumulation of legacy fallout radionuclides in cryoconite on Isfallsglaciären (Arctic Sweden) and their downstream spatial distribution
Drainage of an ice-dammed lake through a supraglacial stream: hydraulics and thermodynamics
Development of a subglacial lake monitored with radio-echo sounding: case study from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland
Geophysical constraints on the properties of a subglacial lake in northwest Greenland
Gulf of Alaska ice-marginal lake area change over the Landsat record and potential physical controls
Sensitivity of subglacial drainage to water supply distribution at the Kongsfjord basin, Svalbard
Hourly surface meltwater routing for a Greenlandic supraglacial catchment across hillslopes and through a dense topological channel network
Challenges in predicting Greenland supraglacial lake drainages at the regional scale
Buoyant calving and ice-contact lake evolution at Pasterze Glacier (Austria) in the period 1998–2019
An analysis of instabilities and limit cycles in glacier-dammed reservoirs
Coupled modelling of subglacial hydrology and calving-front melting at Store Glacier, West Greenland
Role of discrete water recharge from supraglacial drainage systems in modeling patterns of subglacial conduits in Svalbard glaciers
A confined–unconfined aquifer model for subglacial hydrology and its application to the Northeast Greenland Ice Stream
Modelling the fate of surface melt on the Larsen C Ice Shelf
Modelled subglacial floods and tunnel valleys control the life cycle of transitory ice streams
Channelized, distributed, and disconnected: subglacial drainage under a valley glacier in the Yukon
Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone
Rapidly changing subglacial hydrological pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities
Modeling Antarctic subglacial lake filling and drainage cycles
Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention
Oscillatory subglacial drainage in the absence of surface melt
Near-surface permeability in a supraglacial drainage basin on the Llewellyn Glacier, Juneau Icefield, British Columbia
A double continuum hydrological model for glacier applications
Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets
A note on the water budget of temperate glaciers
Quantifying present and future glacier melt-water contribution to runoff in a central Himalayan river basin
Mass balance, runoff and surges of Bering Glacier, Alaska
Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile
Amy Jenson, Mark Skidmore, Lucas Beem, Martin Truffer, and Scott McCalla
The Cryosphere, 18, 5451–5464, https://doi.org/10.5194/tc-18-5451-2024, https://doi.org/10.5194/tc-18-5451-2024, 2024
Short summary
Short summary
Water in some glacier environments contains salt, which increases its density and lowers its freezing point, allowing saline water to exist where freshwater cannot. Previous subglacial hydrology models do not consider saline fluid. We model the flow of saline fluid from a subglacial lake through a circular channel at the glacier bed, finding that higher salinities lead to less melting at the channel walls and lower discharge rates. We also observe the impact of increased fluid density on flow.
Katrina Lutz, Lily Bever, Christian Sommer, Thorsten Seehaus, Angelika Humbert, Mirko Scheinert, and Matthias Braun
The Cryosphere, 18, 5431–5449, https://doi.org/10.5194/tc-18-5431-2024, https://doi.org/10.5194/tc-18-5431-2024, 2024
Short summary
Short summary
The estimation of the amount of water found within supraglacial lakes is important for understanding how much water is lost from glaciers each year. Here, we develop two new methods for estimating supraglacial lake volume that can be easily applied on a large scale. Furthermore, we compare these methods to two previously developed methods in order to determine when it is best to use each method. Finally, three of these methods are applied to peak melt dates over an area in Northeast Greenland.
Adam J. Hepburn, Christine F. Dow, Antti Ojala, Joni Mäkinen, Elina Ahokangas, Jussi Hovikoski, Jukka-Pekka Palmu, and Kari Kajuutti
The Cryosphere, 18, 4873–4916, https://doi.org/10.5194/tc-18-4873-2024, https://doi.org/10.5194/tc-18-4873-2024, 2024
Short summary
Short summary
Terrain formerly occupied by ice sheets in the last ice age allows us to parameterize models of basal water flow using terrain and data unavailable beneath current ice sheets. Using GlaDS, a 2D basal hydrology model, we explore the origin of murtoos, a specific landform found throughout Finland that is thought to mark the upper limit of channels beneath the ice. Our results validate many of the predictions of murtoo origins and demonstrate that such models can be used to explore past ice sheets.
Alan Robert Alexander Aitken, Ian Delaney, Guillaume Pirot, and Mauro A. Werder
The Cryosphere, 18, 4111–4136, https://doi.org/10.5194/tc-18-4111-2024, https://doi.org/10.5194/tc-18-4111-2024, 2024
Short summary
Short summary
Understanding how glaciers generate sediment and transport it to the ocean is important for understanding ocean ecosystems and developing knowledge of the past cryosphere from marine sediments. This paper presents a new way to simulate sediment transport in rivers below ice sheets and glaciers and quantify volumes and characteristics of sediment that can be used to reveal the hidden record of the subglacial environment for both past and present glacial conditions.
Jennifer F. Arthur, Calvin Shackleton, Geir Moholdt, Kenichi Matsuoka, and Jelte van Oostveen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1704, https://doi.org/10.5194/egusphere-2024-1704, 2024
Short summary
Short summary
Lakes can form beneath the large ice sheets and can influence ice-sheet dynamics and stability. Some of these subglacial lakes are active, meaning they periodically drain and refill. Here we report seven new active subglacial lakes close to the Antarctic Ice Sheet margin using satellite measurements of ice surface height changes, in a region where little was known previously. These findings improve our understanding of subglacial hydrology and will help to refine subglacial hydrological models.
Alexis Caro, Thomas Condom, Antoine Rabatel, Nicolas Champollion, Nicolás García, and Freddy Saavedra
The Cryosphere, 18, 2487–2507, https://doi.org/10.5194/tc-18-2487-2024, https://doi.org/10.5194/tc-18-2487-2024, 2024
Short summary
Short summary
The glacier runoff changes are still unknown in most of the Andean catchments, thereby increasing uncertainties in estimating water availability, especially during the dry season. Here, we simulate glacier evolution and related glacier runoff changes across the Andes between 2000 and 2019. Our results indicate a glacier reduction in 93 % of the catchments, leading to a 12 % increase in glacier melt. These results can be downloaded and integrated with discharge measurements in each catchment.
Chris Pierce, Christopher Gerekos, Mark Skidmore, Lucas Beem, Don Blankenship, Won Sang Lee, Ed Adams, Choon-Ki Lee, and Jamey Stutz
The Cryosphere, 18, 1495–1515, https://doi.org/10.5194/tc-18-1495-2024, https://doi.org/10.5194/tc-18-1495-2024, 2024
Short summary
Short summary
Water beneath glaciers in Antarctica can influence how the ice slides or melts. Airborne radar can detect this water, which looks bright in radar images. However, common techniques cannot identify the water's size or shape. We used a simulator to show how the radar image changes based on the bed material, size, and shape of the waterbody. This technique was applied to a suspected waterbody beneath Thwaites Glacier. We found it may be consistent with a series of wide, flat canals or a lake.
Sheng Dong, Lei Fu, Xueyuan Tang, Zefeng Li, and Xiaofei Chen
The Cryosphere, 18, 1241–1257, https://doi.org/10.5194/tc-18-1241-2024, https://doi.org/10.5194/tc-18-1241-2024, 2024
Short summary
Short summary
Subglacial lakes are a unique environment at the bottom of ice sheets, and they have distinct features in radar echo images that allow for visual detection. In this study, we use machine learning to analyze radar reflection waveforms and identify candidate subglacial lakes. Our approach detects more lakes than known inventories and can be used to expand the subglacial lake inventory. Additionally, this analysis may also provide insights into interpreting other subglacial conditions.
Anna Wendleder, Jasmin Bramboeck, Jamie Izzard, Thilo Erbertseder, Pablo d'Angelo, Andreas Schmitt, Duncan J. Quincey, Christoph Mayer, and Matthias H. Braun
The Cryosphere, 18, 1085–1103, https://doi.org/10.5194/tc-18-1085-2024, https://doi.org/10.5194/tc-18-1085-2024, 2024
Short summary
Short summary
This study analyses the basal sliding and the hydrological drainage of Baltoro Glacier, Pakistan. The surface velocity was characterized by a spring speed-up, summer peak, and autumn speed-up. Snow melt has the largest impact on the spring speed-up, summer velocity peak, and the transition from inefficient to efficient drainage. Drainage from supraglacial lakes contributed to the fall speed-up. Increased summer temperatures will intensify the magnitude of meltwater and thus surface velocities.
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024, https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Short summary
As the temperature increases within a deforming ice aggregate, composed of deuterium (D2O) ice and water (H2O) ice, a set of meltwater segregations are produced. These are composed of H2O and HDO and are located in conjugate shear bands and in compaction bands which accommodate the deformation and weaken the ice aggregate. This has major implications for the passage of meltwater in ice sheets and the formation of the layering recognized in glaciers.
Lucas Zeller, Daniel McGrath, Scott W. McCoy, and Jonathan Jacquet
The Cryosphere, 18, 525–541, https://doi.org/10.5194/tc-18-525-2024, https://doi.org/10.5194/tc-18-525-2024, 2024
Short summary
Short summary
In this study we developed methods for automatically identifying supraglacial lakes in multiple satellite imagery sources for eight glaciers in Nepal. We identified a substantial seasonal variability in lake area, which was as large as the variability seen across entire decades. These complex patterns are not captured in existing regional-scale datasets. Our findings show that this seasonal variability must be accounted for in order to interpret long-term changes in debris-covered glaciers.
Laura Melling, Amber Leeson, Malcolm McMillan, Jennifer Maddalena, Jade Bowling, Emily Glen, Louise Sandberg Sørensen, Mai Winstrup, and Rasmus Lørup Arildsen
The Cryosphere, 18, 543–558, https://doi.org/10.5194/tc-18-543-2024, https://doi.org/10.5194/tc-18-543-2024, 2024
Short summary
Short summary
Lakes on glaciers hold large volumes of water which can drain through the ice, influencing estimates of sea level rise. To estimate water volume, we must calculate lake depth. We assessed the accuracy of three satellite-based depth detection methods on a study area in western Greenland and considered the implications for quantifying the volume of water within lakes. We found that the most popular method of detecting depth on the ice sheet scale has higher uncertainty than previously assumed.
Taigang Zhang, Weicai Wang, and Baosheng An
The Cryosphere, 17, 5137–5154, https://doi.org/10.5194/tc-17-5137-2023, https://doi.org/10.5194/tc-17-5137-2023, 2023
Short summary
Short summary
Detailed glacial lake bathymetry surveys are essential for accurate glacial lake outburst flood (GLOF) simulation and risk assessment. We creatively developed a conceptual model for glacial lake bathymetric distribution. The basic idea is that the statistical glacial lake volume–area curves conform to a power-law relationship indicating that the idealized geometric shape of the glacial lake basin should be hemispheres or cones.
Celia Trunz, Kristin Poinar, Lauren C. Andrews, Matthew D. Covington, Jessica Mejia, Jason Gulley, and Victoria Siegel
The Cryosphere, 17, 5075–5094, https://doi.org/10.5194/tc-17-5075-2023, https://doi.org/10.5194/tc-17-5075-2023, 2023
Short summary
Short summary
Models simulating water pressure variations at the bottom of glaciers must use large storage parameters to produce realistic results. Whether that storage occurs englacially (in moulins) or subglacially is a matter of debate. Here, we directly simulate moulin volume to constrain the storage there. We find it is not enough. Instead, subglacial processes, including basal melt and input from upstream moulins, must be responsible for stabilizing these water pressure fluctuations.
Christian Schoof
The Cryosphere, 17, 4797–4815, https://doi.org/10.5194/tc-17-4797-2023, https://doi.org/10.5194/tc-17-4797-2023, 2023
Short summary
Short summary
Computational models that seek to predict the future behaviour of ice sheets and glaciers typically rely on being able to compute the rate at which a glacier slides over its bed. In this paper, I show that the degree to which the glacier bed is
hydraulically connected(how easily water can flow along the glacier bed) plays a central role in determining how fast ice can slide.
Christian Schoof
The Cryosphere, 17, 4817–4836, https://doi.org/10.5194/tc-17-4817-2023, https://doi.org/10.5194/tc-17-4817-2023, 2023
Short summary
Short summary
The subglacial drainage of meltwater plays a major role in regulating glacier and ice sheet flow. In this paper, I construct and solve a mathematical model that describes how connections are made within the subglacial drainage system. This will aid future efforts to predict glacier response to surface melt supply.
Tim Hill and Christine F. Dow
The Cryosphere, 17, 2607–2624, https://doi.org/10.5194/tc-17-2607-2023, https://doi.org/10.5194/tc-17-2607-2023, 2023
Short summary
Short summary
Water flow across the surface of the Greenland Ice Sheet controls the rate of water flow to the glacier bed. Here, we simulate surface water flow for a small catchment on the southwestern Greenland Ice Sheet. Our simulations predict significant differences in the form of surface water flow in high and low melt years depending on the rate and intensity of surface melt. These model outputs will be important in future work assessing the impact of surface water flow on subglacial water pressure.
Nicole Clerx, Horst Machguth, Andrew Tedstone, Nicolas Jullien, Nander Wever, Rolf Weingartner, and Ole Roessler
The Cryosphere, 16, 4379–4401, https://doi.org/10.5194/tc-16-4379-2022, https://doi.org/10.5194/tc-16-4379-2022, 2022
Short summary
Short summary
Meltwater runoff is one of the main contributors to mass loss on the Greenland Ice Sheet that influences global sea level rise. However, it remains unclear where meltwater runs off and what processes cause this. We measured the velocity of meltwater flow through snow on the ice sheet, which ranged from 0.17–12.8 m h−1 for vertical percolation and from 1.3–15.1 m h−1 for lateral flow. This is an important step towards understanding where, when and why meltwater runoff occurs on the ice sheet.
Elena Shevnina, Miguel Potes, Timo Vihma, Tuomas Naakka, Pankaj Ramji Dhote, and Praveen Kumar Thakur
The Cryosphere, 16, 3101–3121, https://doi.org/10.5194/tc-16-3101-2022, https://doi.org/10.5194/tc-16-3101-2022, 2022
Short summary
Short summary
The evaporation over an ice-free glacial lake was measured in January 2018, and the uncertainties inherent to five indirect methods were quantified. Results show that in summer up to 5 mm of water evaporated daily from the surface of the lake located in Antarctica. The indirect methods underestimated the evaporation over the lake's surface by up to 72 %. The results are important for estimating the evaporation over polar regions where a growing number of glacial lakes have recently been evident.
Lauren C. Andrews, Kristin Poinar, and Celia Trunz
The Cryosphere, 16, 2421–2448, https://doi.org/10.5194/tc-16-2421-2022, https://doi.org/10.5194/tc-16-2421-2022, 2022
Short summary
Short summary
We introduce a model for moulin geometry motivated by the wide range of sizes and shapes of explored moulins. Moulins comprise 10–14 % of the Greenland englacial–subglacial hydrologic system and act as time-varying water storage reservoirs. Moulin geometry can vary approximately 10 % daily and over 100 % seasonally. Moulin shape modulates the efficiency of the subglacial system that controls ice flow and should thus be included in hydrologic models.
Rohi Muthyala, Åsa K. Rennermalm, Sasha Z. Leidman, Matthew G. Cooper, Sarah W. Cooley, Laurence C. Smith, and Dirk van As
The Cryosphere, 16, 2245–2263, https://doi.org/10.5194/tc-16-2245-2022, https://doi.org/10.5194/tc-16-2245-2022, 2022
Short summary
Short summary
In situ measurements of meltwater discharge through supraglacial stream networks are rare. The unprecedentedly long record of discharge captures diurnal and seasonal variability. Two major findings are (1) a change in the timing of peak discharge through the melt season that could impact meltwater delivery in the subglacial system and (2) though the primary driver of stream discharge is shortwave radiation, longwave radiation and turbulent heat fluxes play a major role during high-melt episodes.
Fabiola Banfi and Carlo De Michele
The Cryosphere, 16, 1031–1056, https://doi.org/10.5194/tc-16-1031-2022, https://doi.org/10.5194/tc-16-1031-2022, 2022
Short summary
Short summary
Climate changes require a dynamic description of glaciers in hydrological models. In this study we focus on the local modelling of snow and firn. We tested our model at the site of Colle Gnifetti, 4400–4550 m a.s.l. The model shows that wind erodes all the precipitation of the cold months, while snow is in part conserved between April and September since higher temperatures protect snow from erosion. We also compared modelled and observed firn density, obtaining a satisfying agreement.
Caroline C. Clason, Will H. Blake, Nick Selmes, Alex Taylor, Pascal Boeckx, Jessica Kitch, Stephanie C. Mills, Giovanni Baccolo, and Geoffrey E. Millward
The Cryosphere, 15, 5151–5168, https://doi.org/10.5194/tc-15-5151-2021, https://doi.org/10.5194/tc-15-5151-2021, 2021
Short summary
Short summary
Our paper presents results of sample collection and subsequent geochemical analyses from the glaciated Isfallsglaciären catchment in Arctic Sweden. The data suggest that material found on the surface of glaciers,
cryoconite, is very efficient at accumulating products of nuclear fallout transported in the atmosphere following events such as the Chernobyl disaster. We investigate how this compares with samples in the downstream environment and consider potential environmental implications.
Christophe Ogier, Mauro A. Werder, Matthias Huss, Isabelle Kull, David Hodel, and Daniel Farinotti
The Cryosphere, 15, 5133–5150, https://doi.org/10.5194/tc-15-5133-2021, https://doi.org/10.5194/tc-15-5133-2021, 2021
Short summary
Short summary
Glacier-dammed lakes are prone to draining rapidly when the ice dam breaks and constitute a serious threat to populations downstream. Such a lake drainage can proceed through an open-air channel at the glacier surface. In this study, we present what we believe to be the most complete dataset to date of an ice-dammed lake drainage through such an open-air channel. We provide new insights for future glacier-dammed lake drainage modelling studies and hazard assessments.
Eyjólfur Magnússon, Finnur Pálsson, Magnús T. Gudmundsson, Thórdís Högnadóttir, Cristian Rossi, Thorsteinn Thorsteinsson, Benedikt G. Ófeigsson, Erik Sturkell, and Tómas Jóhannesson
The Cryosphere, 15, 3731–3749, https://doi.org/10.5194/tc-15-3731-2021, https://doi.org/10.5194/tc-15-3731-2021, 2021
Short summary
Short summary
We present a unique insight into the shape and development of a subglacial lake over a 7-year period, using repeated radar survey. The lake collects geothermal meltwater, which is released in semi-regular floods, often referred to as jökulhlaups. The applicability of our survey approach to monitor the water stored in the lake for a better assessment of the potential hazard of jökulhlaups is demonstrated by comparison with independent measurements of released water volume during two jökulhlaups.
Ross Maguire, Nicholas Schmerr, Erin Pettit, Kiya Riverman, Christyna Gardner, Daniella N. DellaGiustina, Brad Avenson, Natalie Wagner, Angela G. Marusiak, Namrah Habib, Juliette I. Broadbeck, Veronica J. Bray, and Samuel H. Bailey
The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, https://doi.org/10.5194/tc-15-3279-2021, 2021
Short summary
Short summary
In the last decade, airborne radar surveys have revealed the presence of lakes below the Greenland ice sheet. However, little is known about their properties, including their depth and the volume of water they store. We performed a ground-based geophysics survey in northwestern Greenland and, for the first time, were able to image the depth of a subglacial lake and estimate its volume. Our findings have implications for the thermal state and stability of the ice sheet in northwest Greenland.
Hannah R. Field, William H. Armstrong, and Matthias Huss
The Cryosphere, 15, 3255–3278, https://doi.org/10.5194/tc-15-3255-2021, https://doi.org/10.5194/tc-15-3255-2021, 2021
Short summary
Short summary
The growth of a glacier lake alters the hydrology, ecology, and glaciology of its surrounding region. We investigate modern glacier lake area change across northwestern North America using repeat satellite imagery. Broadly, we find that lakes downstream from glaciers grew, while lakes dammed by glaciers shrunk. Our results suggest that the shape of the landscape surrounding a glacier lake plays a larger role in determining how quickly a lake changes than climatic or glaciologic factors.
Chloé Scholzen, Thomas V. Schuler, and Adrien Gilbert
The Cryosphere, 15, 2719–2738, https://doi.org/10.5194/tc-15-2719-2021, https://doi.org/10.5194/tc-15-2719-2021, 2021
Short summary
Short summary
We use a two-dimensional model of water flow below the glaciers in Kongsfjord, Svalbard, to investigate how different processes of surface-to-bed meltwater transfer affect subglacial hydraulic conditions. The latter are important for the sliding motion of glaciers, which in some cases exhibit huge variations. Our findings indicate that the glaciers in our study area undergo substantial sliding because water is poorly evacuated from their base, with limited influence from the surface hydrology.
Colin J. Gleason, Kang Yang, Dongmei Feng, Laurence C. Smith, Kai Liu, Lincoln H. Pitcher, Vena W. Chu, Matthew G. Cooper, Brandon T. Overstreet, Asa K. Rennermalm, and Jonathan C. Ryan
The Cryosphere, 15, 2315–2331, https://doi.org/10.5194/tc-15-2315-2021, https://doi.org/10.5194/tc-15-2315-2021, 2021
Short summary
Short summary
We apply first-principle hydrology models designed for global river routing to route flows hourly through 10 000 individual supraglacial channels in Greenland. Our results uniquely show the role of process controls (network density, hillslope flow, channel friction) on routed meltwater. We also confirm earlier suggestions that large channels do not dewater overnight despite the shutdown of runoff and surface mass balance runoff being mistimed and overproducing runoff, as validated in situ.
Kristin Poinar and Lauren C. Andrews
The Cryosphere, 15, 1455–1483, https://doi.org/10.5194/tc-15-1455-2021, https://doi.org/10.5194/tc-15-1455-2021, 2021
Short summary
Short summary
This study addresses Greenland supraglacial lake drainages. We analyze ice deformation associated with lake drainages over 18 summers to assess whether
precursorstrain-rate events consistently precede lake drainages. We find that currently available remote sensing data products cannot resolve these events, and thus we cannot predict future lake drainages. Thus, future avenues for evaluating this hypothesis will require major field-based GPS or photogrammetry efforts.
Andreas Kellerer-Pirklbauer, Michael Avian, Douglas I. Benn, Felix Bernsteiner, Philipp Krisch, and Christian Ziesler
The Cryosphere, 15, 1237–1258, https://doi.org/10.5194/tc-15-1237-2021, https://doi.org/10.5194/tc-15-1237-2021, 2021
Short summary
Short summary
Present climate warming leads to glacier recession and formation of lakes. We studied the nature and rate of lake evolution in the period 1998–2019 at Pasterze Glacier, Austria. We detected for instance several large-scale and rapidly occurring ice-breakup events from below the water level. This process, previously not reported from the European Alps, might play an important role at alpine glaciers in the future as many glaciers are expected to recede into valley basins allowing lake formation.
Christian Schoof
The Cryosphere, 14, 3175–3194, https://doi.org/10.5194/tc-14-3175-2020, https://doi.org/10.5194/tc-14-3175-2020, 2020
Short summary
Short summary
Glacier lake outburst floods are major glacial hazards in which ice-dammed reservoirs rapidly drain, often in a recurring fashion. The main flood phase typically involves a growing channel being eroded into ice by water flow. What is poorly understood is how that channel first comes into being. In this paper, I investigate how an under-ice drainage system composed of small, naturally occurring voids can turn into a channel and how this can explain the cyclical behaviour of outburst floods.
Samuel J. Cook, Poul Christoffersen, Joe Todd, Donald Slater, and Nolwenn Chauché
The Cryosphere, 14, 905–924, https://doi.org/10.5194/tc-14-905-2020, https://doi.org/10.5194/tc-14-905-2020, 2020
Short summary
Short summary
This paper models how water flows beneath a large Greenlandic glacier and how the structure of the drainage system it flows in changes over time. We also look at how this affects melting driven by freshwater plumes at the glacier front, as well as the implications for glacier flow and sea-level rise. We find an active drainage system and plumes exist year round, contradicting previous assumptions and suggesting more melting may not slow the glacier down, unlike at other sites in Greenland.
Léo Decaux, Mariusz Grabiec, Dariusz Ignatiuk, and Jacek Jania
The Cryosphere, 13, 735–752, https://doi.org/10.5194/tc-13-735-2019, https://doi.org/10.5194/tc-13-735-2019, 2019
Short summary
Short summary
Due to the fast melting of glaciers around the world, it is important to characterize the evolution of the meltwater circulation beneath them as it highly impacts their velocity. By using very
high-resolution satellite images and field measurements, we modelized it for two Svalbard glaciers. We determined that for most of Svalbard glaciers it is crucial to include their surface morphology to obtain a reliable model, which is not currently done. Having good models is key to predicting our future.
Sebastian Beyer, Thomas Kleiner, Vadym Aizinger, Martin Rückamp, and Angelika Humbert
The Cryosphere, 12, 3931–3947, https://doi.org/10.5194/tc-12-3931-2018, https://doi.org/10.5194/tc-12-3931-2018, 2018
Short summary
Short summary
The evolution of subglacial channels below ice sheets is very important for the dynamics of glaciers as the water acts as a lubricant. We present a new numerical model (CUAS) that generalizes existing approaches by accounting for two different flow situations within a single porous medium layer: (1) a confined aquifer if sufficient water supply is available and (2) an unconfined aquifer, otherwise. The model is applied to artificial scenarios as well as to the Northeast Greenland Ice Stream.
Sammie Buzzard, Daniel Feltham, and Daniela Flocco
The Cryosphere, 12, 3565–3575, https://doi.org/10.5194/tc-12-3565-2018, https://doi.org/10.5194/tc-12-3565-2018, 2018
Short summary
Short summary
Surface lakes on ice shelves can not only change the amount of solar energy the ice shelf receives, but may also play a pivotal role in sudden ice shelf collapse such as that of the Larsen B Ice Shelf in 2002.
Here we simulate current and future melting on Larsen C, Antarctica’s most northern ice shelf and one on which lakes have been observed. We find that should future lakes occur closer to the ice shelf front, they may contain sufficient meltwater to contribute to ice shelf instability.
Thomas Lelandais, Édouard Ravier, Stéphane Pochat, Olivier Bourgeois, Christopher Clark, Régis Mourgues, and Pierre Strzerzynski
The Cryosphere, 12, 2759–2772, https://doi.org/10.5194/tc-12-2759-2018, https://doi.org/10.5194/tc-12-2759-2018, 2018
Short summary
Short summary
Scattered observations suggest that subglacial meltwater routes drive ice stream dynamics and ice sheet stability. We use a new experimental approach to reconcile such observations into a coherent story connecting ice stream life cycles with subglacial hydrology and bed erosion. Results demonstrate that subglacial flooding, drainage reorganization, and valley development can control an ice stream lifespan, thus opening new perspectives on subglacial processes controlling ice sheet instabilities.
Camilo Rada and Christian Schoof
The Cryosphere, 12, 2609–2636, https://doi.org/10.5194/tc-12-2609-2018, https://doi.org/10.5194/tc-12-2609-2018, 2018
Short summary
Short summary
We analyse a large glacier borehole pressure dataset and provide a holistic view of the observations, suggesting a consistent picture of the evolution of the subglacial drainage system. Some aspects are consistent with the established understanding and others ones are not. We propose that most of the inconsistencies arise from the capacity of some areas of the bed to become hydraulically isolated. We present an adaptation of an existing drainage model that incorporates this phenomena.
Matthew G. Cooper, Laurence C. Smith, Asa K. Rennermalm, Clément Miège, Lincoln H. Pitcher, Jonathan C. Ryan, Kang Yang, and Sarah W. Cooley
The Cryosphere, 12, 955–970, https://doi.org/10.5194/tc-12-955-2018, https://doi.org/10.5194/tc-12-955-2018, 2018
Short summary
Short summary
We present measurements of ice density that show the melting bare-ice surface of the Greenland ice sheet study site is porous and saturated with meltwater. The data suggest up to 18 cm of meltwater is temporarily stored within porous, low-density ice. The findings imply meltwater drainage off the ice sheet surface is delayed and that the surface mass balance of the ice sheet during summer cannot be estimated solely from ice surface elevation change measurements.
Penelope How, Douglas I. Benn, Nicholas R. J. Hulton, Bryn Hubbard, Adrian Luckman, Heïdi Sevestre, Ward J. J. van Pelt, Katrin Lindbäck, Jack Kohler, and Wim Boot
The Cryosphere, 11, 2691–2710, https://doi.org/10.5194/tc-11-2691-2017, https://doi.org/10.5194/tc-11-2691-2017, 2017
Short summary
Short summary
This study provides valuable insight into subglacial hydrology and dynamics at tidewater glaciers, which remains a poorly understood area of glaciology. It is a unique study because of the wealth of information provided by simultaneous observations of glacier hydrology at Kronebreen, a tidewater glacier in Svalbard. All these elements build a strong conceptual picture of the glacier's hydrological regime over the 2014 melt season.
Christine F. Dow, Mauro A. Werder, Sophie Nowicki, and Ryan T. Walker
The Cryosphere, 10, 1381–1393, https://doi.org/10.5194/tc-10-1381-2016, https://doi.org/10.5194/tc-10-1381-2016, 2016
Short summary
Short summary
We examine the development and drainage of subglacial lakes in the Antarctic using a finite element hydrology model. Model outputs show development of slow-moving pressure waves initiated from water funneled from a large catchment into the ice stream. Lake drainage occurs due to downstream channel formation and changing system hydraulic gradients. These model outputs have implications for understanding controls on ice stream dynamics.
Andreas Bech Mikkelsen, Alun Hubbard, Mike MacFerrin, Jason Eric Box, Sam H. Doyle, Andrew Fitzpatrick, Bent Hasholt, Hannah L. Bailey, Katrin Lindbäck, and Rickard Pettersson
The Cryosphere, 10, 1147–1159, https://doi.org/10.5194/tc-10-1147-2016, https://doi.org/10.5194/tc-10-1147-2016, 2016
C. Schoof, C. A Rada, N. J. Wilson, G. E. Flowers, and M. Haseloff
The Cryosphere, 8, 959–976, https://doi.org/10.5194/tc-8-959-2014, https://doi.org/10.5194/tc-8-959-2014, 2014
L. Karlstrom, A. Zok, and M. Manga
The Cryosphere, 8, 537–546, https://doi.org/10.5194/tc-8-537-2014, https://doi.org/10.5194/tc-8-537-2014, 2014
B. de Fleurian, O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback
The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014, https://doi.org/10.5194/tc-8-137-2014, 2014
S. J. Livingstone, C. D. Clark, J. Woodward, and J. Kingslake
The Cryosphere, 7, 1721–1740, https://doi.org/10.5194/tc-7-1721-2013, https://doi.org/10.5194/tc-7-1721-2013, 2013
J. Oerlemans
The Cryosphere, 7, 1557–1564, https://doi.org/10.5194/tc-7-1557-2013, https://doi.org/10.5194/tc-7-1557-2013, 2013
M. Prasch, W. Mauser, and M. Weber
The Cryosphere, 7, 889–904, https://doi.org/10.5194/tc-7-889-2013, https://doi.org/10.5194/tc-7-889-2013, 2013
W. Tangborn
The Cryosphere, 7, 867–875, https://doi.org/10.5194/tc-7-867-2013, https://doi.org/10.5194/tc-7-867-2013, 2013
S. Gascoin, C. Kinnard, R. Ponce, S. Lhermitte, S. MacDonell, and A. Rabatel
The Cryosphere, 5, 1099–1113, https://doi.org/10.5194/tc-5-1099-2011, https://doi.org/10.5194/tc-5-1099-2011, 2011
Cited articles
Alley, R. B.: Water-pressure coupling of sliding and bed deformation: I. Water system, J. Glaciol., 35, 108–118, 1989.
Alley, R. B., Lawson, D. E., Evenson, E. B., Strasser, J. C., and Larson, G. J.: Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory, J. Glaciol., 44, 563–569, 1998.
Ashmore, D. W. and Bingham, R. G.: Antarctic subglacial hydrology: current knowledge and future challenges, Antarct. Sci., 26, 758–773, 2014.
BEDMAP: Ice thickness data, available at: http://www.nerc-bas.ac.uk/public/aedc/bedmap/DataSearch.html, last access: 9 December 2016.
Bell, R. E., Studinger, M., Tikku, A. A., Clarke, G. K. C., Gutner, M. M., and Meertens, C.: Origin and fate of Lake Vostok water frozen to the base of the East Antarctic ice sheet, Nature, 416, 307–310, 2002.
Bell, R. E., Studinger, M., Shuman, C. A., Fahnestock, M. A., and Joughin, I.: Large subglacial lakes in East Antarctica at the onset of fast-flowing ice streams, Nature, 445, 904–907, 2007.
Blankenship, D. D., Bentley, C. R., Rooney, S. T., and Alley, R. B.: Till beneath Ice Stream B: 1. Properties derived from seismic travel times, J. Geophys. Res.-Sol. Ea., 92, 8903–8911, 1987.
Bougamont, M., Price, S., Christoffersen, P., and Payne, A. J.: Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology, J. Geophys. Res.-Earth, 116, F04018, https://doi.org/10.1029/2011jf002025, 2011.
Bougamont, M., Christoffersen, P., Price, S. F., Fricker, H. A., Tulaczyk, S., and Carter, S. P.: Reactivation of Kamb Ice Stream tributaries triggers century-scale reorganization of Siple Coast ice flow in West Antarctica, Geophys. Res. Lett., 42, 8471–8480, 2015.
Budd, W. and Jacka, T.: A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol., 16, 107–144, https://doi.org/10.1016/0165-232X(89)90014-1, 1989.
Carter, S. P. and Fricker, H. A.: The supply of subglacial meltwater to the grounding line of the Siple Coast, West Antarctica, Ann. Glaciol., 53, 267–280, 2012.
Carter, S. P., Blankenship, D. D., Peters, M. E., Young, D. A., Holt, J. W., and Morse, D. L.: Radar-based subglacial lake classification in Antarctica, Geochem. Geophy. Geosy., 8, Q03016, https://doi.org/10.1029/2006gc001408, 2007.
Carter, S. P., Blankenship, D. D., Young, D. A., Peters, M. E., Holt, J. W., and Siegert, M. J.: Dynamic distributed drainage implied by the flow evolution of the 1996–1998 Adventure Trench subglacial lake discharge, Earth Planet. Sc. Lett., 283, 24–37, 2009.
Carter, S. P., Fricker, H. A., Blankenship, D. D., Johnson, J. V., Lipscomb, W. H., Price, S. F., and Young, D. A.: Modeling 5 years of subglacial lake activity in the MacAyeal Ice Stream (Antarctica) catchment through assimilation of ICESat laser altimetry, J. Glaciol., 57, 1098–1112, 2011.
Carter, S. P., Fricker, H. A., and Siegfried, M. R.: Evidence of rapid subglacial water piracy under Whillans Ice Stream, West Antarctica, J. Glaciol., 59, 1147–1162, 2013.
Christianson, K., Jacobel, R. W., Horgan, H. J., Anandakrishnan, S., and Alley, R. B.: Subglacial Lake Whillans – Ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream, Earth Planet. Sc. Lett., 331, 237–245, 2012.
Christner, B. C., Priscu, J. C., Achberger, A. M., Barbante, C., Carter, S. P., Christianson, K., Michaud, A. B., Mikucki, J. A., Mitchell, A. C., Skidmore, M. L., Vick-Majors, T. J., Horgan, H. W., and the WISSARD Science Team: A microbial ecosystem beneath the West Antarctic ice sheet, Nature, 512, 310–313, 2014.
Christoffersen, P., Bougamont, M., Carter, S. P., Fricker, H. A., and Tulaczyk, S.: Significant groundwater contribution to Antarctic ice streams hydrologic budget, Geophys. Res. Lett., 41, 2003–2010, 2014.
Clarke, G. K. C.: Hydraulics of subglacial outburst floods: new insights from the Spring-Hutter formulation, J. Glaciol., 49, 299–313, 2003.
Courant, R., Friedrichs, K., and Lewy, H.: On the partial difference equations of mathematical physics, IBM J. Res. Dev., 11, 215–234, 1967.
Davis, M. B.: Subglacial Morphology and Structural Geology in the Southern Transantarctic Mountains from Airborne Geophysics, M.S. Thesis, Univ. of Texas, TX, USA, 133 pp., 2001.
de Fleurian, B., Gagliardini, O., Zwinger, T., Durand, G., Le Meur, E., Mair, D., and Råback, P.: A double continuum hydrological model for glacier applications, The Cryosphere, 8, 137–153, https://doi.org/10.5194/tc-8-137-2014, 2014.
Dowdeswell, J. A. and Siegert, M. J.: The dimensions and topographic setting of Antarctic subglacial lakes and implications for large-scale water storage beneath continental ice sheets, Geol. Soc. Am. Bull., 111, 254–263, 1999.
Engelhardt, H.: Thermal regime and dynamics of the West Antarctic ice sheet, Ann. Glaciol., 39, 85–92, 2004.
Engelhardt, H. and Kamb, B.: Basal hydraulic system of a West Antarctic ice stream: Constraints from borehole observations, J. Glaciol., 43, 207–230, 1997.
Evatt, G. W., Fowler, A. C., Clark, C. D., and Hulton, N. R. J.: Subglacial floods beneath ice sheets, Philos. T. R. Soc. Lond., 364, 1769–1794, 2006.
Flament, T., Berthier, E., and Rémy, F.: Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models, The Cryosphere, 8, 673–687, https://doi.org/10.5194/tc-8-673-2014, 2014.
Flowers, G. E.: Modelling water flow under glaciers and ice sheets, Proc. R. Soc. Lon. Ser. A, 471, 20140907, https://doi.org/10.1098/rspa.2014.0907, 2015.
Flowers, G. E. and Clarke, G. K. C.: A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples, J. Geophys. Res.-Sol. Ea., 107, ECV 9-1 to ECV 9-17, https://doi.org/10.1029/2001jb001122, 2002.
Flowers, G. E., Björnsson, H., Pálsson, F., and Clarke, G. K. C.: A coupled sheet-conduit mechanism for jökulhlaup propagation, Geophys. Res. Lett., 31, L05401, https://doi.org/10.1029/2003gl019088, 2004.
Fowler, A. C.: Breaking the seal at Grímsvötn, Iceland, J. Glaciol., 45, 506–516, 1999.
Fowler, A. C.: Dynamics of subglacial floods, Proc. R. Soc. Lon. Ser. A, 465, 1809–1828, 2009.
Fricker, H. A. and Scambos, T.: Connected subglacial lake activity on lower Mercer and Whillans ice streams, West Antarctica, 2003–2008, J. Glaciol., 55, 303–315, 2009.
Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An active subglacial water system in West Antarctica mapped from space, Science, 315, 1544–1548, 2007.
Fricker, H. A., Carter, S. P., Bell, R. E., and Scambos, T.: Active lakes of Recovery Ice Stream, East Antarctica: a bedrock-controlled subglacial hydrological system, J. Glaciol., 60, 1015–1030, 2014.
Fried, M. J., Hulbe, C. L., and Fahnestock, M. A.: Grounding-line dynamics and margin lakes, Ann. Glaciol., 55, 87–96, 2014.
Goeller, S., Thoma, M., Grosfeld, K., and Miller, H.: A balanced water layer concept for subglacial hydrology in large-scale ice sheet models, The Cryosphere, 7, 1095–1106, https://doi.org/10.5194/tc-7-1095-2013, 2013.
Gorman, M. R. and Siegert, M. J.: Penetration of Antarctic subglacial lakes by VHF electromagnetic pulses: information on the depth and electrical conductivity of basal water bodies, J. Geophys. Res.-Sol. Ea., 104, 29311–29320, 1999.
Gray, L., Joughin, I., Tulaczyk, S., Spikes, V. B., Bindschadler, R., and Jezek, K.: Evidence for subglacial water transport in the West Antarctic Ice Sheet through three-dimensional satellite radar interferometry, Geophys. Res. Lett., 32, L03501, https://doi.org/10.1029/2004gl021387, 2005.
Hodson, T. O., Powell, R. D., Brachfeld, S. A., Tulaczyk, S., Scherer, R. P., and the WISSARD Science Team: Physical processes in Subglacial Lake Whillans, West Antarctica: Inferences from sediment cores, Earth Planet. Sc. Lett., 444, 56–63, 2016.
Hoffman, M. and Price, S.: Feedbacks between coupled subglacial hydrology and glacier dynamics, J. Geophys. Res.-Earth, 119, 414–436, 2014.
Hooke, R. L.: Principles of glacier mechanics, Cambridge University Press, Cambridge, UK, 2005.
Hooke, R. L. and Fastook, J.: Thermal conditions at the bed of the Laurentide ice sheet in Maine during deglaciation: implications for esker formation, J. Glaciol., 53, 646–658, 2007.
Horgan, H. J., Anandakrishnan, S., Jacobel, R. W., Christianson, K., Alley, R. B., Heeszel, D. S., Picotti, S., and Walter, J. I.: Subglacial Lake Whillans – Seismic observations of a shallow active reservoir beneath a West Antarctic ice stream, Earth Planet. Sc. Lett., 331, 201–209, 2012.
Hulbe, C. L., Scambos, T. A., Klinger, M., and Fahnestock, M. A.: Flow variability and ongoing margin shifts on Bindschadler and MacAyeal Ice Streams, West Antarctica, J. Geophys. Res.-Earth, 121, 283–293, https://doi.org/10.1002/2015JF003670, 2016.
Kapitsa, A. P., Ridley, J. K., Robin, G. d. Q., Siegert, M. J., and Zotikov, I. A.: A large deep freshwater lake beneath the ice of central East Antarctica, Nature, 381, 684–686, https://doi.org/10.1038/381684a0, 1996.
Kingslake, J. and Ng, F.: Modelling the coupling of flood discharge with glacier flow during jökulhlaups, Ann. Glaciol., 54, 25–31, 2013.
Kyrke-Smith, T. M. and Fowler, A. C.: Subglacial swamps, P. Roy. Soc. A-Math. Phy., 470, 20140340, https://doi.org/10.1098/rspa.2014.0340, 2014.
Lamb, H.: Hydrodynamics, Cambridge University Press, Cambridge, UK, 1932.
Le Brocq, A. M., Payne, A. J., Siegert, M. J., and Alley, R. B.: A subglacial water-flow model for West Antarctica, J. Glaciol., 55, 879–888, 2009.
Livingstone, S. J., Clark, C. D., Woodward, J., and Kingslake, J.: Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets, The Cryosphere, 7, 1721–1740, https://doi.org/10.5194/tc-7-1721-2013, 2013.
Luthra, T., Anandakrishnan, S., Winberry, J. P., Alley, R. B., and Holschuh, N.: Basal characteristics of the main sticky spot on the ice plain of Whillans Ice Stream, Antarctica, Earth Planet. Sc. Lett., 440, 12–19, https://doi.org/10.1016/j.epsl.2016.01.035, 2016.
Lythe, M. B., Vaughan, D. G., and the BEDMAP Consortium: BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. Geophys. Res.-Sol. Ea., 106, 11335–11351, 2001.
McMillan, M., Corr, H., Shepherd, A., Ridout, A., Laxon, S., and Cullen, R.: Three-dimensional mapping by CryoSat-2 of subglacial lake volume changes, Geophys. Res. Lett., 40, 4321–4327, 2013.
Ng, F. S. L.: Coupled ice-till deformation near subglacial channels and cavities, J. Glaciol., 46, 580–598, 2000.
Nye, J. F.: Water flow in glaciers: jökulhlaups, tunnels and veins, J. Glaciol., 17, 181–207, 1976.
Oswald, G. and Robin, G. D. Q.: Lakes beneath the Antarctic ice sheet, Nature, 245, 251–254, 1973.
Peters, N. J., Willis, I. C., and Arnold, N. S.: Numerical analysis of rapid water transfer beneath Antarctica, J. Glaciol., 55, 640–650, 2009.
Ridley, J. K., Cudlip, W., and Laxon, S. W.: Identification of subglacial lakes using ERS-1 radar altimeter, J. Glaciol., 39, 625–634, 1993.
Rignot, E., Mouginot, J., and Scheuchl, B.: Ice flow of the Antarctic ice sheet, Science, 333, 1427–1430, 2011.
Roberts, M. J.: Jökulhlaups: a reassessment of floodwater flow through glaciers, Rev. Geophys., 43, RG1002, https://doi.org/10.1029/2003rg000147, 2005.
Robinson, R. V.: Experiment in visual orientation during flights in the Antarctic, Soviet Antarctic Expedition Information Bulletin, 2, 233–234, 1964.
Röthlisberger, H.: Water pressure in intra- and subglacial channels, J. Glaciol., 11, 177–203, 1972.
Scambos, T. A., Berthier, E., and Shuman, C. A.: The triggering of subglacial lake drainage during rapid glacier drawdown: Crane Glacier, Antarctic Peninsula, Ann. Glaciol., 52, 74–82, 2011.
Schroeder, D. M., Blankenship, D. D., and Young, D. A.: Evidence for a water system transition beneath Thwaites Glacier, West Antarctica, P. Natl. Acad. Sci. USA, 110, 12225–12228, 2013.
Sergienko, O. V. and Hulbe, C. L.: “Sticky spots” and subglacial lakes under ice streams of the Siple Coast, Antarctica, Ann. Glaciol., 52, 18–22, 2011.
Sergienko, O. V., Creyts, T. T., and Hindmarsh, R. C. A.: Similarity of organized patterns in driving and basal stresses of Antarctic and Greenland ice sheets beneath extensive areas of basal sliding, Geophys. Res. Lett., 41, 3925–3932, 2014.
Shoemaker, E. M.: Effects of bed depressions upon floods from subglacial lakes, Global Planet. Change, 35, 175–184, 2003.
Shreve, R. L.: Movement of water in glaciers, J. Glaciol., 11, 205–214, 1972.
Siegert, M. J., Taylor, J., and Payne, A. J.: Spectral roughness of subglacial topography and implications for former ice-sheet dynamics in East Antarctica, Global Planet. Change, 45, 249–263, 2005.
Siegert, M. J., Ross, N., Corr, H., Smith, B., Jordan, T., Bingham, R. G., Ferraccioli, F., Rippin, D. M., and Le Brocq, A.: Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet, The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, 2014.
Siegert, M. J., Ross, N., and Brocq, A. M. L.: Recent advances in understanding Antarctic subglacial lakes and hydrology, Phil. Trans. R. Soc. A, 374, 20140306, https://doi.org/10.1098/rsta.2014.0306, 2015.
Siegfried, M. R., Fricker, H. A., Roberts, M., Scambos, T. A., and Tulaczyk, S.: A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2 altimetry, Geophys. Res. Lett., 41, 891–898, 2014.
Siegfried, M. R., Fricker, H. A., Carter, S. P., and Tuaczyk, S.: Episodic ice velocity fluctuations triggered by a subglacial flood in West Antarctica, Geophys. Res. Lett., 43, 2640–2648, https://doi.org/10.1002/2016gl067758, 2016.
Smith, B. E., Fricker, H. A., Joughin, I. R., and Tulaczyk, S.: An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008), J. Glaciol., 55, 573–595, 2009.
Stearns, L. A., Smith, B. E., and Hamilton, G. S.: Increased flow speed on a large East Antarctic outlet glacier caused by subglacial floods, Nat. Geosci., 1, 827–831, 2008.
Thoma, M., Grosfeld, K., Mayer, C., and Pattyn, F.: Ice-flow sensitivity to boundary processes: a coupled model study in the Vostok Subglacial Lake area, Antarctica, Ann. Glaciol., 53, 173–180, 2012.
Tikku, A. A., Bell, R. E., Studinger, M., Clarke, G. K. C., Tabacco, I., and Ferraccioli, F.: Influx of meltwater to subglacial Lake Concordia, East Antarctica, J. Glaciol., 51, 96–104, 2005.
Tulaczyk, S., Kamb, B., Scherer, R. P., and Engelhardt, H. F.: Sedimentary processes at the base of a West Antarctic ice stream: constraints from textural and compositional properties of subglacial debris, J. Sediment. Res., 68, 487–496, https://doi.org/10.2110/jsr.68.487, 1998.
Tulaczyk, S., Kamb, W. B., and Engelhardt, H. F.: Basal mechanics of ice stream B, West Antarctica I. Till mechanics, J. Geophys. Res., 105, 463–481, 2000.
Tulaczyk, S., Mikucki, J. A., Siegfried, M. R., Priscu, J. C., Barcheck, C. G., Beem, L. H., Behar, A., Burnett, J., Christner, B. C., Fisher, A. T., Fricker, H. A., Mankoff, K. D., Powell, R. D., Rack, F., Sampson, D., Scherer, R. P., and Schwartz, S. Y.: WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations, Ann. Glaciol., 55, 51–58, 2014.
UTIG: Additional ice thickness data, available at: http://www-udc.ig.utexas.edu/external/facilities/aero/data/, last access: 9 December 2016.
van der Wel, N., Christoffersen, P., and Bougamont, M.: The influence of subglacial hydrology on the flow of Kamb Ice Stream, West Antarctica, J. Geophys. Res.-Earth, 118, 97–110, 2013.
Walder, J. S.: Stability of sheet flow of water beneath temperate glaciers and implications for glacier surging, J. Glaciol., 28, 273–293, 1982.
Walder, J. S. and Fowler, A.: Channelized subglacial drainage over a deformable bed, J. Glaciol., 40, 3–15, 1994.
Werder, M. A., Hewitt, I. J., Schoof, C. G., and Flowers, G. E.: Modeling channelized and distributed subglacial drainage in two dimensions, J. Geophys. Res.-Earth., 118, 2140–2158, 2013.
Winberry, J. P., Anandakrishnan, S., Alley, R. B., Bindschadler, R. A., and King, M. A.: Basal mechanics of ice streams: Insights from the stick-slip motion of Whillans Ice Stream, West Antarctica, J. Geophys. Res., 114, F01016, https://doi.org/10.1029/2008jf001035, 2009.
Wingham, D. J., Siegert, M. J., Shepherd, A., and Muir, A. S.: Rapid discharge connects Antarctic subglacial lakes, Nature, 440, 1033–1036, 2006.
Wright, A. and Siegert, M.: A fourth inventory of Antarctic subglacial lakes, Antarct. Sci., 24, 659–664, https://doi.org/10.1017/s095410201200048x, 2012.
Wright, A. P., Young, D. A., Bamber, J. L., Dowdeswell, J. A., Payne, A. J., Blankenship, D. D., and Siegert, M. J.: Subglacial hydrological connectivity within the Byrd Glacier catchment, East Antarctica, J. Glaciol., 60, 345–352, 2014.
Zwally, H. J., Abdalati, W., Herring, T., Larson, K., Saba, J., and Steffen, K.: Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow, Science, 297, 218–222, 2002.
Short summary
We use a new process-scale model for the drainage of active subglacial lakes in Antarctica that considers channel incision into the soft sedimentary bed. Compared to models with ice-incised channels, our model better reproduces magnitudes and recurrence intervals of active subglacial lake fill–drain cycles derived from satellite altimetry observations.
We use a new process-scale model for the drainage of active subglacial lakes in Antarctica that...