Articles | Volume 10, issue 3
The Cryosphere, 10, 1089–1104, 2016
https://doi.org/10.5194/tc-10-1089-2016
The Cryosphere, 10, 1089–1104, 2016
https://doi.org/10.5194/tc-10-1089-2016

Research article 25 May 2016

Research article | 25 May 2016

The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model

Kjetil S. Aas et al.

Related authors

Explicitly modelling microtopography in permafrost landscapes in a land-surface model (JULES vn5.4_microtopography)
Noah D. Smith, Sarah E. Chadburn, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael Turton, and Sebastian Westermann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-285,https://doi.org/10.5194/gmd-2021-285, 2021
Preprint under review for GMD
Short summary
Lateral thermokarst patterns in permafrost peat plateaus in northern Norway
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021,https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary
Regional-scale phytoplankton dynamics and their association with glacier meltwater runoff in Svalbard
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-181,https://doi.org/10.5194/bg-2021-181, 2021
Preprint under review for BG
Short summary
Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020,https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary
Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020,https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary

Related subject area

Glaciers
Record summer rains in 2019 led to massive loss of surface and cave ice in SE Europe
Aurel Perşoiu, Nenad Buzjak, Alexandru Onaca, Christos Pennos, Yorgos Sotiriadis, Monica Ionita, Stavros Zachariadis, Michael Styllas, Jure Kosutnik, Alexandru Hegyi, and Valerija Butorac
The Cryosphere, 15, 2383–2399, https://doi.org/10.5194/tc-15-2383-2021,https://doi.org/10.5194/tc-15-2383-2021, 2021
Short summary
Evolution of the firn pack of Kaskawulsh Glacier, Yukon: meltwater effects, densification, and the development of a perennial firn aquifer
Naomi E. Ochwat, Shawn J. Marshall, Brian J. Moorman, Alison S. Criscitiello, and Luke Copland
The Cryosphere, 15, 2021–2040, https://doi.org/10.5194/tc-15-2021-2021,https://doi.org/10.5194/tc-15-2021-2021, 2021
Short summary
A simple parametrization of mélange buttressing for calving glaciers
Tanja Schlemm and Anders Levermann
The Cryosphere, 15, 531–545, https://doi.org/10.5194/tc-15-531-2021,https://doi.org/10.5194/tc-15-531-2021, 2021
Short summary
Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: a case study, Storglaciären, Sweden
Morgan E. Monz, Peter J. Hudleston, David J. Prior, Zachary Michels, Sheng Fan, Marianne Negrini, Pat J. Langhorne, and Chao Qi
The Cryosphere, 15, 303–324, https://doi.org/10.5194/tc-15-303-2021,https://doi.org/10.5194/tc-15-303-2021, 2021
Short summary
A decade of variability on Jakobshavn Isbræ: ocean temperatures pace speed through influence on mélange rigidity
Ian Joughin, David E. Shean, Benjamin E. Smith, and Dana Floricioiu
The Cryosphere, 14, 211–227, https://doi.org/10.5194/tc-14-211-2020,https://doi.org/10.5194/tc-14-211-2020, 2020
Short summary

Cited articles

Aas, K. S., Berntsen, T. K., Boike, J., Etzelmuller, B., Kristjansson, J. E., Maturilli, M., Schuler, T. V., Stordal, F., and Westermann, S.: A Comparison between Simulated and Observed Surface Energy Balance at the Svalbard Archipelago, J. Appl. Meteorol. Climatol., 54, 1102–1119, 2015.
Blaszczyk, M., Jania, J. A., and Hagen, J. O.: Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes, Pol. Polar Res., 30, 85–142, 2009.
Braithwaite, R. J.: Aerodynamic stability and turbulent sensible heat flux over a melting ice surface, the Greenland ice sheet, J. Glaciol., 41, 562–571, 1995.
Claremar, B., Obleitner, F., Reijmer, C., Pohjola, V., Waxegard, A., Karner, F., and Rutgersson, A.: Applying a Mesoscale Atmospheric Model to Svalbard Glaciers, Adv. Meteorol., 2012, 321649, https://doi.org/10.1155/2012/321649, 2012.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011.
Download
Short summary
A high-resolution, coupled atmosphere--climatic mass balance (CMB) model is applied to Svalbard for the period 2003 to 2013. The mean CMB during this period is negative but displays large spatial and temporal variations. Comparison with observations on different scales shows a good overall model performance except for one particular glacier, where wind strongly affects the spatial patterns of CMB. The model also shows considerable sensitivity to model resolution, especially on local scales.