Articles | Volume 10, issue 3
https://doi.org/10.5194/tc-10-1089-2016
https://doi.org/10.5194/tc-10-1089-2016
Research article
 | 
25 May 2016
Research article |  | 25 May 2016

The climatic mass balance of Svalbard glaciers: a 10-year simulation with a coupled atmosphere–glacier mass balance model

Kjetil S. Aas, Thorben Dunse, Emily Collier, Thomas V. Schuler, Terje K. Berntsen, Jack Kohler, and Bartłomiej Luks

Related authors

Inclusion of a cold hardening scheme to represent frost tolerance is essential to model realistic plant hydraulics in the Arctic–boreal zone in CLM5.0-FATES-Hydro
Marius S. A. Lambert, Hui Tang, Kjetil S. Aas, Frode Stordal, Rosie A. Fisher, Yilin Fang, Junyan Ding, and Frans-Jan W. Parmentier
Geosci. Model Dev., 15, 8809–8829, https://doi.org/10.5194/gmd-15-8809-2022,https://doi.org/10.5194/gmd-15-8809-2022, 2022
Short summary
Explicitly modelling microtopography in permafrost landscapes in a land surface model (JULES vn5.4_microtopography)
Noah D. Smith, Eleanor J. Burke, Kjetil Schanke Aas, Inge H. J. Althuizen, Julia Boike, Casper Tai Christiansen, Bernd Etzelmüller, Thomas Friborg, Hanna Lee, Heather Rumbold, Rachael H. Turton, Sebastian Westermann, and Sarah E. Chadburn
Geosci. Model Dev., 15, 3603–3639, https://doi.org/10.5194/gmd-15-3603-2022,https://doi.org/10.5194/gmd-15-3603-2022, 2022
Short summary
Regional-scale phytoplankton dynamics and their association with glacier meltwater runoff in Svalbard
Thorben Dunse, Kaixing Dong, Kjetil Schanke Aas, and Leif Christian Stige
Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022,https://doi.org/10.5194/bg-19-271-2022, 2022
Short summary
Lateral thermokarst patterns in permafrost peat plateaus in northern Norway
Léo C. P. Martin, Jan Nitzbon, Johanna Scheer, Kjetil S. Aas, Trond Eiken, Moritz Langer, Simon Filhol, Bernd Etzelmüller, and Sebastian Westermann
The Cryosphere, 15, 3423–3442, https://doi.org/10.5194/tc-15-3423-2021,https://doi.org/10.5194/tc-15-3423-2021, 2021
Short summary
Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model
Lei Cai, Hanna Lee, Kjetil Schanke Aas, and Sebastian Westermann
The Cryosphere, 14, 4611–4626, https://doi.org/10.5194/tc-14-4611-2020,https://doi.org/10.5194/tc-14-4611-2020, 2020
Short summary

Related subject area

Glaciers
A quasi-one-dimensional ice mélange flow model based on continuum descriptions of granular materials
Jason M. Amundson, Alexander A. Robel, Justin C. Burton, and Kavinda Nissanka
The Cryosphere, 19, 19–35, https://doi.org/10.5194/tc-19-19-2025,https://doi.org/10.5194/tc-19-19-2025, 2025
Short summary
Linking glacier retreat with climate change on the Tibetan Plateau through satellite remote sensing
Fumeng Zhao, Wenping Gong, Silvia Bianchini, and Zhongkang Yang
The Cryosphere, 18, 5595–5612, https://doi.org/10.5194/tc-18-5595-2024,https://doi.org/10.5194/tc-18-5595-2024, 2024
Short summary
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024,https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
Physics-aware Machine Learning for Glacier Ice Thickness Estimation: A Case Study for Svalbard
Viola Steidl, Jonathan L. Bamber, and Xiao Xiang Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1732,https://doi.org/10.5194/egusphere-2024-1732, 2024
Short summary
Brief communication: Rapid acceleration of the Brunt Ice Shelf after calving of iceberg A-81
Oliver J. Marsh, Adrian J. Luckman, and Dominic A. Hodgson
The Cryosphere, 18, 705–710, https://doi.org/10.5194/tc-18-705-2024,https://doi.org/10.5194/tc-18-705-2024, 2024
Short summary

Cited articles

Aas, K. S., Berntsen, T. K., Boike, J., Etzelmuller, B., Kristjansson, J. E., Maturilli, M., Schuler, T. V., Stordal, F., and Westermann, S.: A Comparison between Simulated and Observed Surface Energy Balance at the Svalbard Archipelago, J. Appl. Meteorol. Climatol., 54, 1102–1119, 2015.
Blaszczyk, M., Jania, J. A., and Hagen, J. O.: Tidewater glaciers of Svalbard: Recent changes and estimates of calving fluxes, Pol. Polar Res., 30, 85–142, 2009.
Braithwaite, R. J.: Aerodynamic stability and turbulent sensible heat flux over a melting ice surface, the Greenland ice sheet, J. Glaciol., 41, 562–571, 1995.
Claremar, B., Obleitner, F., Reijmer, C., Pohjola, V., Waxegard, A., Karner, F., and Rutgersson, A.: Applying a Mesoscale Atmospheric Model to Svalbard Glaciers, Adv. Meteorol., 2012, 321649, https://doi.org/10.1155/2012/321649, 2012.
Cogley, J. G., Hock, R., Rasmussen, L. A., Arendt, A. A., Bauder, A., Braithwaite, R. J., Jansson, P., Kaser, G., Möller, M., Nicholson, L., and Zemp, M.: Glossary of Glacier Mass Balance and Related Terms, IHP-VII Technical Documents in Hydrology No. 86, IACS Contribution No. 2, UNESCO-IHP, Paris, 2011.
Download
Short summary
A high-resolution, coupled atmosphere--climatic mass balance (CMB) model is applied to Svalbard for the period 2003 to 2013. The mean CMB during this period is negative but displays large spatial and temporal variations. Comparison with observations on different scales shows a good overall model performance except for one particular glacier, where wind strongly affects the spatial patterns of CMB. The model also shows considerable sensitivity to model resolution, especially on local scales.