Articles | Volume 9, issue 1
https://doi.org/10.5194/tc-9-151-2015
https://doi.org/10.5194/tc-9-151-2015
Research article
 | 
28 Jan 2015
Research article |  | 28 Jan 2015

Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction

F. Günther, P. P. Overduin, I. A. Yakshina, T. Opel, A. V. Baranskaya, and M. N. Grigoriev

Related authors

Past climate and continentality inferred from ice wedges at Batagay megaslump in the Northern Hemisphere's most continental region, Yana Highlands, interior Yakutia
Thomas Opel, Julian B. Murton, Sebastian Wetterich, Hanno Meyer, Kseniia Ashastina, Frank Günther, Hendrik Grotheer, Gesine Mollenhauer, Petr P. Danilov, Vasily Boeskorov, Grigoriy N. Savvinov, and Lutz Schirrmeister
Clim. Past, 15, 1443–1461, https://doi.org/10.5194/cp-15-1443-2019,https://doi.org/10.5194/cp-15-1443-2019, 2019
Short summary
Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in Arctic Siberia
Matthias Fuchs, Guido Grosse, Jens Strauss, Frank Günther, Mikhail Grigoriev, Georgy M. Maximov, and Gustaf Hugelius
Biogeosciences, 15, 953–971, https://doi.org/10.5194/bg-15-953-2018,https://doi.org/10.5194/bg-15-953-2018, 2018
Short summary
Sub-seasonal thaw slump mass wasting is not consistently energy limited at the landscape scale
Simon Zwieback, Steven V. Kokelj, Frank Günther, Julia Boike, Guido Grosse, and Irena Hajnsek
The Cryosphere, 12, 549–564, https://doi.org/10.5194/tc-12-549-2018,https://doi.org/10.5194/tc-12-549-2018, 2018
Short summary
PeRL: a circum-Arctic Permafrost Region Pond and Lake database
Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A. Britta K. Sannel, Ylva Sjöberg, Frank Günther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, Juri Palmtag, Matthias B. Siewert, William J. Riley, Charles D. Koven, and Julia Boike
Earth Syst. Sci. Data, 9, 317–348, https://doi.org/10.5194/essd-9-317-2017,https://doi.org/10.5194/essd-9-317-2017, 2017
Short summary
Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia
Pier Paul Overduin, Sebastian Wetterich, Frank Günther, Mikhail N. Grigoriev, Guido Grosse, Lutz Schirrmeister, Hans-Wolfgang Hubberten, and Aleksandr Makarov
The Cryosphere, 10, 1449–1462, https://doi.org/10.5194/tc-10-1449-2016,https://doi.org/10.5194/tc-10-1449-2016, 2016
Short summary

Related subject area

Frozen Ground
The evolution of Arctic permafrost over the last 3 centuries from ensemble simulations with the CryoGridLite permafrost model
Moritz Langer, Jan Nitzbon, Brian Groenke, Lisa-Marie Assmann, Thomas Schneider von Deimling, Simone Maria Stuenzi, and Sebastian Westermann
The Cryosphere, 18, 363–385, https://doi.org/10.5194/tc-18-363-2024,https://doi.org/10.5194/tc-18-363-2024, 2024
Short summary
Permafrost degradation of peatlands in northern Sweden
Samuel Valman, Matthias Siewert, Doreen Boyd, Martha Ledger, David Gee, Betsabe de la Barreda-Bautista, Andrew Sowter, and Sofie Sjogersten
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-138,https://doi.org/10.5194/tc-2023-138, 2023
Revised manuscript accepted for TC
Short summary
Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard
Dotan Rotem, Vladimir Lyakhovsky, Hanne Hvidtfeldt Christiansen, Yehudit Harlavan, and Yishai Weinstein
The Cryosphere, 17, 3363–3381, https://doi.org/10.5194/tc-17-3363-2023,https://doi.org/10.5194/tc-17-3363-2023, 2023
Short summary
Environmental spaces for palsas and peat plateaus are disappearing at a circumpolar scale
Oona Leppiniemi, Olli Karjalainen, Juha Aalto, Miska Luoto, and Jan Hjort
The Cryosphere, 17, 3157–3176, https://doi.org/10.5194/tc-17-3157-2023,https://doi.org/10.5194/tc-17-3157-2023, 2023
Short summary
Post-Little Ice Age rock wall permafrost evolution in Norway
Justyna Czekirda, Bernd Etzelmüller, Sebastian Westermann, Ketil Isaksen, and Florence Magnin
The Cryosphere, 17, 2725–2754, https://doi.org/10.5194/tc-17-2725-2023,https://doi.org/10.5194/tc-17-2725-2023, 2023
Short summary

Cited articles

Aguilar, M. A., Aguilar, F. J., Saldaña, M. M., and Fernández, I.: Geopositioning accuracy assessment of GeoEye-1 panchromatic and multispectral imagery, Photogram. Eng. Remote Sens., 78, 247–257, 2012.
Aguirre, A., Tweedie, C. E., Brown, J., and Gaylord, A.: Erosion of the Barrow Environmental Observatory Coastline 2003–2007, Northern Alaska, in: Proceedings of the Ninth International Conference on Permafrost, edited by: Kane, D. L. and Hinkel, K. M., University of Alaska Fairbanks, 29 June–3 July 2008, 1, 7–12, 2008.
Andersen, S., Tonboe, R., Kaleschke, L., Heygster, G., and Pedersen, L.: Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice, J. Geophys. Res.-Oceans, 112, C08004, https://doi.org/10.1029/2006JC003543, 2007.
Are, F.: The role of coastal retreat for sedimentation in the Laptev Sea, in: Land-Ocean Systems in the Siberian Arctic, edited by: Kassens, H., Bauch, H., Dmitrenko, I., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokohov, L., Springer, Berlin, Heidelberg, Germany, 287–295, 1999.
Are, F., Reimnitz, E., Grigoriev, M., Hubberten, H.-W., and Rachold, V.: The Influence of Cryogenic Processes on the Erosional Arctic Shoreface, J. Coastal Res., 24, 110–121, https://doi.org/10.2112/05-0573.1, 2008.
Download
Short summary
Coastal erosion rates at Muostakh Island (eastern Siberian Arctic) have doubled, based on remotely sensed observations of land loss, and therefore the island will disappear prematurely. Based on analyses of seasonal variability of permafrost thaw, thermo-erosion increases by 1.2m per year when summer temperatures rise by 1°C. Due to rapid permafrost thaw, the land surface is subsiding up to 11cm per year, based on comparison of elevation changes and active layer thaw depth.