Articles | Volume 9, issue 4
https://doi.org/10.5194/tc-9-1385-2015
https://doi.org/10.5194/tc-9-1385-2015
Research article
 | 
30 Jul 2015
Research article |  | 30 Jul 2015

The impact of Saharan dust and black carbon on albedo and long-term mass balance of an Alpine glacier

J. Gabbi, M. Huss, A. Bauder, F. Cao, and M. Schwikowski

Related authors

Sources and trends of Black Carbon Aerosol in a Megacity of Nanjing, East China After the China Clean Action Plan and Three-Year Action Plan
Abudurexiati Abulimiti, Yanlin Zhang, Mingyuan Yu, Yihang Hong, Yu-Chi Lin, Chaman Gul, and Fang Cao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2503,https://doi.org/10.5194/egusphere-2024-2503, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations
Harry Zekollari, Matthias Huss, Lilian Schuster, Fabien Maussion, David R. Rounce, Rodrigo Aguayo, Nicolas Champollion, Loris Compagno, Romain Hugonnet, Ben Marzeion, Seyedhamidreza Mojtabavi, and Daniel Farinotti
The Cryosphere, 18, 5045–5066, https://doi.org/10.5194/tc-18-5045-2024,https://doi.org/10.5194/tc-18-5045-2024, 2024
Short summary
A minimal machine learning glacier mass balance model
Marijn van der Meer, Harry Zekollari, Matthias Huss, Jordi Bolibar, Kamilla Hauknes Sjursen, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2378,https://doi.org/10.5194/egusphere-2024-2378, 2024
Short summary
Method development and application for the analysis of chiral organic marker species in ice-cores
Johanna Schäfer, Anja Beschnitt, François Burgay, Thomas Singer, Margit Schwikowski, and Thorsten Hoffmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2243,https://doi.org/10.5194/egusphere-2024-2243, 2024
Short summary
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098,https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary

Related subject area

Alpine Glaciers
Unprecedented 21st century glacier loss on Mt. Hood, Oregon, USA
Nicolas Bakken-French, Stephen J. Boyer, B. Clay Southworth, Megan Thayne, Dylan H. Rood, and Anders E. Carlson
The Cryosphere, 18, 4517–4530, https://doi.org/10.5194/tc-18-4517-2024,https://doi.org/10.5194/tc-18-4517-2024, 2024
Short summary
Brief communication: On the potential of seismic polarity reversal to identify a thin low-velocity layer above a high-velocity layer in ice-rich rock glaciers
Jacopo Boaga, Mirko Pavoni, Alexander Bast, and Samuel Weber
The Cryosphere, 18, 3231–3236, https://doi.org/10.5194/tc-18-3231-2024,https://doi.org/10.5194/tc-18-3231-2024, 2024
Short summary
Distributed surface mass balance of an avalanche-fed glacier
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
EGUsphere, https://doi.org/10.5194/egusphere-2024-1733,https://doi.org/10.5194/egusphere-2024-1733, 2024
Short summary
Mapping and characterization of avalanches on mountain glaciers with Sentinel-1 satellite imagery
Marin Kneib, Amaury Dehecq, Fanny Brun, Fatima Karbou, Laurane Charrier, Silvan Leinss, Patrick Wagnon, and Fabien Maussion
The Cryosphere, 18, 2809–2830, https://doi.org/10.5194/tc-18-2809-2024,https://doi.org/10.5194/tc-18-2809-2024, 2024
Short summary
Reconstructed glacier area and volume changes in the European Alps since the Little Ice Age
Johannes Reinthaler and Frank Paul
EGUsphere, https://doi.org/10.5194/egusphere-2024-989,https://doi.org/10.5194/egusphere-2024-989, 2024
Short summary

Cited articles

Alfaro, S., Lafon, S., Rajot, J., Formenti, P., Gaudichet, A., and Maillé, M.: Iron oxides and light absorption by pure desert dust: an experimental study, J. Geophys. Res., 109, D08208, https://doi.org/10.1029/2003JD004374, 2004.
Anderson, E.: A point energy and mass balance model of a snow cover, NOAA Tech. Rep. NWS 19, NOAA, US Dept. Commer., Washington, DC, 150 pp., 1976.
Anslow, F., Hostetler, S., Bidlake, W., and Clark, P.: Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty, J. Geophys. Res., 113, F02019, https://doi.org/10.1029/2007JF000850, 2008.
Begert, M., Schlegel, T., and Krichhofer, W.: Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000, Int. J. Climatol., 25, 65–80, 2005.
Bond, T., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D., and Trautmann, N.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007.
Download
Short summary
Light-absorbing impurities in snow and ice increase the absorption of solar radiation and thus enhance melting. We investigated the effect of Saharan dust and black carbon on the mass balance of an Alpine glacier over 1914-2014. Snow impurities increased melt by 15-19% depending on the location on the glacier. From the accumulation area towards the equilibrium line, the effect of impurities increased as more frequent years with negative mass balance led to a re-exposure of dust-enriched layers.