Articles | Volume 18, issue 9
https://doi.org/10.5194/tc-18-4089-2024
https://doi.org/10.5194/tc-18-4089-2024
Research article
 | 
10 Sep 2024
Research article |  | 10 Sep 2024

Which global reanalysis dataset has better representativeness in snow cover on the Tibetan Plateau?

Shirui Yan, Yang Chen, Yaliang Hou, Kexin Liu, Xuejing Li, Yuxuan Xing, Dongyou Wu, Jiecan Cui, Yue Zhou, Wei Pu, and Xin Wang

Related authors

Dust storms from the Taklamakan Desert significantly darken snow surface on surrounding mountains
Yuxuan Xing, Yang Chen, Shirui Yan, Xiaoyi Cao, Yong Zhou, Xueying Zhang, Tenglong Shi, Xiaoying Niu, Dongyou Wu, Jiecan Cui, Yue Zhou, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 24, 5199–5219, https://doi.org/10.5194/acp-24-5199-2024,https://doi.org/10.5194/acp-24-5199-2024, 2024
Short summary

Related subject area

Discipline: Snow | Subject: Seasonal Snow
An examination of changes in autumn Eurasian snow cover and its relationship with the winter Arctic Oscillation using 20th Century Reanalysis version 3
Gareth J. Marshall
The Cryosphere, 19, 663–683, https://doi.org/10.5194/tc-19-663-2025,https://doi.org/10.5194/tc-19-663-2025, 2025
Short summary
Historical snow measurements in the central and southern Apennine Mountains: climatology, variability, and trend
Vincenzo Capozzi, Francesco Serrapica, Armando Rocco, Clizia Annella, and Giorgio Budillon
The Cryosphere, 19, 565–595, https://doi.org/10.5194/tc-19-565-2025,https://doi.org/10.5194/tc-19-565-2025, 2025
Short summary
Benchmarking of snow water equivalent (SWE) products based on outcomes of the SnowPEx+ Intercomparison Project
Lawrence Mudryk, Colleen Mortimer, Chris Derksen, Aleksandra Elias Chereque, and Paul Kushner
The Cryosphere, 19, 201–218, https://doi.org/10.5194/tc-19-201-2025,https://doi.org/10.5194/tc-19-201-2025, 2025
Short summary
Snow depth sensitivity to mean temperature, precipitation, and elevation in the Austrian and Swiss Alps
Matthew Switanek, Gernot Resch, Andreas Gobiet, Daniel Günther, Christoph Marty, and Wolfgang Schöner
The Cryosphere, 18, 6005–6026, https://doi.org/10.5194/tc-18-6005-2024,https://doi.org/10.5194/tc-18-6005-2024, 2024
Short summary
Use of multiple reference data sources to cross-validate gridded snow water equivalent products over North America
Colleen Mortimer, Lawrence Mudryk, Eunsang Cho, Chris Derksen, Mike Brady, and Carrie Vuyovich
The Cryosphere, 18, 5619–5639, https://doi.org/10.5194/tc-18-5619-2024,https://doi.org/10.5194/tc-18-5619-2024, 2024
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The Version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2, 2003. 
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006. 
Bair, E.: edwardbair/SPIRES, GitHub [code], https://github.com/edwardbair/SPIRES, last access: 4 February 2023. 
Bair, E. H., Stillinger, T., and Dozier, J.: Snow Property Inversion from Remote Sensing (SPIReS): a generalized multispectral unmixing approach with examples from MODIS and Landsat 8 OLI, IEEE T. Geosci. Remote, 59, 7270–7284, https://doi.org/10.1109/TGRS.2020.3040328, 2021. 
Beaudoing, H. and Rodell, M.: NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 3 hourly 0.25 × 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/E7TYRXPJKWOQ, 2020a. 
Download
Short summary
The snow cover over the Tibetan Plateau (TP) plays a role in climate and hydrological systems, yet there are uncertainties in snow cover fraction (SCF) estimations within reanalysis datasets. This study utilized the Snow Property Inversion from Remote Sensing (SPIReS) SCF data to assess the accuracy of eight widely used reanalysis SCF datasets over the TP. Factors contributing to uncertainties were analyzed, and a combined averaging method was employed to provide optimized SCF simulations.
Share