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Abstract. The extensive snow cover across the Tibetan
Plateau (TP) has a major influence on the climate and wa-
ter supply for over 1 billion downstream inhabitants. How-
ever, an adequate evaluation of variability in the snow cover
fraction (SCF) over the TP simulated by multiple reanaly-
sis datasets has yet to be undertaken. In this study, we used
the Snow Property Inversion from Remote Sensing (SPIReS)
SCF dataset for the water years (WYs) 2001–2017 to eval-
uate the capabilities of eight reanalysis datasets (HMASR,
MERRA2, ERA5, ERA5L, JRA55, CFSR, CRAL, and
GLDAS) in simulating the spatial and temporal variability
in SCF in the TP. CFSR, GLDAS, CRAL, and HMASR
are good in simulating the spatial pattern of climatological
SCF, with lower bias and higher correlation and Taylor skill
score (SS). By contrast, ERA5L, JRA55, and ERA5 have a
relatively good performance in terms of SCF annual trends
among eight reanalysis datasets. The biases in SCF simu-
lations across reanalysis datasets are influenced by a com-
bination of meteorological forcings, including snowfall and
temperature, as well as by the SCF parameterization meth-
ods. However, the primary influencing factors vary among
the reanalysis datasets. Additionally, averaging multiple re-
analysis datasets can enhance the spatiotemporal accuracy
of SCF simulations, but this enhancement effect does not
consistently increase with the number of reanalysis datasets
used.

1 Introduction

Widespread snow cover on the Tibetan Plateau (TP), with its
high albedo and low thermal conductivity, plays a crucial role
in the surface energy balance (Zhang, 2005) and affects the
climate locally (Zhang et al., 2022), across Asia, and glob-
ally (Lyu et al., 2018; Ma et al., 2017). Furthermore, in its
role as the “Asian water tower” (Kitoh and Arakawa, 2016;
Qiu, 2008; Xu et al., 2008), the snow that accumulates on the
TP during the cold season is an essential freshwater resource
for over 1 billion people during the warm season, supplying
their domestic, agricultural, and industrial water needs (Im-
merzeel et al., 2010). In the context of climate change, the
snow cover over the TP is an extremely sensitive element to
warming (Yao et al., 2019; You et al., 2020a). Therefore, the
accurate and reliable representation of snow cover over the
TP is crucial to regional climate and ecosystem studies.

Comprehensive ground-based measurements face chal-
lenges due to the complex terrain and harsh weather condi-
tions on the TP (Yang et al., 2019), leading to issues of spa-
tial representativeness. By contrast, optical satellite observa-
tions provide global-scale snow cover data and offer crucial
support for snow research. For example, NASA’s Moderate
Resolution Imaging Spectroradiometer (MODIS) has been
providing moderate-resolution global daily snow cover frac-
tion (SCF) data since 2000 (Hall et al., 2002). The Snow
Property Inversion from Remote Sensing (SPIReS) then uses
a more advanced spectral unmixing technique that provides
improvements to SCF estimates for the period of water years
(WYs) 2000–2021 (Bair et al., 2021). However, the more
precise satellite products and remote sensing data using more
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advanced methods have relatively short time spans from
2000 to the present, limiting their role in long-term climate
analysis.

Reanalysis methods based on observations and mathemat-
ical models (Fujiwara et al., 2017) provide a critical avenue
for obtaining long-term snow information. These techniques
use data assimilation to integrate historical environmental
observations with short-term weather forecasts, yielding op-
timal estimates of global or regional weather and climate
states (Lei et al., 2023). In recent decades, the major me-
teorological agencies around the world have generated at-
mospheric and land reanalysis products at varying tempo-
ral and spatial resolutions (Fujiwara et al., 2017). Reanaly-
sis datasets have become indispensable sources of data when
it comes to studying processes related to snow variability
as well as their impacts and responses to climate change
(Lin and Wu, 2011; Pu et al., 2021; Thackeray et al., 2016;
Wegmann et al., 2017). For example, the reanalysis snow
dataset (e.g., ERA40 and NCEP-NCAR) has revealed that
anomalous snow cover in prior autumn facilitates a warm-
north, cold-south winter over North America by influencing
the teleconnection response in the Pacific–North American
(PNA) region (Lin and Wu, 2011). Reanalysis datasets (e.g.,
MERRA, ERA-Interim, and GLDAS-2) have been integrated
into the Canadian Sea Ice and Snow Evolution (CanSISE)
dataset to analyze the impacts of global warming on snow
changes on the TP (You et al., 2020b).

A comprehensive evaluation of multiple snow reanal-
ysis datasets based on referenced observation data is of
paramount importance before launching related scientific re-
search. Previous studies have focused more on the accuracy
of snow depth (SD) and snow water equivalent (SWE) in re-
analysis datasets across different regions (Bian et al., 2019;
Li et al., 2022; Wang and Zeng, 2012; Zhang et al., 2021).
However, only Orsolini et al. (2019) and Li et al. (2022) have
assessed the SCF performance of reanalysis datasets over the
High Mountain Asia region based on SCF data from the In-
teractive Multisensor Snow and Ice Mapping System (IMS;
Helfrich et al., 2007) and ground observations. Their stud-
ies considered the SCF accuracy of a limited number of re-
analysis datasets and lacked a multidimensional evaluation
that considers aspects such as regional variations and annual
trends as well as an in-depth analysis of the impact of param-
eterization on SCF bias. In addition, the IMS dataset, which
uses microwave remote sensing technology, is challenging
for detecting shallow or wet snow that may lead to increased
uncertainty in SCF detection (Yu et al., 2013). Therefore,
prior evaluations of reanalysis SCF datasets are still insuf-
ficient.

The various reanalysis snow datasets have unique spa-
tiotemporal characteristics (Mudryk et al., 2015). The dif-
ferences in snow characteristics originate not only from the
use of different land surface models (LSMs), but also from
the meteorological forcing data and parameterization meth-
ods. De Rosnay et al. (2014) indicated that the accuracy of

snow simulations is constrained largely by uncertainties as-
sociated with some of the key meteorological inputs, includ-
ing precipitation and temperature (Cao et al., 2020; Zhang
et al., 2015), under regional climate conditions and eleva-
tion factors (Brown and Mote, 2009; Hernández-Henríquez
et al., 2015). Therefore, uncertainties associated with pre-
cipitation and temperature data are likely to be the primary
sources of bias in the reanalysis SCF datasets. Moreover,
Jiang et al. (2020) emphasized that optimizing the parameter-
ization methods used to convert SD or SWE to SCF would re-
duce the uncertainties associated with snow modeling, which
would further reduce biases in land surface albedo simu-
lations, particularly in high-altitude regions. The reanalysis
datasets use different SCF parameterization methods, with
a 100 % SCF corresponding to an SD that ranges from 2
to 26 cm (Orsolini et al., 2019). The selection of different
SCF parameterizations for the reanalysis datasets may lead
to varying degrees of bias in SCF.

For this study, we conducted an in-depth evaluation of
SCF simulations derived from eight atmospheric and land as-
similation reanalysis datasets over the period of WYs 2001–
2017, using the SPIReS SCF dataset as a reference. The ac-
curacy of SCF was assessed multidimensionally by examin-
ing the spatial characteristics, seasonal variations, and annual
trends across the whole TP and its nine basins. Additionally,
we aimed to assess the influence of meteorological forcing
(snowfall and temperature) and SCF parameterization on the
SCF biases associated with the various reanalysis datasets.
On this basis, we attempted to develop an optimal combina-
tion of reanalysis SCF datasets.

2 Data and methods

2.1 Data

2.1.1 Remote sensing data

For this study, we utilized the SPIReS SCF dataset (Bair et
al., 2021) as the reference SCF. It is derived from Land-
sat 8 Operational Land Imager (OLI) and MODIS data us-
ing a spectral unmixing methodology at a 4 km resolution
for the period spanning WY 2000 to WY 2021 (e.g., WY
2000 refers to 1 October 1999 to 30 September 2000). The
SCF calculation in SPIReS relies on two endmembers (i.e.,
snow and snow-free) along with an ideal shade component,
effectively simplifying the calculation process while main-
taining high accuracy. SPIReS reduces the effects of cloud
noise through interpolation and smoothing to provide more
accurate SCF data (Bair et al., 2021; Dozier et al., 2008).
In a comprehensive evaluation conducted by Stillinger et
al. (2023) utilizing airborne lidar datasets for subcanopy
snow mapping performance over mountain areas in the west-
ern United States, spectral unmixing-derived data (including
SPIReS and MODIS Snow-Covered Area and Grain Size,
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abbreviated as “MODSCAG”) exhibited lower bias and root
mean square error (RMSE) compared with data derived from
band ratio methods and spectral mixture methods. Moreover,
unlike MODSCAG, SPIReS incorporates the influence of
light-absorbing particles on snow, leading to more accurate
SCF data.

2.1.2 Reanalysis datasets

We examined eight widely used reanalysis datasets obtained
from various meteorological organizations, with details listed
in Table 1. Meteorological forcing fields are used to drive
the LSMs, and parameterization methods are used to calcu-
late the daily SCF data. The assimilation of snow data varied
among the datasets.

The High Mountain Asia Snow Reanalysis (HMASR; Liu
et al., 2021a) is a snowpack-specific reanalysis dataset pro-
duced by the NASA High Mountain Asia Team (HiMAT).
HMASR uses the simplified Simple Biosphere model, ver-
sion 3 (SSiB3; Sun and Xue, 2001; Xue et al., 2003), as the
LSM to generate the initial snowpack mass for WYs 2000–
2017 based on meteorological inputs from MERRA2 and
physiographic characteristics. The model-derived SCF pre-
dictions are then constrained by integrating spectral unmix-
ing algorithm-derived SCF data from the MODIS and Land-
sat satellites products (Painter et al., 2009) via data assim-
ilation. The parameterization method used in HMASR (ab-
breviated as “SSiB3_SCF” in Table 1) has not been publicly
disclosed.

The Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA2; Gelaro et al., 2017), de-
veloped by NASA’s Global Modeling and Assimilation Of-
fice (GMAO), provides land surface state estimates including
SCF via the Catchment LSM (CLSM; Koster et al., 2000).
The surface-forced precipitation is a combination of the Na-
tional Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (CPC) unified gauge-based anal-
ysis of global daily precipitation (CPCU; Xie et al., 2007)
product and the precipitation generated by the atmospheric
general circulation model within the MERRA2 system. The
generated precipitation is also adjusted using a precipitation
correction algorithm (Reichle et al., 2017). MERRA2 does
not include snow data assimilation. The parameterization
scheme in MERRA2 considers 100 % SCF to occur when
the SWE reaches a threshold of 26 kg m−2 (abbreviated as
“MM_SCF” in Table 1; Orsolini et al., 2019; Reichle et al.,
2017).

The ECMWF Reanalysis version 5 (ERA5; Hersbach et
al., 2020), produced and published by the European Centre
for Medium-Range Weather Forecasts (ECMWF), uses the
Tiled ECMWF Scheme for Surface Exchanges over Land
(HTESSEL) model to simulate various land surface vari-
ables. The precipitation forcing in ERA5 is adjusted using
Global Precipitation Climatology Project (GPCP; Adler et
al., 2003) data. ERA5 assimilates in situ SD observations

and binary SCF data from IMS only below 1500 m so that
snow assimilation does not apply to the TP region (Bian et
al., 2019). Additionally, a refined dataset known as “ERA5-
Land” (abbreviated as “ERAL”; Muñoz-Sabater et al., 2021)
has been derived from ERA5 via the offline rerunning of
the land portion of the model at a higher spatial resolution.
ERA5L provides solely land surface parameters and is based
on the same forcing and LSM as ERA5. Both datasets have
a 10 cm SD threshold to identify full SCF (abbreviated as
“ME_SCF” in Table 1; ECMWF, 2018; Orsolini et al., 2019).
ERA5 does not directly output the SCF variable. The SCF
values for ERA5 used in this study were calculated using the
ME_SCF method.

The Japanese 55-year Reanalysis (JRA55; Kobayashi et
al., 2015), developed by the Japan Meteorological Agency
(JMA), generates the land surface analysis field using an of-
fline version of the Simple Biosphere (SIB) model (Sato et
al., 1989; Sellers et al., 1986). The precipitation forcing is
corrected using precipitable water retrieved from the Spe-
cial Sensor Microwave/Imager (SSM/I) brightness temper-
ature (Onogi et al., 2007). JRA55 incorporates daily SD data
from the SSM/I and the Special Sensor Microwave Imager
Sounder (SSMIS) using a univariate two-dimensional opti-
mal interpolation (OI) approach. In addition, it assimilates
surface synoptic observation (SYNOP) reports and digitizes
China’s daily SD data from 1971 to 2006 (Onogi et al., 2007).
The detection of full SCF in JRA55 is based on a 2 cm SD
threshold (abbreviated as “MJ_SCF” in Table 1; Orsolini et
al., 2019). Similar to ERA5, the SCF in JRA55 was also cal-
culated rather than provided directly by the product.

The Climate Forecast System Reanalysis (CFSR; Saha et
al., 2010a), developed by the National Center for Environ-
mental Prediction (NCEP) under NOAA, is a weakly coupled
global reanalysis system. The land surface analysis utilizes
the Noah model (Meng et al., 2012). Two observed global
precipitation analyses, namely, the CPC Merged Analysis of
Precipitation (CMAP; Xie and Arkin, 1997) and the CPCU,
are used as alternative forcings for precipitation. In terms of
snow analysis, CFSR assimilates IMS and the Global Snow
Depth Model (SNODEP). On 1 January 2011, CFSR tran-
sitioned to a newer version of the NCEP data assimilation
system called “CFSv2” (Saha et al., 2014). Despite differ-
ences in horizontal resolution and minor changes to the phys-
ical parameterization, CFSv2 is considered a continuation of
CFSR in most cases (Fujiwara et al., 2017). The SCF param-
eterization method in CFSR is related to the surface char-
acteristics, using varying SD thresholds to identify the full
SCF depending on the underlying surface type (abbreviated
as “Noah_SCF” in Table 1; Ek et al., 2003).

The Global Land Data Assimilation System version 2.1
(GLDAS-2.1; Rodell et al., 2004) is a global land data as-
similation product developed jointly by NASA and NOAA.
It uses the global meteorological forcing dataset from Prince-
ton University (Sheffield et al., 2006) and the GPCP V1.3
Daily Analysis precipitation fields (Adler et al., 2003; Huff-
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man et al., 2001) to drive three distinct LSMs: the CLSM
model, the Noah model, and the Variable Infiltration Capac-
ity (VIC) model. As a result, four datasets are generated (Ta-
ble S1 in the Supplement). Notably, the full-series datasets
within GLDAS-2.1 do not assimilate snow observations. Fur-
thermore, owing to the unavailability of SCF variables in
these datasets, this study derived different SCF values using
three parameterization methods (MM_SCF, ME_SCF, and
MJ_SCF). Finally, the 0.25°× 0.25° GLDAS–Noah product
using the MM_SCF approach was selected as a representa-
tive of GLDAS due to its better SCF simulation (Fig. S1 in
the Supplement).

China’s first-generation global atmospheric and land re-
analysis (CRA-40; Liu et al., 2023) is produced by the China
Meteorological Administration (CMA). The matched land
surface reanalysis datasets (CRA-40/Land, abbreviated as
“CRAL”) are simultaneously generated offline based on an
updated version of the Noah model and atmospheric driving
factors from CRA-40. In CRAL, precipitation meteorolog-
ical forcing is derived from a similar combination of data
sources to CFSR (Liang et al., 2020). CRAL does not assim-
ilate other observational data in the LSM. Instead, data from
over 2400 CMA surface weather observatories indirectly in-
fluence the land surface product through conventional meteo-
rological forcing derived from atmospheric reanalysis (Liang
et al., 2020). The SCF parameterization method in CRAL is
the same as that in CFSR.

2.1.3 Meteorological dataset

To investigate the effects of snowfall and temperature biases
on SCF bias, we used precipitation and 2 m air temperature
data from the high-resolution near-surface Meteorological
Forcing Dataset for the Third Pole region (TPMFD; Yang et
al., 2023) as the reference data. Precipitation and 2 m air tem-
perature in TPMFD were derived by combining a short-term
high-resolution Weather Research and Forecasting (WRF)
simulation (Zhou et al., 2021), long-term ERA5 data, and
in situ observations, all at a resolution of 1/30° for the pe-
riod 1979–2020. Validation conducted by Jiang et al. (2023)
demonstrated that the precipitation data from TPMFD are un-
biased overall and considerably better than other widely used
datasets. To obtain snowfall data for this study, we applied a
dynamic threshold parameterization scheme, which consid-
ers surface air conditions such as wet bulb temperature, alti-
tude, and relative humidity, to convert TPMFD total precipi-
tation to snowfall. This approach has been proven effective in
capturing snowfall variations on the TP through comparisons
with station observations (Ding et al., 2014) and has been
used in many studies (Deng et al., 2017; Luo et al., 2020;
Yang et al., 2021; Zhu et al., 2017). For detailed calculation
methods and further information, readers are referred to the
work of Ding et al. (2014). We note that TPMFD lacks the
relative humidity variable necessary for snowfall conversion,
while all variables in TPMFD are assimilated from ERA5
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data. Therefore, we utilized ERA5 surface relative humidity
as a substitute.

2.2 Study region

The boundary of the TP used in this study is identified as an
isoline of 2500 m according to the Global Multi-resolution
Terrain Elevation Data 2010 (Danielson and Gesch, 2011),
spanning 26–41° N and 67–105° E (Fig. 1b). The prevailing
westerlies and monsoons are the primary moisture sources
in this region, exerting significant influence on the spatial
and temporal distribution of snowfall and glacier mass bal-
ance (Liu et al., 2021a; Yao et al., 2012). Specifically, the
westerlies dominate winter precipitation, while the Indian
and East Asian monsoons dominate summer precipitation in
the southeast (Yao et al., 2012), resulting in diverse snow
regimes. We identified nine major river basins within the TP
using Hydrological Data and Maps Based on Shuttle Eleva-
tion Derivatives at Multiple Scales (HydroSHEDS; Lehner
et al., 2008), namely, the Amu, Indus, Tarim, Inner Tibetan
Plateau (ITP), Brahmaputra, Salween, Mekong, Yangtze, and
Yellow basins. Due to the differing impacts of winter and
summer atmospheric forcing, the performance of SCF simu-
lations from reanalysis datasets varies across these basins.

2.3 Methods

2.3.1 Evaluation of SCF accuracy for reanalysis
datasets

In this study, we used time series spanning WYs 2001–2017,
covering periods for which all data were available. Before
evaluation, all data were regridded to a 0.5°× 0.5° grid via
bilinear interpolation for MERRA2, JRA55, and CRAL and
the grid averaging approach for HMASR, ERA5, ERA5L,
GLDAS, SPIReS, and TPMFD.

For each 0.5°× 0.5° grid cell within the TP, we calculated
the climatological SCF over the full period and seasonally for
SPIReS and eight reanalysis datasets (e.g., Figs. 1a and S3).
Absolute bias and correlation (Pearson’s correlation coeffi-
cient) were calculated from these values at both the basin and
the TP scales. Spatial distribution and basin-averaged values
of the climatological SCF, as well as bias maps of the re-
analysis datasets compared with SPIReS, are presented. Ad-
ditionally, Taylor diagrams are used to provide additional in-
formation regarding the RMSE and standard deviation ratio
(STDR). The climatological SCF values for each grid cell
within each basin and region were used as input to calculate
the Taylor diagram component metrics (correlation, RMSE,
and STDR). The component metrics were summarized by the
Taylor skill score (SS) as follows:

SS=
4(1+R)4

(STDR+ 1/STDR)2(1+R0)
4 , (1)

where R0 is the maximum correlation attainable.

The Mann–Kendall (MK; Kendall, 1975; Mann, 1945) test
was used to assess the significance of annual trends. Since the
sign (+ or −) may impact the robustness of the trend anal-
ysis results, we employed the consistency index (CI; Zhang
et al., 2021) to compare the agreement in SCF annual trend
signs between the reanalysis datasets and SPIReS. The CI is
defined as follows:

CI=
Ninc+Ndec+Nno

Ntot
, (2)

where Ninc is the number of grid points with a significant
increasing trend in both the reanalysis dataset and SPIReS
(P < 0.05), Ndec is the number of grid points with a signif-
icant decreasing trend in both datasets, Nno is the number
of grid points with a non-significant trend in both datasets,
and Ntot is the total number of grid points. The higher the CI
value, the better the performance of the trend simulation.

2.3.2 Analysis of SCF bias sources for meteorological
forcings

Variations in snowfall and temperature are the dominant in-
fluences on snow evolution and can explain half to two-thirds
of the interannual variability in snow cover (Xu et al., 2017).
Hence, biases in snowfall and temperature within reanalysis
datasets are likely the main sources of bias in SCF. Here, the
analysis of bias sources was primarily based on correlation
analysis between the bias of SCF and the biases of snowfall
and temperature. The absolute biases of snowfall and tem-
perature were computed by comparing the reanalysis datasets
with TPMFD. Additionally, we calculated the correlation be-
tween the annual time series of snowfall and temperature bi-
ases at each TP grid cell and SCF bias to obtain the spatial
distribution of correlations, as shown in Fig. 6.

2.3.3 Analysis of SCF bias sources for
parameterization method

Evaluations have shown that in the TP, with relatively thin
and short-lived snow (Huang et al., 2023), optimizing the
SCF parameterization can significantly reduce the annual
SCF bias in snow models (Jiang et al., 2020). Orsolini
et al. (2019) noted that SCF parameterization differs sig-
nificantly among reanalyses, affecting SCF bias. For the
eight reanalysis datasets considered here, five parameteri-
zations were used to convert SWE or SD into SCF, i.e.,
MM_SCF, ME_SCF, MJ_SCF, SSiB3_SCF, and Noah_SCF
(see Sect. 2.1.2 and Table 1). In order to evaluate the im-
pact of the parameterization on SCF simulations, we incor-
porated three publicly available and easily offline-usable pa-
rameterization methods (MM_SCF, ME_SCF, and MJ_SCF)
separately into each reanalysis dataset. For HMASR, CRAL,
and CFSR, which do not include their parameterization
among these three methods, we derived three additional
SCF datasets. For MERRA2, ERA5, ERA5L, JRA55, and
GLDAS we derived another two SCF datasets.
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2.3.4 Generation of combined optimal datasets

Mortimer et al. (2020) demonstrated that product accuracy
can be enhanced by averaging multiple reanalysis datasets,
as this allows unrelated errors and deficiencies between them
to offset each other. To investigate whether averaging of mul-
tiple datasets can improve SCF accuracy over the complex
terrain of the TP, we considered all possible combinations of
the eight reanalysis datasets, totaling 247. The output of each
combined dataset was computed as the equally weighted av-
erage of all reanalysis datasets in the combination (Mudryk
et al., 2015). Subsequently, we characterized the SCF accu-
racy of combined datasets in spatial distribution and annual
trends by computing the SS and CI values.

3 Results

3.1 Evaluation of spatial and temporal accuracy in
SCF

3.1.1 Spatial variability of SCF climatology and
seasonality

The TP-averaged SCF for HMASR, GLDAS, and CRAL
is 0.14, 0.12, and 0.12, respectively, which aligns closely
with the SPIReS value of 0.13 (Fig. 1b). HMASR (GLDAS
and CRAL) slightly underestimates (overestimates) in
westerlies-dominated basins such as the Amu and Indus
and overestimates (underestimates) in monsoon-dominated
basins such as the Yellow, Yangtze, Mekong, Salween, and
Brahmaputra (Fig. 2a). These regional biases average out
when considering the entire TP, which is reflected in the
strong permanence of these datasets over the TP. Conversely,
ERA5, ERA5L, and JRA55 have large positive SCF biases
across all basins, whereas MERRA2 has a negative bias in
all basins. Over the TP as a whole, ERA5 (MERRA2) has
the largest positive (negative) bias.

All datasets have similar spatial patterns of SCF, with
higher values in the western TP and lower values in the
interior (Fig. 1a). However, compared with SPIReS, the
magnitude and sign of their biases vary spatially (Fig. 2a).
This variation is demonstrated by their differing correlation,
STDR, and RMSE values (Fig. 2b; see Fig. S2 for a clearer
version) and hence their SS values (Fig. 2c) between the
reanalysis datasets and SPIReS. CFSR has the highest SS
value of 0.83, reflecting its strong correlation in westerlies-
dominated basins and variability close to that of SPIReS in
monsoon-dominated basins (STDR close to 1, e.g., 0.98 for
the Indus Basin). The SS values for GLDAS, CRAL, and
HMASR are all above 0.7, benefiting from their high correla-
tions similar to CFSR. Consequently, these four datasets have
superior SCF spatial performance across the TP. By con-
trast, although ERA5, ERA5L, and JRA55 can adequately
capture the STDR in monsoon-dominated basins, their large
positive biases lead to high RMSE, resulting in moderate SS

values across the TP. MERRA2 has the worst spatial per-
formance, with the lowest SS value in all basins and across
the TP. This contradicts Orsolini et al. (2019), who found
MERRA2 to perform well in capturing the SCF and SD char-
acteristics. This discrepancy arises because their results de-
pended mainly on the high correlation between MERRA2
and the reference dataset, ignoring severe underestimations
in SCF values. These underestimations result in very small
self-standard deviations in the STDR calculation, leading to
the lowest SS value.

Basins affected primarily by the winter westerlies (e.g., the
Amu and Indus basins) have better spatial performance, with
the SS values for all reanalysis datasets within these basins
exceeding 0.66 (Fig. 2c). In basins influenced by the summer
monsoon (e.g., the Yellow, Yangtze, Mekong, Salween, and
Brahmaputra basins), SCF spatial consistency with SPIReS
varies. The basin-averaged SCF climatology is highly bi-
ased in the Yellow and Yangtze basins for the reanalysis
datasets (Fig. 1b). Specifically, the basin-averaged SCF val-
ues of ERA5, ERA5L, and JRA55 (MERRA2) are more than
2× larger (lower) than SPIReS. These biases result in var-
ied RMSE and STDR values among these reanalysis datasets
(Fig. 2b) and lower SS values (Fig. 2c). However, this phe-
nomenon is less pronounced in the Salween and Brahmapu-
tra basins. The Tarim and ITP basins are considered inland
basins. In particular, the ITP basin shows the poorest SCF
spatial performance among basins, with the reanalysis aver-
age SS value of only 0.33.

Figure 3 shows the SCF bias, its probability density dis-
tribution, and the SS values for four seasons. In general, the
different seasons have similar spatial patterns of SCF bias
for each reanalysis dataset (Fig. 3, first to fourth columns on
the left). However, there are seasonal variations in the bias
magnitudes, with larger biases during the accumulation pe-
riod (winter and spring) and smaller biases during the abla-
tion period (summer and autumn). The largest bias in winter
can be several times larger than the lowest bias in summer.
This is because higher seasonal averages of SCF (Fig. S3)
may induce larger seasonal bias. Additionally, correlation
and STDR (Table S2), and hence SS (Fig. 3, fifth column
on the left), are better during the accumulation period, indi-
cating that winter and spring have better spatial performance
for SCF. MERRA2 and CRAL have the largest seasonal vari-
ability in SCF performance (Fig. 3, sixth column on the left).

3.1.2 Annual variability and trends in SCF

The 17 WY time series of reanalysis datasets have spatially
consistent overestimates for ERA5L, ERA5, and JRA55 and
an underestimate for MERRA2 (Fig. 4a). Notably, the fluctu-
ations in CFSR around 2010 align with variations in its tem-
perature and snowfall (Fig. S4), most likely due to inherent
discontinuities in the dataset that cause changes in bound-
ary conditions and subsequently in model output variables
(Fujiwara et al., 2017). Additionally, the annual variation of
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Figure 1. (a) Spatial distribution of snow cover fraction (SCF) climatological average for water years (WYs) 2001–2017 from SPIReS and
eight reanalysis datasets over the Tibetan Plateau region. (b) Basin-averaged SCF climatology from SPIReS (horizontal black line) and the
eight reanalysis datasets overlain on a map of the TP. ITP: Inner Tibetan Plateau.

TP-averaged SCF has no significant annual trend in SPIReS
(Fig. 4b). ERA5L, JRA55, and GLDAS have annual trends
consistent with SPIReS, showing a slight decline and sig-
nificant correlation, with correlation coefficients above 0.7
(Fig. 4c). Although HMASR and ERA5 have a slight increas-
ing trend, they remain significantly correlated with SPIReS.
Conversely, the correlation of MERRA2, CFSR, and GLDAS
with SPIReS did not pass the statistical significance test.

We further evaluated the spatial consistency of annual
trends in reanalysis datasets with SPIReS (Fig. 5). SPIReS
has generally decreased SCF over the westerlies-dominated
and the eastern and southeastern monsoon-dominated basins,

but increased SCF in the northeastern ITP, the central
Brahmaputra, and the northern Yangtze basins. However,
these changes are statistically significant in only about 17 %
of the TP (Fig. 5a). ERA5L, JRA55, and ERA5 have greater
variability in SCF annual trends, with significant decreases in
the Tarim basin. Nevertheless, they still have relatively high
CI values of 0.62, 0.58, and 0.51, respectively (Fig. 5b). This
indicates that ERA5L, JRA55, and ERA5 can capture more
than half of the SCF annual trend changes over the TP, having
the spatial pattern of annual trends most similar to SPIReS.
By contrast, CFSR has highly uneven SCF annual trends with
intermixed increases and decreases across grid cells, result-
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Figure 2. (a) Spatial distribution of the SCF climatological bias from the reanalysis datasets based on SPIReS over the TP. (b) Taylor
diagrams showing the correlation coefficients (R), root mean square error (RMSE), and standard deviation ratio (STDR) of SCF between the
reanalysis datasets and SPIReS for each basin, overlain on a map of the TP. (c) Taylor skill scores (SS) for each basin overlain on a map of
the TP. The black line is the average of the SS values for all reanalysis datasets in the basins.

ing in a poorer trend performance with a CI value of only
0.39. MERRA2 exhibits significant increasing trends in the
Indus basin but fails to capture the correct decreasing trend in
the monsoon-dominated basins. Consequently, it has the low-
est CI value of 0.38, with CI values below 0.4 in most basins
(Fig. S6). GLDAS has a significant decrease in SCF over
more than 60 % of the TP, notably differing from SPIReS.
Although the widespread significant trends allow GLDAS to
capture the most correct significant increase and decrease in
trends, reaching 16.42 % (as indicated by the red and yellow
bars in Fig. 5b), it also introduces a major drawback by mis-
judging too many insignificant SCF fluctuations. Therefore,
GLDAS has the lowest CI value, similar to MERRA2. Com-
binations of SCF time series and spatial consistency in the
SCF annual trend, ERA5L, JRA55, and ERA5 have better
temporal performance, while CFSR, MERRA2, and GLDAS
perform worse.

3.2 Bias attribution of SCF

3.2.1 Meteorological forcing effects on SCF bias

The evolution of SCF can be determined from the balance be-
tween snow mass gain via snowfall and snow depletion via
snowmelt, sublimation, and wind drifting (Liu et al., 2022).
Both snowfall and snowmelt are strongly dependent on tem-

perature (Serquet et al., 2011; Vorkauf et al., 2021); hence,
the accuracy of snowfall and temperature forcings impacts
the accuracy of snow-related variables (Zhang et al., 2015).
We investigated the impact of meteorological factors on SCF
bias by examining the performance with respect to snowfall
and temperature in each reanalysis dataset.

In the climatological spatial distribution, ERA5, ERA5L,
JRA55, and CFSR overestimate snowfall in both the
westerlies-dominated and monsoon-dominated basins, par-
ticularly in the Indus and Brahmaputra basins (Fig. 6, first
column on the left). Conversely, these reanalysis datasets
consistently underestimate temperatures in these regions
(Fig. 6, third column on the left). Overestimated snowfall
contributes to heightened snow accumulation, while under-
estimated temperatures can impede the snowmelt process,
leading to an overestimation of snow cover (Liu et al., 2022).
The combination of overestimated snowfall and underesti-
mated temperatures contributes to the positive SCF bias ob-
served in ERA5, ERA5L, JRA55, and CFSR, evidenced by
the significant correlations between snowfall and tempera-
ture biases and SCF bias (Fig. 6, second and fourth columns
on the left). Additionally, the positive SCF and snowfall bi-
ases, as well as negative temperature bias for these reanalysis
datasets, persist across four seasons, reflecting that the uncer-
tainties in snowfall and temperature data affect the SCF bias
year-round (Fig. 7). Compared with snowfall, temperature

The Cryosphere, 18, 4089–4109, 2024 https://doi.org/10.5194/tc-18-4089-2024



S. Yan et al.: Which global reanalysis dataset has better representativeness in snow cover on the TP? 4097

Figure 3. The first four columns show the spatial distribution of seasonal SCF climatological bias from the reanalysis datasets based on
SPIReS over the TP during (left to right) autumn (September–November: SON), winter (December–February: DJF), spring (March–May:
MAM), and summer (June–August: JJA). The SS values of seasonal SCF climatology are shown in the fifth column. The probability density
distribution of seasonal SCF climatological bias is shown in the sixth column. The dashed lines in the sixth column represent the TP-average
SCF bias for each season.

bias has higher correlations with SCF bias and passes sig-
nificance tests over broader areas (Fig. 6, second and fourth
columns on the left). This indicates that physical processes
influenced by temperature bias may have a more pronounced
and widespread role with respect to SCF bias. The temper-
ature biases in ERA5, ERA5L, JRA55, and CFSR also ap-
pear to have a greater impact on the seasonal evolution of
SCF biases, as evidenced by the higher correlation values
(Fig. 7). For MERRA2, CRAL, and GLDAS, the SCF cli-
matology has large biases in the westerlies-dominated basins
as well as in the Tarim and Brahmaputra basins (Fig. 2a),
where a significant correlation exists between snowfall and
temperature biases and SCF bias (Fig. 6, second and fourth
columns on the left). This suggests that in these regions, both
snowfall and temperature play equally important roles in in-
fluencing the SCF biases in MERRA2, CRAL, and GLDAS.
When considering the TP as a whole, the SCF biases across
four seasons for these three datasets align with their well-
simulated snowfall (Fig. 7). Therefore, snowfall is likely the
primary driver of the seasonal SCF bias.

The snowfall and temperature annual trends in most
datasets are significantly correlated with their own SCF an-
nual trends (Table S3), indicating that the ability of datasets
to capture the annual trends in meteorological factors influ-
ences the simulation of SCF annual trends. ERA5L, JRA55,
and ERA5 have correct decreasing snowfall trends and in-
creasing temperature trends in the southeastern monsoon-
dominated basins (Fig. 8). Their CI values for meteorolog-
ical factor trends all exceed 0.5, showing better spatial con-
sistency with TPMFD (Table 2), resulting in better SCF trend
simulations. By contrast, MERRA2 has an incorrect signifi-
cant increase in snowfall over a broad region, except for the
Tarim Basin (Fig. 8), resulting in a snowfall CI value of only
0.34 (Table 2) and poorer SCF trend simulations. The highly
uneven spatial distribution of annual snowfall and tempera-
ture trends in CFSR, as well as the widespread significant
trends in GLDAS (with temperature trends significantly in-
creasing in over 90 % of the TP), mirror their respective
SCF annual trend patterns (Fig. 8). Consequently, CFSR and
GLDAS have the lowest CI values for SCF trends (Fig. 5b).
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Figure 4. (a) Time series of the annual SCF from SPIReS and eight reanalysis datasets over the TP. (b) The annual trends of SCF from
SPIReS and eight reanalysis datasets over the TP. (c) The correlation of SCF annual trends in the reanalysis datasets with SPIReS over the
TP. Slashes in (b) and (c) indicate that the annual trends and correlation exceed the 95 % confidence level.

Table 2. CI value for snowfall and temperature from eight reanal-
ysis datasets calculated by comparing with TPMFD annual trends
from WY 2001 to WY 2017.

CI values CI values
for snowfall for temperature

MERRA2 0.34 0.58
ERA5 0.54 0.73
ERA5L 0.55 0.59
JRA55 0.54 0.51
CFSR 0.37 0.29
CRAL 0.53 0.30
GLDAS 0.21 0.35

3.2.2 Parameterization approach effects on SCF bias

Different SCF parameterizations influence the instability in-
herent in the snow models (Dutra et al., 2011; Jiang et al.,
2020). We considered the impact of different parameteriza-
tions on the spatial distribution and annual trend simulation
of SCF for each reanalysis dataset (Fig. 9). The parameteri-
zation process primarily affects the SCF values, while its im-
pact on the phase of fluctuations in SCF time series is limited,
as evidenced by the small variations in CI values among the
reanalysis datasets (Fig. 9b). Therefore, the focus is on the

spatial performance of the parameterization-improved SCF
simulation, reflected by the spatial distribution of SCF bias
(Fig. S7) and SS values (Fig. 9a).

The MM_SCF method improves the SCF spatial simu-
lation in ERA5, ERA5L, JRA55, HMASR, and CFSR, re-
ducing biases and increasing SS values and demonstrating
its broad applicability. Meanwhile, the MM_SCF method is
applicable in most of the basins (Fig. S8). The ME_SCF
method also slightly enhances the spatial performance of
some datasets (Fig. 9a). The Noah_SCF method, which ac-
counts for the complex influence of underlying surface char-
acteristics on SCF, has a spatial performance comparable to
MM_SCF and ME_SCF. This indicates that surface char-
acteristics have a limited impact on spatial SCF accuracy.
In contrast to the parameterization above, the aggressive
MJ_SCF approach with a 2 cm SD threshold to define the
complete SCF (Table 1) reduces the spatial performance of
all datasets, particularly in JRA55, which uses MJ_SCF as
its built-in method. Additionally, SCF obtained using the
MJ_SCF method for all reanalysis datasets has large positive
biases (Fig. S7), further reflecting its inapplicability. Orsolini
et al. (2019) found that JRA55 performs well in SD simula-
tions due to assimilating SD data from Chinese ground obser-
vation stations. When adopting a more appropriate method to
transform SD into SCF, the bias of JRA55 significantly de-
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Figure 5. (a) Spatial distribution of the SCF annual trend from SPIReS and eight reanalysis datasets over the TP for the period WY 2001 to
WY 2017. (b) The consistency index (CI) of SCF trends in reanalysis datasets with SPIReS over the TP.

creased, and the SS value increases from 0.57 to 0.81, com-
parable to the best-performing CFSR (Fig. 9a). This appar-
ent improvement confirms the importance of parameteriza-
tion to JRA55 SCF accuracy. Apart from JRA55, optimiz-
ing parameterization does not significantly alter the spatial
performance ranking of the eight reanalysis datasets. For ex-
ample, the SS values for MERRA2, ERA5, and ERA5L us-
ing the optimal MM_SCF method are still lower than those
for CFSR using the poorest MJ_SCF method. This indirectly
highlights the primary role of snowfall and temperature forc-
ing inputs with respect to SCF simulations.

3.3 Combination of reanalysis datasets for SCF
optimization

Combining datasets can improve SCF accuracy, as evidenced
by the SS and CI values of all combined datasets being higher
than those of the single best-performing dataset (Fig. 10).
However, SCF accuracy does not monotonically improve
with the number of combined datasets. Spatially, the SS value
improves when transitioning from CFSR alone to a combi-
nation with GLDAS and HMASR but declines when more
datasets are combined (Fig. 10a). This appears reasonable
because CFSR, GLDAS, and HMASR have excellent accu-
racy in simulating SCF spatial variability, but adding poorly
performing datasets (e.g., MERRA2 and JRA55) introduces
more bias, resulting in a suboptimal outcome. Consequently,
we concluded that a combination of CFSR, GLDAS, and
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Figure 6. The columns show (from left to right) the spatial distribution of the snowfall climatological bias for the reanalysis datasets based
on TPMFD over the TP, the spatial distribution of the R value between snowfall bias and SCF bias, the spatial distribution of the temperature
climatological bias for the reanalysis datasets based on TPMFD over the TP, and the spatial distribution of R values between temperature
bias and SCF bias. Black dots in the second and fourth columns indicate that the correlation exceeds the 95 % confidence level. HMASR and
MERRA2 share the same meteorological forcing data.

HMASR is optimal for spatial SCF studies over the TP. Tem-
porally, the highest CI value is achieved with the combination
of more datasets, namely, ERA5L, JRA55, HMASR, ERA5,
GLDAS, and CRAL, which is different from the SS results
(Fig. 10b). This is because reanalysis datasets generally have
moderate SCF annual trend performance. Combining more
datasets can help mitigate the shortcomings of individual
datasets and improve the overall annual trend accuracy. In
contrast to the optimal combination, the worst combination
shows a monotonically and significantly improving perfor-
mance for both spatial distribution and annual trends with an
increased number of combined datasets (Fig. 10c and d).

4 Discussion

4.1 Effects of data assimilation, resolution, and LSM

Data assimilation is an effective approach for reducing snow
model uncertainties and enhancing the capability to monitor
seasonal snow changes (Andreadis and Lettenmaier, 2006;
Sun et al., 2004). HMASR directly assimilates SCF data ob-
tained from MODIS and Landsat satellites (Liu et al., 2021a),
which are processed using a spectral unmixing algorithm
that has been found more accurate than the original band
ratio methods (Stillinger et al., 2023). Under the same me-
teorological input fields as MERRA2, the data assimilation
in HMASR corrects the widespread SCF underestimation
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Figure 7. Temporal variations in SCF (black), snowfall (light pink), and temperature (purple) bias averaged at 5 d intervals from all reanalysis
datasets. R in light pink (purple) represents the correlation coefficient between snowfall (temperature) bias and SCF bias. The asterisks
indicate the correlation exceeds the 95 % confidence level. HMASR and MERRA2 share the same meteorological forcing data.

and erroneous trends in the southwestern TP exhibited by
MERRA2, enhancing the spatiotemporal simulation perfor-
mance of HMASR. By contrast, the lowest SS and CI val-
ues in SCF spatiotemporal simulations for MERRA2 may be
partly related to its lack of SCF data assimilation. JRA55 and
CFSR assimilate SD data and show good simulation perfor-
mance in SD and SWE (Bian et al., 2019; Orsolini et al.,
2019). However, the process of converting SD to SCF in
JRA55 introduces additional errors, limiting the impact of
SD assimilation on SCF spatial simulation accuracy. By con-
trast, CFSR employs a more reasonable SCF parameteriza-
tion, resulting in significantly higher spatial simulation per-
formance compared with JRA55. This indirectly highlights
the influence of parameterization methods on SCF simula-
tion in JRA55.

The spatial resolution of reanalysis datasets and the choice
of LSM may also affect the accuracy of SCF simulations. Lei

et al. (2023) pointed out that reanalysis datasets characterized
by finer spatial resolutions exhibit better consistency with in
situ measurements of SD over the TP; e.g., ERA5L outper-
forms ERA5 and MERRA2. Sun et al. (2023) evaluated the
ability of different LSMs to simulate SD in China based on
station observation data and found that the community Noah
LSM with multi-parameterization options (Noah-MP model)
provided the best overall performance. In our study, the fine
spatial resolution version of GLDAS generates better SCF
simulations than the coarse spatial resolution version for both
spatial distribution and annual trend (Fig. S1). Additionally,
compared with the CLSM and VIC models, GLDAS simu-
lations using the Noah model show better SCF performance
at a 1°× 1° resolution. This indicates the non-negligible im-
pact of model resolution and LSM choice on SCF simulation
accuracy. However, SCF products with different spatial res-
olutions and LSMs are available only in GLDAS. Therefore,
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Figure 8. Spatial distribution of the snowfall annual trend from the
reanalysis datasets over the TP for the period WY 2001 to WY
2017 (left) and the temperature annual trend (right). Black dots in-
dicate that the trend exceeds the 95 % confidence level. HMASR
and MERRA2 share the same meteorological forcing data.

this study cannot conclusively state that the impact of spatial
resolution and LSM on SCF accuracy is universal.

4.2 Limitations

This study focused primarily on the impact of snowfall and
temperature factors in snow models, as well as the choice
of SCF parameterization, on the performance of reanaly-
sis datasets in simulating SCF over the TP. However, other
model parameters related to precipitation and temperature,
such as the precipitation gradient used to describe precipita-
tion variations at different elevations and the critical temper-
ature used to distinguish rain from snow, are equally vital to

snow simulations (Zhang et al., 2015). Furthermore, snow,
being a suspended substance, is susceptible to sublimation.
It is estimated that blowing snow sublimation accounts for
∼ 30 % of global surface sublimation (Déry and Yau, 2002).
The TP is perpetually influenced by the westerly jet stream,
and processes such as blowing snow sublimation may be
significant under windy and arid conditions. However, most
LSMs used in reanalysis datasets do not consider blowing
snow (Mortimer et al., 2020), and deficiencies in their model
structures may also affect the accuracy of SCF simulations.

5 Conclusions

This study evaluated the ability and attributed the biases
of eight widely used reanalysis datasets to simulate spa-
tiotemporal variations in SCF over the TP based on SPIReS
covering the period of WYs 2001–2017. The results in-
dicate that CRAL, GLDAS, and HMASR agree best with
SPIReS in TP-averaged SCF and SS values, all exceeding
0.7. CFSR, despite overestimating SCF, has the highest SS
value due to the good correlation with SPIReS and a high
STDR value. These four datasets perform well spatially.
By contrast, ERA5, ERA5L, and JRA55 generally overes-
timate SCF, while MERRA2 consistently underestimates it,
leading to poor spatial performance. Overall, the reanalysis
datasets exhibit moderate accuracy in annual trend analy-
sis. ERA5L, JRA55, and ERA5 have relatively good tem-
poral performance, with a significant correlation in trend
time series and better CI values in trend spatial consistency.
GLDAS and CFSR perform poorly in trend representation,
while MERRA2 has the worst performance in both spatial
distribution and annual trend.

Snowfall and temperature significantly impact SCF bias.
ERA5, ERA5L, and JRA55 overestimate SCF due to
overestimated snowfall and underestimated temperature.
Temperature-related physical processes have a more signif-
icant impact on SCF bias and its seasonal variations in these
datasets. The poor trend performance in GLDAS and CFSR
is due to inconsistencies between temperature and snow-
fall trends compared with TPMFD trends. Meteorological
factor errors impact the poor spatiotemporal performance
of MERRA2. Additionally, the overestimation of SCF in
JRA55 is also linked to aggressive parameterization. Except
for JRA55, parameterization optimization improves SCF but
does not significantly alter the spatial performance ranking
of the eight reanalysis datasets. To improve SCF accuracy,
combining datasets is an effective method. A three-member
combination of CFSR, GLDAS, and HMASR is optimal for
the study of SCF spatial scales, while the combination of
ERA5L, JRA55, HMASR, ERA5, GLDAS, and CRAL is op-
timal for the study of annual trends.

These findings are crucial for selecting the most suitable
reanalysis SCF datasets and gaining deeper insights into SCF
variations and their controlling mechanisms on the TP. Re-
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Figure 9. SS (a) and CI (b) values of SCF for all reanalysis datasets calculated offline using the MM_SCF, MJ_SCF, and ME_SCF parame-
terization methods. The green bars represent the built-in parameterization methods for HMASR, CRAL, and CFSR.

Figure 10. (a) SS for optimal reanalysis dataset combinations across varying numbers of datasets. (b) As in (a) but for CI; (c) and (d) as in
(a) and (b), but for the worst combinations. H: HMASR; M: MERRA2; E: ERA5; EL: ERA5L; J: JRA55; C: CFSR; CL: CRAL; G: GLDAS.
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ducing uncertainties within reanalysis SCF datasets stands as
a pivotal step toward refining climate models and prediction
systems. Considering the significant impact of precipitation
and temperature bias, acquiring more precise meteorological
forcing data is essential to further enhance the accuracy of
reanalysis SCF simulations. Simultaneously, selecting more
appropriate parameterization methods specific to reanalysis
data models will contribute to improving dataset reliability.
Optimizing simulations of snow cover on the TP will pro-
vide critical support for future climate change research and
response strategies.

Data availability. The SPIReS product used in this work is
publicly available from https://github.com/edwardbair/SPIRES
(Bair, 2023). The TPMFD dataset was obtained from the
National Tibetan Plateau Science Data Center (TPDC;
https://doi.org/10.11888/Atmos.tpdc.300398, Yang et al., 2023).
All the reanalysis data were also acquired online: HMASR
was obtained from the National Snow and Ice Data Center
(NSIDC; https://doi.org/10.5067/HNAUGJQXSCVU, Liu et
al., 2021b). ERA5 and ERA5L data were downloaded from
the Copernicus Climate Change Service (C3S) Climate Data
Store (ERA5: https://doi.org/10.24381/cds.adbb2d47, Hersbach
et al., 2023; ERA5-land: https://doi.org/10.24381/cds.e2161bac,
Muñoz-Sabater, 2019). JRA55 and CFSR data were down-
loaded from the NSF NCAR Research Data Archive (RDA;
JRA55: https://doi.org/10.5065/D6HH6H41, Japan Meteorological
Agency/Japan, 2013; CFSR: https://doi.org/10.5065/D69K487J,
Saha et al., 2010b; CFSv2: https://doi.org/10.5065/D61C1TXF,
Saha et al., 2011). CRAL was obtained from the National Me-
teorological Information Center (CMA Meteorological Data
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MERRA2 data were obtained from the NASA Goddard Earth
Science Data and Information Service Center (GES DISC),
with the specifications of SCF (FRSNO), SWE (SNOMAS),
SD (SNODP), and snowfall (PRECSNOLAND) obtained from
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