Articles | Volume 18, issue 4
https://doi.org/10.5194/tc-18-1561-2024
https://doi.org/10.5194/tc-18-1561-2024
Research article
 | 
05 Apr 2024
Research article |  | 05 Apr 2024

Snow water equivalent retrieved from X- and dual Ku-band scatterometer measurements at Sodankylä using the Markov Chain Monte Carlo method

Jinmei Pan, Michael Durand, Juha Lemmetyinen, Desheng Liu, and Jiancheng Shi

Related authors

An hourly 0.02° total precipitable water dataset for all-weather conditions over the Tibetan Plateau through the fusion of observations of geostationary and multi-source microwave satellites
Qixiang Sun, Dabin Ji, Husi Letu, Yongqian Wang, Peng Zhang, Hong Liang, Chong Shi, Shuai Yin, and Jiancheng Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-365,https://doi.org/10.5194/essd-2025-365, 2025
Preprint under review for ESSD
Short summary
Snow Water Equivalent Retrieval and Analysis Over Altay Using 12-Day Repeat-Pass Sentinel-1 Interferometry
Jingtian Zhou, Yang Lei, Jinmei Pan, Cunren Liang, Yunjun Zhang, Weiliang Li, Chuan Xiong, and Jiancheng Shi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2329,https://doi.org/10.5194/egusphere-2025-2329, 2025
Short summary
Similarities between sea ice area variations and satellite-derived terrestrial biosphere and cryosphere parameters across the Arctic
Annett Bartsch, Rodrigue Tanguy, Helena Bergstedt, Clemens von Baeckmann, Hans Tømmervik, Marc Macias-Fauria, Juha Lemmentiynen, Kimmo Rautiainen, Chiara Gruber, and Bruce C. Forbes
EGUsphere, https://doi.org/10.5194/egusphere-2025-1358,https://doi.org/10.5194/egusphere-2025-1358, 2025
Short summary
An operational SMOS soil freeze-thaw product
Kimmo Rautiainen, Manu Holmberg, Juval Cohen, Arnaud Mialon, Mike Schwank, Juha Lemmetyinen, Antonio de la Fuente, and Yann Kerr
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-68,https://doi.org/10.5194/essd-2025-68, 2025
Revised manuscript accepted for ESSD
Short summary
A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025,https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary

Cited articles

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. 
Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, 5, 219–229, https://doi.org/10.5194/tc-5-219-2011, 2011. 
Cline, D., Elder, K., Davis, R., Hardy, J., Liston, G., Imel, D., Yueh, S., Gasiewski, A., Koh, G., Armstrong, R., and Parsons, M.: Overview of the NASA cold land processes field experiment (CLPX-2002), Proc SPIE, 4894, https://doi.org/10.1117/12.467766, 2003. 
Cui, Y., Xiong, C., Lemmetyinen, J., Shi, J., Jiang, L., Peng, B., Li, H., Zhao, T., Ji, D., and Hu, T.: Estimating snow water equivalent with backscattering at X and Ku band based on absorption loss, Remote Sens., 8, 505, https://doi.org/10.3390/rs8060505, 2016. 
Derksen, C., King, J., Belair, S., Garnaud, C., Vionnet, V., Fortin, V., Lemmetyinen, J., Crevier, Y., Plourde, P., Lawrence, B., van Mierlo, H., Burbidge, G., and Siqueira, P.: Development of the Terrestrial Snow Mass Mission, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 614–617, https://doi.org/10.1109/IGARSS47720.2021.9553496, 2021. 
Download
Short summary
We developed an algorithm to estimate snow mass using X- and dual Ku-band radar, and tested it in a ground-based experiment. The algorithm, the Bayesian-based Algorithm for SWE Estimation (BASE) using active microwaves, achieved an RMSE of 30 mm for snow water equivalent. These results demonstrate the potential of radar, a highly promising sensor, to map snow mass at high spatial resolution.
Share