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Abstract. Radar at high frequency is a promising technique
for fine-resolution snow water equivalent (SWE) mapping.
In this paper, we extend the Bayesian-based Algorithm for
SWE Estimation (BASE) from passive to active microwave
(AM) application and test it using ground-based backscatter-
ing measurements at three frequencies (X and dual Ku bands;
10.2, 13.3, and 16.7 GHz), with VV polarization obtained at
a 50° incidence angle from the Nordic Snow Radar Experi-
ment (NoSREx) in Sodankylä, Finland. We assumed only an
uninformative prior for snow microstructure, in contrast with
an accurate prior required in previous studies. Starting from
a biased monthly SWE prior from land surface model sim-
ulation, two-layer snow state variables and single-layer soil
variables were iterated until their posterior distribution could
stably reproduce the observed microwave signals. The ob-
servation model is the Microwave Emission Model of Lay-
ered Snowpacks 3 and Active (MEMLS3&a) based on the
improved Born approximation. Results show that BASE-AM
achieved an RMSE of ∼ 10 cm for snow depth and less than
30 mm for SWE, compared with the RMSE of∼ 20 cm snow
depth and ∼ 50 mm SWE from priors. Retrieval errors are
significantly larger when BASE-AM is run using a single
snow layer. The results support the potential of X- and Ku-
band radar for SWE retrieval and show that the role of a
precise snow microstructure prior in SWE retrieval may be
substituted by an SWE prior from exterior sources.

1 Introduction

Every year, snow and ice cover about 50 % of the land surface
in the Northern Hemisphere (Brown and Robinson, 2011),
reflects back up to 80 % of the solar radiation, cools the
earth’s surface (Flanner et al., 2011), and provides water for
about 1/6 of the world’s population (Barnett et al., 2005).
The estimation of snow water equivalent (SWE), which de-
scribes the equivalent depth of liquid water when snow com-
pletely melts (Takala et al., 2011), is of critical importance
for hydraulic and hydrological applications (Lettenmaier et
al., 2015). However, current observation-based estimates of
snow lack the precision and spatial resolution needed to cap-
ture global processes (Mortimer et al., 2020). Snow is the
most poorly measured component of the global water cycle
(Durand et al., 2021).

Active microwave radar at the X and Ku bands shows great
promise for high-resolution snow depth (SD) and SWE map-
ping (Rott et al., 2012; Tsang et al., 2022). This technique
is based on detecting changes in volume scattering from the
snow medium and thus builds on the heritage from passive
microwave remote sensing (Tsang et al., 2022). Active mi-
crowave remote sensing can achieve far higher spatial res-
olution than passive microwave via synthetic aperture radar
(SAR) processing. The existence of snow on the ground and
its volume scattering generally increases the backscattered
radar signal as compared with that of bare soil. Multiple
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satellite missions have proposed use of this technique, but so
far, none have been selected for space-borne operations. The
Snow and Cold Lands Processes (SCLP) mission proposed
to NASA, the Cold Regions Hydrology High-Resolution Ob-
servatory (CoReH2O) proposed to ESA, and The Water Cy-
cle Observation Mission (WCOM) proposed in China were
all to have been dual-frequency radars operating at X and
Ku bands (Cline et al., 2003; Rott et al., 2012; Shi et al.,
2014). The Canadian Space Agency (CSA) is currently con-
sidering a concept study for a satellite radar mission for ter-
restrial snow mass, proposing a dual Ku-band scatterome-
ter (Derksen et al., 2021; Tsang et al., 2022). The maturity
of the algorithms to retrieve SWE from a radar signal has
grown significantly as described by Tsang et al. (2022), but
algorithm challenges remain. New work on Ku- and X-band
retrievals is continuing, for example, in the NASA SnowEx
experiments featuring the SWESARR instrument (Rincon et
al., 2020).

Algorithm development for Ku- and X-band SAR re-
trievals is of vital importance. The radar backscatter from
snow is sensitive to SWE but is complicated by confound-
ing factors including snow microstructure, the backscatter
from the substrate beneath snow, and forest cover (Tsang et
al., 2022). Recent advances have begun to resolve the sub-
strate issue, specifically by subtracting the contribution of
the rough surface scattering at the snow–soil interface (e.g.,
Zhu et al., 2018) and using passive microwave measurements
(Zhu et al., 2021). Forests pose an important limitation on the
applicability of the technique, and recent studies have helped
refine estimates of forest conditions under which SWE can
be estimated (e.g., Macelloni et al., 2012; Lemmetyinen et
al., 2022). In this paper, we focus on retrieval issues posed
by snow microstructure.

The complexities of retrieving SWE from radar measure-
ments derive from fundamentals of snow physics and elec-
tromagnetic physics. Radar backscatter is highly sensitive
to snow microstructure, commonly characterized by the size
of the individual snow crystals (e.g., Xu et al., 2010; King
et al., 2018; Rutter et al., 2019). Because grain shape is
highly irregular and exhibits significant spatiotemporal vari-
ability, and because grains are oftentimes well bonded within
a snowpack, we often refer to “snow microstructure” or to
the microstructure correlation length rather than grain size
(Picard et al., 2022).

The snow correlation length can be considered as the
length scale describing the auto-correlation function (ACF)
of the ice–air medium, signifying the distance within which
this medium can still be considered correlated (Mätzler,
1997). In this study, we specifically estimate the exponential
correlation length of the snow microstructure. The distinc-
tion lies in how the correlation length is determined. While
correlation length is fitted from the ACF near the origin, the
exponential correlation length is fitted from a longer range
of two-point distances in the medium (Mätzler, 2002). High
values of correlation lengths generally correspond to high

values of grain size. Pan et al. (2017) explored the relation-
ship between grain size and correlation length for the Nordic
Snow Radar Experiment (NoSREx) dataset. Radar backscat-
ter is quite sensitive to snow microstructure and the depen-
dence is highly non-linear. These complexities have led algo-
rithm developers to introduce a priori information on grain
size to help constrain the retrieval problem (Tsang et al.,
2022), which in turn makes the retrieved SWE accuracy de-
pendent on the unbiasedness of the prior grain size, at least
to some extent. The CoReH2O mission specified that an ef-
fective grain radius must be known a priori to within 15 %
precision to enable SWE retrieval, a daunting requirement
indeed. Rutter et al. (2019) similarly found in the context
of a sensitivity experiment that depth hoar equivalent grain
size must be specified to within 5 %–10 % precision in or-
der to achieve a±30 mm SWE accuracy requirement (IGOS,
2007). Despite recent advances, capabilities to predict grain
size still fall below the required precision, creating a dilemma
for retrieval algorithms. Lemmetyinen et al. (2018) demon-
strated that radar SWE retrieval can be supported by scal-
ing the effective correlation length obtained from passive
microwave observations. The passive microwave correlation
length, however, was fitted using snow depth measurements
at stations. As described by Tsang et al. (2022), the approach
of Cui et al. (2016) and Zhu et al. (2018 2021) reframes the
need for a priori information from that for a snow microstruc-
ture parameter to the single-scattering albedo at X band. Fur-
thermore, Merkouriadi et al. (2021) indicated that applying a
physical model to generate priors of grain size is not straight-
forward, as biased SWE estimates in physical models lead
to large biases in the modeled microstructure, which in turn
propagate as an increase in bias in a potential SWE retrieval
using these as priors.

While past work focused on an error propagation approach
to infer the required precision for an equivalent grain size,
retrieval algorithms that explicitly statistically model each
unknown term in the retrieval problem have not been ex-
plored in the literature. Here, we extended the Bayesian-
based Algorithm for SWE Estimation (BASE) (Pan et al.,
2017) to active microwave (AM) application. Unlike a simple
steepest descent algorithm or Newton’s method, a Markov
Chain Monte Carlo (MCMC) method is used in BASE-AM,
providing posterior distributions of several variables at the
same time from observations and prior distributions, with-
out any assumption of linear error propagation. The MCMC
method looks for a global optimization instead of a local opti-
mization. We tested BASE-AM SWE retrieval using ground-
based radar measurements from the NoSREx (Lemmetyinen
et al., 2016a). We used the Microwave Emission Model of
Layered Snowpacks 3 and Active (MEMLS3&a) (Proksch et
al., 2015) based on the improved Born approximation (IBA)
as the observation model, and we consider a two-layer snow
structure composed of a surface layer and a bottom layer. We
iteratively updated the snow (snow layer thickness, exponen-
tial correlation length, density, and temperature), soil (soil
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temperature, roughness, and total water content), and model
variables in MEMLS3&a to build MCMC chains. The model
variable iterated is Q, a semi-empirical parameter to sepa-
rate the total backscattering into co- and cross-polarization
components. The exponential correlation length is the snow
microstructure parameter specifically used in MEMLS3&a.
We deliberately chose a biased monthly SWE prior from
land surface model simulations compared with the in situ
observations and thus implicitly tested whether radar data
can overcome such biases. Acknowledging the challenge of
obtaining appropriate snow microstructure priors, we chose
a fixed and nearly uninformative prior for exponential cor-
relation length, which followed a normal distribution as N
(0.18 mm, 0.09 mm) for both snow layers, with the first num-
ber 0.18 mm being the mean and the second number 0.09 mm
the standard deviation.

If this SWE retrieval algorithm for radar using the MCMC
approach successfully estimates SWE, then the two-layer ap-
proach with a biased prior on SWE and an uninformative
prior for snow microstructure contains adequate information
to estimate SWE in support of three-frequency radar observa-
tions, thus providing a new perspective on the need for a pri-
ori information as outlined by Rott et al. (2012) and Rutter
et al. (2019). If the algorithm is unsuccessful, we will have
found that a precise prior for snow microstructure is required,
in agreement with previous literature. We hypothesize, based
on previous results for passive microwave (Pan et al., 2017)
at this site, that the radar retrieval algorithm will also suc-
cessfully estimate SWE using the same generic prior.

2 Data

From 2009 to 2013, continuous snow radar experiments
were conducted at the Intensive Observation Area (IOA)
(67.362° N, 26.633° E) located in the Finnish Meteorological
Institute Arctic Research Centre (FMI-ARC) in Sodankylä,
Finland, during the NoSREx campaign (Lemmetyinen et al.,
2016a). The IOA is located in a clearing of a typical Scots
pine (Pinus sylvestris) boreal forest on mineral soil. The X-
and dual Ku-band scatterometer SnowScat of the European
Space Agency (ESA) was installed on a tower at a height of
9.6 m to observe the undisturbed, natural snowpack at several
incidence and azimuth angles. Manufactured by GAMMA
Remote Sensing, SnowScat is a stepped frequency, four-
polarization (VV, HH, VH, and HV polarizations) radar op-
erating from 1 to 18 GHz. The single-look complex measure-
ments were sampled to 1 GHz bands with center frequencies
of 10.2, 13.3, and 16.7 GHz. SnowScat provides an internal
calibration loop for tracking stability of the transmitted sig-
nal. Stability was further verified to be within the goal of
±1 dB by observing an aluminum sphere target before and
after each acquisition scan.

The goal of NoSREx was to observe the backscattering
coefficient (σ0) from before snow onset until after snow dis-

appearance at regular intervals. For the first season in 2009–
2010, a 3 h measurement interval was used. This was ex-
tended to 4 h for later seasons (2010–2011, 2011–2012, and
2012–2013). The seasons are referred to as intensive ob-
servation periods (IOPs) 1–4 in this paper. The acquisition
scan consisted of 17 independent look directions in azimuth
at four elevation angles corresponding to ground incidence
angles of 30, 40, 50, and 60°. Our retrieval used only the
VV polarization at a fixed 50° incidence angle. The applied
backscattering values represent an average over the 17 inde-
pendent looks. We selected this incidence angle to increase
the slant penetration path of the radar into the snow medium.
However, we avoided choosing an angle that was too large
to prevent potential influences from the surrounding environ-
ment. We exclusively employed VV polarization, as VH was
empirically estimated by MEMLS3&a. It is worth noting that
reducing the number of microwave measurements in retrieval
typically increases the difficulty of the retrieval process.

Concurrently, snowpits were excavated near the SnowScat
twice per week for the first season and weekly for the follow-
ing seasons. Snow depth, snow stratigraphy, and geometric
grain size of each snow layer were measured; snow tempera-
ture and snow density were measured by 10 and 5 cm steps,
respectively. There were also several automatic sensors in-
stalled at IOA to provide additional information. Continuous
SWE measurements were available from the Gamma Snow
Instrument (GWI), although it tends to be contaminated by
high-frequency noise at short timescales. Soil temperature
and soil liquid water content were measured by the Delta-
T Devices ML2x sensor at 2 cm in four IOPs, and by the
Decagon 5TM sensors at 5, 10, 20, 40, and 80 cm in IOP3
and IOP4. Soil at the IOA has a texture of 70 % sand, 29 %
silt, and 1 % clay, as well as a bulk density of 1300 kg m−3

(Lemmetyinen et al., 2016a). Mineral soils were overlain by
a thin organic layer of 2–5 cm of lichen and heather.

Figure 1 shows the measured backscattering coefficients at
VV polarization at a 50° incidence angle, with the measured
SWE, geometric grain size (Dg), snow density, and soil liq-
uid water content. The Dg and snow density presented here
are mass-weighted average values along the snow profile.
From the figure, there is not a simple relationship between
volume scattering and maximum SWE among the four IOPs.
For example, IOP2 has the maximum backscattering coef-
ficient at 16.7 GHz and the maximum ratio of the 16.7 and
10.2 GHz channels; however, the maximum SWE for IOP2 is
the smallest of the 4 years. At the same time, IOP2 has a rela-
tively high geometric snow grain size (Dg), larger than IOP3
and IOP4, and it is comparable to IOP1. It agrees with the
physical theory that a shallower snow tends to have a larger
snow grain size because of a stronger temperature gradient
inside the snow (Jordan, 1991). Thus, among the four IOPs,
the influence of snow microstructure is higher than that of
SWE. As shown in Fig. 2, within each IOP, the backscatter-
ing ratio between 16.7 and 10.2 GHz increases with both SD
and geometric snow grain size (Dg), and the relationships
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have significant differences in different IOPs. During IOP2
and IOP3, the slopes of the backscattering ratio as a function
of an increasing SD can be classified into two groups. This
is because of a stronger snow grain growth speed at the early
snow season compared with the mid-snow season.

Concerning other variables, Fig. 1 shows that the IOPs
with a higher maximum SWE tend to have a higher average
snow density. It also agrees with the snow compaction the-
ory according to snow process models (Jordan, 1991). The
underlying soil was frozen for most of the snow season; how-
ever, it was unfrozen and had a large soil water content in the
early and late snow seasons. In almost all IOPs, we observed
a decreasing trend in backscattering at all frequencies at the
beginning of the snow season caused by soil freezing pro-
cesses. Figure 2c and d show more details with respect to
the measured backscattering coefficient at 10.2 GHz. In mid-
snow season, IOPs with a lower liquid water content or a
higher average snow density tend to have higher backscat-
tering at 10.2 GHz. The significantly different σVV

0 at low
frequency between different IOPs and its seasonal variation
indicate a requirement to estimate soil and snow parameters
simultaneously.

3 Methods

3.1 The Markov Chain Monte Carlo method

In this paper, we adapted the Bayesian-based Algorithm
for SWE Estimation (BASE), used for inverting passive
microwave radiometer measurements in Pan et al. (2017),
to radar data. The Markov Chain Monte Carlo (MCMC)
method (Gelman et al., 2003) is a numerical realization of
the Bayes theorem. Starting from a prior distribution of pre-
dicted variables, MCMC randomly searches within the mini-
mum to maximum range of each variable and picks estimates
that are both close to the prior and to the observations through
the radiative transfer model. The likelihood ratio (R) is used
to assess the relative proximity of two sets of SWE and soil
parameters to the prior and the observations:

R =
Pobs(M (xi+1))Ppr(xi+1)

Pobs(M (xi))Ppr(xi)
, (1)

where xi is the first set of predicted variables and xi+1
is the second set. Ppr(xi) and Ppr(xi+1) are the probabil-
ity of xi and xi+1 according to the prior distribution. M
is the MEMLS3&a observation model, and Pobs(M(xi))

and Pobs(M(xi+1)) are the probability of model-simulated
backscattering coefficients, M(xi) and M(xi+1), according
to a normal distribution centered at the observed backscatter-
ing coefficients, with a standard deviation of 0.5 dB at each
frequency and zero covariance between different frequen-
cies.

At each iteration, if the MCMC algorithm tries to change
the value of an estimated variable from xi to xi+1, the likeli-
hood ratio,R, is calculated. IfR is larger than 1 or larger than
a uniformly distributed random threshold Rc between 0 and
1, the change will be accepted; otherwise, it will be rejected.
The randomness in Rc is used to prevent local optimization.
Finally, all the iterations will build a vector for each esti-
mate variable, which is called the MCMC chain. The MCMC
chain is the numerical realization of the posterior distribu-
tion, from which we can calculate the final retrieval results
and their uncertainties using the mean and the standard devi-
ation.

The MCMC applied here differs from that of Pan et
al. (2017) in the following aspects:

1. The observations and observation model were changed
from passive to active (radiometer brightness tempera-
ture to radar backscatter).

2. We used basically the same generic prior for SWE esti-
mation in Pan et al. (2017). However, the prior distribu-
tions were changed from lognormal distributions to nor-
mal distributions, because a lognormal-distributed prior
leads to a lognormal-distributed posterior distribution,
which has a skewness that is challenging to interpret.

3. Snow layer thicknesses were independently estimated
in Pan et al. (2017), whereas in this study, we estimate
the bottom-layer thickness and the relative ratio of the
surface layer thickness to the bottom-layer thickness.
This is needed because we found that the radar at these
frequencies has a small sensitivity to volume scattering
from the surface snow layers of small grain sizes. The
use of the layer thickness ratio predetermined the ex-
istence of the surface layer and it was assumed to fol-
low N(1,0.2). In addition, we constrained the density
and temperature of the surface layer to be lower than
those of the bottom layer. These constraints were real-
ized by dynamically using the bottom-layer density and
temperature to be the upper limits of those in the sur-
face layer at each iteration. They were set according to
a taiga snow type simply for producing a more reason-
able profile feature for these two parameters which are
not very sensitive to backscattering observations. There-
fore, these constraints can be revised or deleted if de-
tailed prior knowledge is provided.

As a summary, Fig. 3 shows a flowchart of the retrieval al-
gorithm. We refer to this algorithm as BASE-AM (active mi-
crowave). As in Pan et al. (2017), the algorithm runs 20 000
iterations, with a burn-in period of 5000. The burn-in period
was used to allow the variables to walk from the initial status
to a status that can stably reproduce the observation. The fi-
nal retrieval results were averaged from the MCMC estimates
between the 5001 and 20 000 iterations.

Table 1 provides a comprehensive list of variables esti-
mated in the MCMC algorithm, along with their respective
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Figure 1. Measured backscattering coefficient at VV polarization (σVV
0 ) and snow parameters in four IOPs in NoSREx. The first row shows

σVV
0 at three frequencies at a 50° incidence angle. The second row shows the ratio of σVV

0 between two frequencies. The third row shows
the snow water equivalent (SWE). The fourth row shows the profile-average snow density weighted by snow mass (ρ). The fifth row shows
the profile-average geometric grain size weighted by snow mass (Dg). The sixth row shows the measured liquid water content (Mvl,soil) by
the Delta-T Devices ML2x sensor (at 2 cm) and the Decagon 5TM sensors (at 5 cm). The circles represent measurements from snowpits for
SWE, ρ, and Dg. Gray vertical bars indicate the onset and end of snow season, identified according to snow depth measurements.

priors. The snow and soil priors are generally aligned with
the generic prior used in Pan et al. (2017) at the same site.
The main distinction lies in the standard deviations of priors,
which were halved compared with those of Pan et al. (2017).
This adjustment was made because the boundaries of nor-
mal distributions are less constrained than lognormal dis-
tributions. As in Pan et al. (2017), the SWE prior was a
multiple-year average of monthly-mean SWEs from global
2° resolution VIC model simulations (Nijssen et al., 2001).
The snow density and snow temperature priors were from
the taiga snow type in Sturm’s snow classes (Sturm et al.,
1995). The prior for snow exponential correlation length was
uninformative, following N (0.18 mm, 0.09 mm). It could be
interesting to explore the performance using a different unin-
formative pex prior mean, although it is beyond the scope of
this paper. The soil temperature prior was set the same as the
snow temperature prior. The prior for total soil water content
was set to follow N (8 % vol, 4 % vol). The soil roughness
prior was set to follow N (1 cm, 0.5 cm).

3.2 The MEMLS3&a snow backscattering model

The forward observation model to calculate the snow
backscattering was the Microwave Emission Model of Lay-
ered Snowpacks 3 and Active (MEMLS3&a) (Proksch et
al., 2015) based on the improved Born approximation.
MEMLS3&a for active backscattering simulation is a semi-
empirical model that converts passive microwave reflectivity
of the snowpack to backscattering. It assumes that the distri-
bution of the diffuse part of the bistatic scattering coefficient
is Lambertian. In this model, first the snow reflectivity calcu-
lated by passive MEMLS (r) is separated into a specular part
(rs) and a diffuse part (rd). rs is calculated from the specular
part of soil reflectivity, attenuated by snow absorption and
snow scattering layer by layer (see Eq. 14 in Proksch et al.,
2015). Afterward, rd = r − rs, and rd is converted to the dif-
fuse part of the backscattering coefficient (σ 0

d ) based on the
Lambertian assumption as

σ 0
d = 4rdµ2

0, (2)
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Figure 2. Relationships of the measured backscatter signals with the snow and soil parameters: the measured backscattering ratio between
16.7 and 10.2 GHz, vs. snow depth (SD) (a) and geometric grain size (Dg) (b), respectively; the measured backscattering coefficient at
10.2 GHz in frozen soil period vs. soil liquid water content (Mvl,soil) in (c) and snow density (ρ) in (d), respectively. All data presented here
require a soil temperature <0 °C at 2 cm.

Figure 3. A flowchart of BASE-AM.

where µ0 is cos(θ0) and θ0 is the incidence angle.
After σ 0

d is calculated, the specular part of the backscat-
tering coefficient (σ 0

s ) is calculated using the geometrical
optics (GO) theory; σ 0

s is assumed to be the same for co-
polarizations and zero for cross-polarizations, and was cal-

culated from the specular part of reflectivity (rs) and a rough-
ness parameter (m2) (see Eq. 9 in Proksch et al., 2015). Fi-
nally, the total snow backscattering coefficient is calculated
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Table 1. Summary of priors and boundaries for each estimated variable.

Parameter Mean of prior Standard deviation
of prior

Minimum
value allowed
in MCMC

Maximum
value allowed
in MCMC

Other constraints

Snow depth Thickness of
the bottom
layer (dz1)

Calculated from means
of snow density and
SWE from VIC simula-
tions*

Calculated from stan-
dard deviation of snow
density and SWE from
VIC simulations*

1 mm 10 m No

Relative thick-
ness of surface
layer compared
with bottom
layer (dz2/dz1)

1 0.2 0.001 1 No

Snow density (ρ) 217 kg m−3 56 kg m−3 50 kg m−3 917 kg m−3 Surface
density≤ bottom
density

Exponential correlation length
(pex)

0.18 mm 0.09 mm 0.001 mm 5 mm No

Snow temperature (Tsnow) −10 °C 5 °C −30 °C 0 °C Surface
temperature≤ bottom
temperature

Soil temperature (Tsoil) −10 °C 5 °C −30 °C 0 °C No

Soil root-mean-squared (RMS)
height (σ )

1 cm 0.5 cm 0 cm 10 cm No

Total soil water content (Mv,soil) 8 % 4 % 0 % 100 % No

MEMLS3&a polarization splitting
parameter (Q)

0.1 0.01 0.08 0.12 No

∗ The mean of SWE prior is the multiple-year average of the VIC-simulated monthly-mean SWE.

as

σ 0
pp′ =


(1−Q)σ 0

d,v+ σ
0
s p = p′ = v

(1−Q)σ 0
d,h+ σ

0
s p = p′ = h

Q
(
σ 0

d,v+ σ
0
d,h

)
/2 p ∼= p′

. (3)

In MEMLS3&a, there are two empirical parameters. The first
one isQ, utilized to split σ 0

d,v into co-polarizations and cross-
polarizations. Our forward simulation test based on snow-
pit measurements suggested a Q between 0.08 and 0.12 at
Sodankylä. Therefore, the prior for Q was set to follow N

(0.1, 0.01) in Table 1. The second empirical parameter in
MEMLS3&a is the roughness parameter, which is the mean-
squared slope (m2), in GO. We fixed m2 to a value of 0.01
according to simulations, because we found that it only influ-
ences backscattering at very small incidence angles (<30°).

3.3 Soil models

MEMLS3&a requires the total and specular part of soil re-
flectivity, instead of soil backscattering. We utilized the QHN
model with frequency-independent parameters (QHNfi) de-
veloped in Montpetit et al. (2015) to calculate the total soil
surface reflectivity. The specular part (0s

p) of the soil reflec-
tivity is calculated as follows (Mo et al., 1987; Wegmüller
and Mätzler, 1999):

0s
p =

[
(1−Qs)0

∗
p +Qs0

∗
q

]
exp

(
−4k2σ 2cos2θ1

)
, (4)

where 0∗p and 0∗q are the Fresnel reflectivities, k is the wave
number, σ is the soil roughness (RMS height of soil surface),
θ1 is the local incidence angle at the snow–soil boundary,
and Qs is the polarization mixing parameter for soil surface
scattering, which is set the same as in QHNfi.

The soil dielectric constants were calculated using a re-
vised generalized refractive mixing dielectric model (GR-
MDM) (Mironov et al., 2004) adapted for frozen soil.
The frozen soil is considered as a mixture of dry solids,
bound water, transient water, and ice as in Mironov et
al. (2017). The model utilized the same bound water content
as in Mironov et al. (2004), whereas it fitted temperature-
dependent bound water dielectric constants and other impor-
tant variables using a frozen soil dataset measured at the Bei-
jing Normal University (see Appendix A). The soil texture
was set the same as the measurements from NoSREx (Lem-
metyinen et al., 2016a).

4 Results

4.1 MCMC performance for active SWE retrieval

Figures 4–6 use the snowpit measured on 13 March 2012
(hereafter referred to as “pit 49”) during IOP3 as an example
to show how MCMC works. Figure 4 shows the simulated
backscattering coefficient at each iteration, whereas Figs. 5
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and 6 show the variations of all estimated variables at each
iteration.

Figure 4 shows that the simulated backscattering coeffi-
cients at each iteration in the chain (after the burn-in period)
are close to the observations, which is one of the key char-
acteristics of MCMC-based retrieval. The mean bias is 0.23,
0.68, and−0.66 dB at 10.2, 13.3, and 16.7 GHz, respectively.
The enlarged subplot of Fig. 4a shows the influence of the
initial values of the variables on the first 50 iterations.

Figure 5 shows the MCMC chains (left) and the poste-
rior distributions (right) of the snow variables. The poste-
rior distributions of layer thickness (first row) have lower
uncertainty than the priors and the mean is different from
that of the prior. For the estimation of exponential correlation
length (pex) (second row), the BASE-AM algorithm predicts
a smaller surface pex and a larger bottom-layer pex, although
the relative relationship between the two layers for pex was
not constrained. As shown in the width of the posterior dis-
tribution, the uncertainty in surface-layer pex is larger than
that of bottom-layer pex. In the third row, the surface-layer
snow density is smaller than the bottom-layer density. How-
ever, this is simply a realization of our constraint on the rel-
ative relationship between the two layers. In the fourth row,
the backscattering coefficient is not sensitive to snow tem-
perature, so the posterior distributions of snow temperature
highly overlap with the priors. The surface-layer snow tem-
perature was constrained to be lower than that of the bottom
layer in MCMC iterations, and it was realized as shown here.

Figure 6 shows the MCMC chains (left) and the posterior
distributions (right) of the soil and model variables. The first
and fourth rows show that the backscattering coefficient is
not sensitive to soil temperature or to the model variable,
Q: their posterior distributions follow the prior distributions.
The second and third rows show that the algorithm gives
a small value for total soil water content, whereas the soil
roughness varies. This behavior is not identical among snow-
pits; the total soil water content can have greater variability
than soil roughness. The backscattering coefficient at low fre-
quency in this paper is limited, so the algorithm cannot sta-
bly estimate soil roughness and soil moisture variables at the
same time. This is discussed in detail in Sect. 5.1.

4.2 Estimation of snow depth and snow water
equivalent

Figure 7 shows the MCMC-estimated snow depth (SD)
(Fig. 7a) and SWE (Fig. 7b), from the averages of MCMC
chains after the burn-in period. The BASE-AM algorithm
corrects the underestimation of VIC priors: the original bi-
ases for SWE are −49.6, −16.8, −54.5, and −87.9 mm
for IOP1, IOP2, IOP3, and IOP4, respectively, whereas the
biases are changed to 12.3, 25.8, −15.3, and −34.8 mm,
respectively, after retrieval. Figure 8 summarizes the root-
mean-squared error (RMSE). On average, the BASE-AM al-
gorithm reduces the posterior RMSE to about half of the

prior. The SWE RMSE for all snowpits is within 30 mm,
whereas the snow depth (SD) RMSE for all snowpits is close
to 10 cm. For IOP2, the RMSE of the posterior SWE is higher
than that of the prior SWE because of an overestimation of
both SD and snow density. In IOP4, we observe a strong in-
fluence of snow density accuracy on SWE retrieval when the
SD estimation aligns with the fluctuation of SD caused by
snowfall and snow compaction events.

4.3 Estimation of snow microstructure

Figure 9 shows a comparison between the MCMC-estimated
exponential correlation length (pex), pex converted from
the measured Dg using the conversion equation in Pan et
al. (2017), as pex = 0.227+0.126× log(Dg), and a pex fitted
from the backscattering measurements using MEMLS3&a.
The fitted pex was calculated based on the snowpit and soil
measurements, using an adjustable soil roughness (σ ) to
match the X band and a scaling factor for pex to match the
other frequencies. Thepexscaler was constant along the snow
profile but varied for different snowpits.

Figure 9a shows that when pex converted from measured
Dg is high in one IOP, the MCMC-estimated pex is also
high. However, Fig. 9b shows that within each IOP, the
correlation between pex converted from Dg measurements
and MCMC-estimated pex is low. The low correlation re-
sults from uncertainties inDg observation, theDg−pex con-
version equation, and probably uncertainties in backscatter-
ing observation and MEMLS3&a as well. Figure 9c shows
that if pex is fitted from radar measurements using the same
MEMLS3&a model, it matches significantly better with the
MCMC-estimated pex. The result in Fig. 9c indicates that
BASE-AM may be able to estimate snow microstructure pa-
rameter and SWE together if the observation model can ac-
curately describe the relationship between snow–soil param-
eters and radar measurements.

Figure 10 uses 2D distribution maps to show the rela-
tionship between layer thickness and exponential correlation
length (pex) in the MCMC chains, after the burn-in period,
for pit 49. After the burn-in period, all combinations of es-
timated variables can reproduce the observation. Figure 10
shows that the measured backscattering coefficients spec-
ify an up–down flipped logarithm-like relationship between
layer thickness and pex: when layer thickness is high, pex is
low, and vice versa; both parameters begin to saturate when
the other approaches a high value. The area in dark purple
is better represented in the MCMC chain and thus has the
highest probability, considering both observations and priors.
This high-probability area forms a logarithm-shape stripe in-
stead of converging to a single point, indicating that estimat-
ing SWE using robust priors requires a global optimization
instead of a local optimization. In Fig. 10a and b, the obser-
vation changes the priors of layer thickness and pex at the in-
tersection of the dashed red lines to the posteriors at the inter-
section of the dashed black lines. However, in Fig. 10c, there

The Cryosphere, 18, 1561–1578, 2024 https://doi.org/10.5194/tc-18-1561-2024



J. Pan et al.: SWE retrieval based on 3-frequency radar 1569

Figure 4. MCMC chain of simulated backscattering coefficients (lines) compared with the measured backscattering coefficients (diamonds)
for pit 49: (a) in chains of 20 000 iterations with an enlarged plot on the right showing the first 50 iterations, and (b) in histograms.

Figure 5. MCMC chain of layered snow properties (first column) and their posterior distributions compared with the prior distributions
(second column) for pit 49. Lyr1 is for the bottom layer and Lyr2 is for the surface layer.
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Figure 6. MCMC chain of other soil and model variables (first column) and their posterior distributions compared with the prior distributions
(second column) for pit 49.

is more uncertainty in the estimation of the surface-layer pex
than there is in that of the bottom-layer pex, because the sen-
sitivity of radar backscatter to volume scattering decreases
with decreasing pex.

5 Discussion

5.1 Concerning snow density, soil roughness, and soil
moisture

The backscattering coefficient at 10.2 GHz (σVV10.2
0 ) is de-

termined by snow density, soil liquid water content, and soil
roughness, and we have shown the sensitivity of σVV10.2

0 to
the first two variables (see Fig. 1). However, for each snow-
pit, a single observation of σVV10.2

0 is insufficient to determine
three variables together. From our retrieval result, we found
that regardless of the measured profile-average snow den-
sity ranging from 150 to 300 kg m−3, the BASE-AM algo-

rithm consistently estimated a snow density of 215.5 kg m−3,
with a standard deviation of only 7.0 kg m−3 across all snow-
pits. According to our simulations, the sensitivity of the mi-
crowave signal to snow density is lower than that of the soil
parameters. This indicates that snow density is difficult to re-
trieve based on a single low-frequency microwave observa-
tion, unless soil liquid water content and soil roughness are
provided (Gao et al., 2023), or more observations are pro-
vided (Lemmetyinen et al., 2016b).

As for the other two soil variables, the results in Sect. 4
are based on the default BASE-AM algorithm configuration
to estimate total soil water content and soil roughness simul-
taneously. To further explore the algorithm, we conducted
an additional experiment estimating only the soil moisture
using a fixed soil roughness of 1 mm. We found that when
both of these soil parameters were estimated, the RMSE of
the simulated backscattering coefficient in MCMC (0.43 dB)
was closer to the observations (0.52 dB) . In addition,
the accuracy of MCMC-estimated SD and SWE is slightly

The Cryosphere, 18, 1561–1578, 2024 https://doi.org/10.5194/tc-18-1561-2024



J. Pan et al.: SWE retrieval based on 3-frequency radar 1571

Figure 7. BASE-AM estimated snow depth (SD) versus observed
SD at Sodankylä (a, c), and BASE-AM estimated snow water equiv-
alent (SWE) versus observed SWE (b, d). Scatterplots are shown in
(a) and (b), and the time series are shown in (c) and (d).

Figure 8. Summary of root-mean-squared error (RMSE) for SD (a)
and SWE (b) for different IOPs. The dashed black line in (a) indi-
cates 10 cm RMSE for SD, and the dashed black and gray lines in
(b) indicate 20 and 30 mm RMSE, respectively, for SWE.

higher, with the RMSEs for all snowpits being 10.2 cm
and 28.67 mm, respectively, compared with 10.71 cm and
30.14 mm, respectively. However, Fig. 11 shows that, when
the soil roughness is fixed, the temporal variation of esti-
mated soil liquid water content matches better with the sen-
sor measurements, which means the soil liquid water content
becomes retrievable. This suggests a possible strategy where
the soil roughness is estimated early in the season, and the

result would be used for the rest of the period if there is a de-
sire to better estimate soil moisture dynamics from the radar
data.

5.2 The influence of the number of modeled snow
layers on the retrieval

Figure 12 shows the MCMC-estimated SD and SWE when
the snow is assumed to have a single layer. The same snow
and soil priors were used. When the one-layer snow assump-
tion is used, BASE-AM cannot fully correct the underestima-
tion of the SWE prior. This occurred because the presence of
a surface snow layer was overlooked. This layer generates
very small volume scattering, rendering it nearly transpar-
ent to radar. Therefore, it is crucial to acknowledge the ex-
istence of such a surface layer; otherwise, the total SD will
be underestimated. At the same time, because the equivalent
one-layer pex represents that from the bottom layer, it will be
larger than the profile-average pex (from both the Dg mea-
surements and model fittings) (see Fig. 13). As summarized
in Table 2, the snow retrieval result using the two-layer as-
sumption has a higher absolute bias and lower RMSE. The
one-layer assumption underestimates SD and SWE, and it
overestimates profile-average pex.

Figure 14 shows a comparison of the SD–pex relation-
ship in MCMC chains determined by the same backscat-
tering measurements for pit 49 using different snow layer
assumptions. For the one-layer retrievals, the same three-
frequency backscattering coefficients determined higher
profile-average pex. Thus, the snow layer assumption can in-
fluence the SD and pex estimation results, despite the priors
utilized. At the same time, Fig. 14 agrees with the common
sense that when more variables are estimated, the uncertainty
in the variables increases.

Therefore, as a short summary, we recommend consider-
ing two layers since radar tends to overlook the surface snow
layer of small grain size. Additionally, based on the balance
between the current numbers of radar observations and pre-
dicted variables, introducing more layers provides little or no
improvements in SWE estimation, unless a reliable prior for
snow stratigraphy detail becomes available.

6 Conclusions

In this paper, we developed a Bayesian-based Algorithm for
SWE Estimation for Active Microwave (BASE-AM) to re-
trieve the snow and soil parameters from a site in Sodankylä,
Finland, based on X- and dual Ku-band VV polarization
backscattering coefficients using biased SWE and uninfor-
mative snow microstructure priors. Results show that by pre-
determining the snowpack to have two layers, SD can be re-
trieved with an RMSE of 10.2 cm in 0–1 m range, and SWE
can be retrieved with an RMSE of 28.7 mm in 0–200 mm
range. The radar backscattering observations can correct the
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Figure 9. Time series (a) and scatterplots of BASE-AM estimated profile-average exponential correlation length (pex) compared with pex
converted from measuredDg from snowpits in (b), and with the fitted pex in (c). The fitted pex comes from the use of MRMLS3&a to match
the measured backscattering coefficient at three frequencies.

Figure 10. A 2D histogram of probability between layer thickness and exponential correlation length (pex) from the MCMC chain after
the burn-in period for pit 49: (a) for the entire snowpit, where the snow depth and mass-weighted average pex are presented; (b) for the
bottom layer; and (c) for the surface layer. The dashed red lines represent the means of priors. The dashed black lines represent the means of
posteriors, which are the MCMC retrieval results. The white-face diamonds represent the measured SD (or layer thickness) and pex converted
from the measured Dg from the snowpit measurements.

bias of SD prior from −22.3 to 2.4 cm using two-layer snow
assumptions, but it can be only corrected to−13.4 cm if one-
layer snow assumption is used. Results assuming a single
layer are significantly less accurate, despite using the same
priors.

By iteratively updating several snow and soil variables in
the MCMC chain and comparing the prior and posterior dis-
tributions, we showed that the key variables required to be es-
timated in BASE-AM are layer thickness, layer microstruc-
ture parameter, and soil liquid water content. The backscat-

tering coefficients in snow and soil are not sensitive to tem-
perature. Backscattering intensity at low frequency is sensi-
tive to snow density, but density cannot be easily retrieved.
The polarization splitting parameter (Q) in MEMLS3&a can
be fixed unless cross-polarization backscattering observa-
tions are introduced.

Overall, our results indicate that active remote sensing ob-
servations coupled with generic priors and a two-layer re-
trieval scheme can support estimation of SWE. Moreover,
it is essential to note that the setting of the prior is not a
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Figure 11. Comparison of MCMC-estimated soil liquid water content (mvl,soil) and soil roughness (σ ) when both soil moisture and soil
roughness are estimated (light brown circles) or only soil moisture is estimated (green diamonds). The MCMCmvl,soil is calculated from the
MCMC-estimated total soil water content and soil temperature using the same unfrozen soil water content equation in the forward model.

Table 2. Summary of SD, SWE, and profile-average exponential correlation length (pex) estimation error using two-layer and one-layer
snow assumptions.

Parameter Period Mean bias RMSE

Prior Posterior using two-layer Posterior using one-layer Prior Posterior using two-layer Posterior using one-layer
snow assumption snow assumption snow assumption snow assumption

SD (cm) All −22.3 2.4 −13.4 24.0 10.2 15.9

SWE (mm) All −51.6 0.25 −23.5 60.0 28.7 35.5

Profile-average pex (mm)* All −0.078 0.004 0.045 0.086 0.019 0.0483
∗ To compare with the MCMC pex, here we used the fitted pex instead of the snowpit-measured pex as the reference. The source of the fitted pex can be found in Sect. 4.3.

Figure 12. BASE-AM estimated snow depth (SD) (a, c) and snow
water equivalent (SWE) (b, d) using the one-layer snow assumption
compared with the measurements.

Figure 13. BASE-AM estimated pex using the one-layer snow as-
sumption compared with the measurements.

fixed component of the MCMC algorithm. For application
in other regions, additional research may be necessary to re-
set the prior for Q and the relative thickness between two
snow layers. For instance, observations of depth hoar in tun-
dra snow types indicate that it occupies only one-third of the
entire snow depth and can be adjusted accordingly (King et
al., 2018; Saberi et al., 2021). Snow stratigraphy from in situ
measurements or multiple-layer snow process model simula-
tions (Pan et al., 2023) can also be incorporated to improve
the retrieval performance. However, the example presented
in this paper is currently computationally expensive, limit-
ing its feasibility for generating products at a global scale.
For global application, firstly, we can reduce the number of
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Figure 14. Comparison between the SD and profile-average pex relationships in MCMC chains using two-layer (a) and one-layer (b) snow
assumptions, respectively, for pit 49. The highest probability point at each SD was calculated and used to fit a logarithmic equation between
SD and pex, and is labeled as a blue curve in both panels. The equation fitted in (a) is indicated by a dashed green curve in (b) to make a
comparison. The measurements are indicated by black diamonds. The MCMC-estimated SD and pex are indicated by blue triangles in both
panels.

predicted variables. For instance, snow and soil temperatures
can be replaced with predictions from a land surface model.
Soil roughness can be predetermined during snow-free pe-
riods, as shown in the example in Gao et al. (2023). For
snow density and soil moisture, methods like those in Zhu
et al. (2018) can be employed to avoid solving for both, or
knowledge from one can be introduced to solve for the other
(Kumawat et al., 2022; Gao et al., 2023). Ideally, the sys-
tem would only need to iterate the layer thicknesses and lay-
ered snow microstructures, with the MCMC algorithm seek-
ing global optimization instead of local optimization. Sec-
ondly, the length of chains can be reduced by monitoring the
convergence of estimated variables as outlined in Sect. 7.3 of
Pan et al. (2017). Thirdly, the computation of scattering co-
efficients in MEMLS3&a based on IBA can be accelerated
by using a machine learning model.

Appendix A: The soil dielectric constant model

The soil dielectric constant model utilized in this paper was
developed from the Mironov et al. (2004) model and revised
according to the soil dielectric constant measurement exper-
iment conducted by Jinmei Pan using the Agilent vector net-
work analyzer at the Beijing Normal University in China.
An introduction of the experiment can be found in Wu et
al. (2022). Here, a brief introduction of this model is pro-
vided (with more details to be published at a later date). The
measurements utilized to develop this model cover a wider
soil texture than that in Wu et al. (2002), from loamy sand
(77.27 % sand, 16.02 % silt, and 6.71 % clay) to silty clay
loam (17.49 % sand, 49.68 % silt, and 32.82 % clay). The
gravimetric soil water content of all samples varies from 3 %

to 60 % and the soil temperature varies from −30 to 20°C.
Soil dielectric constants were measured from 200 MHz to
20 GHz continuously at 200 MHz steps.

The real and imaginary part of the squared root of soil di-
electric constants (εsoil) are the refractive index (RI) (n) and
the normalized attenuation coefficient (NAC) (κ):

n+ iκ =
√
εsoil = ε

′

soil+ iε
′′

soil . (A1)

n and κof thaw soil are modeled as follows (Mironov et al.,
2004):

ns =

{
nd+ (nb− 1)W, W ≤WB
nd+ (nb− 1)WB+ (nu− 1)(W −WB) , W ≥WB

(A2)

κs =

{
κd+ κbW, W ≤WB
κd+ κbWB+ κu (W −WB) , W ≥WB

, (A3)

where the subscripts n and κ , which include d, b, and u, rep-
resent dry soil solids, bound water, and free water, respec-
tively. In the soil–water system, a fraction of bound water,
which has a different dielectric property compared with free
water, adheres to soil solids. The maximum allowable bound
water content is denoted asWB. If the total water content (W )
is lower thanWB, then the model will contain only two com-
ponents, as indicated by the first lines of Eqs. (A2) and (A3);
otherwise, it will contain three components.
n and κ of frozen soil are modeled as follows (Mironov et

al., 2017):

ns =


nd+ (nb− 1)W, W ≤WB
nd+ (nb− 1)WB+ (nt− 1)(W −WB) , WB ≤W ≤WU
nd+ (nb− 1)WB+ (nt− 1)(WU−WB)
+(ni− 1)(W −WU) , W ≥WU

(A4)

κs =

{
κd + κbW, W ≤WB
κd + κbWB + κt (W −WB) , WB ≤W ≤WU
κd + κbWB + κt (WU −WB)+ κi (W −WU) , W ≥WU

, (A5)
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Table A1. Sources or equations of ε0, ε∞, τ , and σ for different soil water components.

ε0 ε∞ τ σ

Free water Stogryn (1971) as a function of T Mironov et al. (2004) as
a function of C

Bound water 24.9+ 0.0685T 80.8+ 0.715T 26.04× 10−12 Mironov et al. (2004) as
a function of C

Transient water 4.78 77.90 24.0× 10−12 0.3913

∗ T and C are soil temperature (°C) and soil clay content (%).

Figure A1. Simulated and observed real part of soil dielectric constants (ε′soil) by the Decagon 5 TM sensor at 100 MHz: (a) sensitivity to
temperature for soil measured at 10 cm and (b) scatterplots for soil measured at different depths.

where the subscripts n and κ , which include d, b, t, and i, rep-
resent dry soil solids, bound water, transient water, and ice,
respectively. Soil solids and bound water have the same phys-
ical meanings for frozen soil and thaw soil. When soil tem-
perature decreases from above-zero degrees Celsius to sub-
zero degrees Celsius, not all water will immediately turn to
ice. The total volumetric fraction of unfrozen water is called
the unfrozen water content (WU), which can be calculated as
a function of temperature and clay fraction. We followed the
setting in Mironov et al. (2017) that the bound water will not
freeze, and the unfrozen soil water that exceeds the bound
water is considered as the transient water.

The key to the soil dielectric constant model is to model
WB, WU, as well as n and κ for all components. We utilized
the same WB and the same n and κ for soil solids as a func-
tion of clay fraction as reported in Mironov et al. (2004). The
n and κ of ice refer to the temperature-dependent equation
utilized in MEMLS3&a.

The dielectric constants of water components can be mod-
eled by Debye’s equation as

ε = ε∞+
ε0− ε∞

1− i2πf τ
+ i

σ

2πf εr
, (A6)

where ε∞ is the dielectric constant in the high-frequency
limit, ε0 is the static dielectric constant in the low-frequency
limit, f is the frequency (Hz), τ is the relaxation time (s), σ

is the effective conductivity (S m−1), and εr is the dielectric
constant for free space (8.854× 10−12 F m−1). Later, ε can
be transferred to n and κ using Eq. (A1).

For each component, it is required to determine ε0, ε∞, τ ,
and σ . We adapted some existing equations from Mironov et
al. (2004) and Stogryn (1971), and we fitted the remaining
parameters according to measurements. We utilized the sam-
ples with W<WB to fit temperature-dependent bound wa-
ter parameters (see Table A1) and then iteratively fit Wu and
transient water parameters using the MCMC approach. Ta-
ble A1 lists the details of the water component models, and
WU was determined as

WU =min
(
A× |T |B ,W

)
(A7)

A= acC+ amvW

B = bcC+ bmvW ,

where C is soil clay content (%), T is soil temperature
(°C), ac = 0.00306, amv = 0.394, bc = 0.00582, and bmv =

−1.073.
Figure A1 shows an example of the model utilized to pre-

dict the measured soil permittivity (real part of dielectric
constants) at 100 MHz by the Decagon 5 TM sensor in So-
dankylä. The simulation utilized the measured liquid water
content and measured soil texture. The total soil water con-
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tent comes from the measured liquid water content before
freezing. To calculate soil permittivity, we used a fully inde-
pendent model as compared with the Decagon 5 TM sensor.
Figure A1a shows that our model is able to predict the change
in soil permittivity with changes in soil temperature. Fig-
ure A1b shows that the simulated soil permittivity is highly
consistent with the observations at 10–80 cm depth below
the soil surface. The mean bias is 0.0838, with an RMSE of
0.0569. In addition, the model overestimates the measured
permittivity for the single top layer at 5 cm, which is influ-
enced by air above the soil and also organic matter. Includ-
ing the 5 cm layer, the mean bias is 0.129 with an RMSE
of 0.198. It indicates that the soil dielectric constant model
described here is suitable to be used as part of the forward
model described in this paper.

Data availability. Please refer to data availability of Lemmetyinen
et al. (2016a) to acquire the NoSREx datasets. The source code of
this work has been uploaded and is now available on Github (https://
github.com/jinmeipan/MCMC_Active, last access: 28 March 2024)
with a DOI as https://doi.org/10.5281/zenodo.10886225 (Pan et al.,
2024).

Author contributions. JL provided the NoSREx datasets, and pre-
liminary analysis of these datasets was conducted by JP, MD, and
JL prior to retrieval. MD and DL provided the MCMC algorithm
ideas and tools, which were later implemented and revised by JP to
conduct the SWE retrieval experiments. All co-authors participated
in the analysis of the MCMC results and collaborated on writing
and revising the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors thank the NoSREx team for their
hard work and dedicated effort in completing this snow experi-
ment and providing the great dataset to support our study. We also
thank Kimmo Rautiainen for providing the soil frost depth mea-
surement for us to do more analysis, and we thank Simon Yueh
and Richard Kelly for providing valuable comments when we were
studying the first MCMC outputs. We dedicate this study to the
memory of Joshua King, who passed away 21 February 2023. Josh’s
pioneering measurements and keen insight into the estimation of
snow water equivalent from radar observations were an inspiration
for us and for the entire community, and he will be deeply missed.

Financial support. This research has been supported by
the National Natural Science Foundation of China (grant
no. 42090014), the National Key Research and Development
Program of China (grant no. 2021YFB3900104), NASA (grant
no. 80NSSC17K0200), the European Space Agency (ESA Contract
no. 22671/09/NL/JA), and the Research Council of Finland (grant
no. 325397). It also received financial support from the China
Scholarship Council and the OSU Presidential Fellowship.

Review statement. This paper was edited by Homa Kheyrollah
Pour and reviewed by Jiyue Zhu and two anonymous referees.

References

Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Po-
tential impacts of a warming climate on water avail-
ability in snow-dominated regions, Nature, 438, 303–309,
https://doi.org/10.1038/nature04141, 2005.

Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring
snow cover variability and change over 1922–2010 including
an assessment of uncertainty, The Cryosphere, 5, 219–229,
https://doi.org/10.5194/tc-5-219-2011, 2011.

Cline, D., Elder, K., Davis, R., Hardy, J., Liston, G., Imel,
D., Yueh, S., Gasiewski, A., Koh, G., Armstrong, R.,
and Parsons, M.: Overview of the NASA cold land pro-
cesses field experiment (CLPX-2002), Proc SPIE, 4894,
https://doi.org/10.1117/12.467766, 2003.

Cui, Y., Xiong, C., Lemmetyinen, J., Shi, J., Jiang, L., Peng, B., Li,
H., Zhao, T., Ji, D., and Hu, T.: Estimating snow water equivalent
with backscattering at X and Ku band based on absorption loss,
Remote Sens., 8, 505, https://doi.org/10.3390/rs8060505, 2016.

Derksen, C., King, J., Belair, S., Garnaud, C., Vionnet, V.,
Fortin, V., Lemmetyinen, J., Crevier, Y., Plourde, P.,
Lawrence, B., van Mierlo, H., Burbidge, G., and Siqueira,
P.: Development of the Terrestrial Snow Mass Mission,
in: 2021 IEEE International Geoscience and Remote Sens-
ing Symposium IGARSS, Brussels, Belgium, 614–617,
https://doi.org/10.1109/IGARSS47720.2021.9553496, 2021.

Durand, M., Barros, A., Dozier, J., Adler, R., Cooley, S., En-
tekhabi, D., Forman, B. A., Konings, A. G., Kustas, W. P.,
Lundquist, J. D., Pavelsky, T. M., Rodell, M., and Steele-
Dunne, S.: Achieving Breakthroughs in Global Hydrologic
Science by Unlocking the Power of Multisensor, Multidisci-
plinary Earth Observations, AGU Adv., 2, e2021AV000455,
https://doi.org/10.1029/2021AV000455, 2021.

Flanner, M. G., Shell, K. M., Barlage, M., Perovich, D. K., and
Tschudi, M. A.: Radiative forcing and albedo feedback from the
Northern Hemisphere cryosphere between 1979 and 2008, Nat.
Geosci., 4, 151–155, https://doi.org/10.1038/ngeo1062, 2011.

Gao, X., Pan, J., Peng, Z., Zhao, T., Bai, Y., Yang, J., Jiang, L.,
Shi, J., and Husi, L.: Snow Density Retrieval in Quebec Us-
ing Space-Borne SMOS Observations, Remote Sens., 15, 2065,
https://doi.org/10.3390/rs15082065, 2023.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B.: Metropo-
lis andmetropolis-hasting algorithms, in: Bayesian Data Analy-
sis, 2nd edn., edited by: Gelman, A., Carlin, J. B., Stern, H.S.,

The Cryosphere, 18, 1561–1578, 2024 https://doi.org/10.5194/tc-18-1561-2024

https://github.com/jinmeipan/MCMC_Active
https://github.com/jinmeipan/MCMC_Active
https://doi.org/10.5281/zenodo.10886225
https://doi.org/10.1038/nature04141
https://doi.org/10.5194/tc-5-219-2011
https://doi.org/10.1117/12.467766
https://doi.org/10.3390/rs8060505
https://doi.org/10.1109/IGARSS47720.2021.9553496
https://doi.org/10.1029/2021AV000455
https://doi.org/10.1038/ngeo1062
https://doi.org/10.3390/rs15082065


J. Pan et al.: SWE retrieval based on 3-frequency radar 1577

and Rubin, D. B., Chapman & Hall/CRC, Boca Raton, FL, USA,
320–334, https://doi.org/10.1201/9780429258480, 2003.

Integrated Global Observing Strategy (IGOS): IGOS cryosphere
theme: a cryosphere theme report for the IGOS partner-
ship, WMO/TD-No. 1405, Geneva, Switzerland, 114 pp.,
https://globalcryospherewatch.org/reference/documents/files/
igos_cryosphere_report.pdf (last access: 22 March 2023), 2007.

Jordan, R.: A One-Dimensional Temperature Model for a Snow
Cover: Technical Documentation for SNTHERM.89, U.S. Army
Corps of Engineers, Cold Regions Research & Engineering Lab-
oratory, https://www.erdc.usace.army.mil/Media/Fact-Sheets/
Fact-Sheet-Article-View/Article/476650/sntherm/ (last access:
22 March 2024), 1991.

Kumawat, D., Olyaei, M., Gao, L., and Ebtehaj, A.: Passive Mi-
crowave Retrieval of Soil Moisture Below Snowpack at L-
Band Using SMAP Observations, IEEE T. Geosci. Remote, 60,
4415216, https://doi.org/10.1109/TGRS.2022.3216324, 2022.

King, J., Derksen, C., Toose, P., Langlois, A., Larsen, C.,
Lemmetyinen, J., Marsh, P., Montpetit, B., Roy, A., Rutter,
N., and Sturm, M.: The influence of snow microstruc-
ture on dual-frequency radar measurements in a tundra
environment, Remote Sens. Environ., 215, 242—254,
https://doi.org/10.1016/j.rse.2018.05.028, 2018.

Lemmetyinen, J., Kontu, A., Pulliainen, J., Vehviläinen, J., Rauti-
ainen, K., Wiesmann, A., Mätzler, C., Werner, C., Rott, H.,
Nagler, T., Schneebeli, M., Proksch, M., Schüttemeyer, D.,
Kern, M., and Davidson, M. W. J.: Nordic Snow Radar Ex-
periment, Geosci. Instrum. Method. Data Syst., 5, 403–415,
https://doi.org/10.5194/gi-5-403-2016, 2016a.

Lemmetyinen, J., Schwank, M., Rautiainen, K., Kontu, A., Parkki-
nen, T., Mätzler, C., Wiesmann, A., Wegmüller, U., Derksen,
C., Toose, P., Roy, A., and Pulliainen, J.: Snow density and
ground permittivity retrieved from L-band radiometry: Applica-
tion to experimental data, Remote Sens. Environ., 180, 377–391,
https://doi.org/10.1016/j.rse.2016.02.002, 2016b.

Lemmetyinen, J., Derksen, C., Rott, H., Macelloni, G., King,
J., Schneebeli, M., Wiesmann, A., Leppänen, L., Kontu,
A., and Pulliainen, J.: Retrieval of effective correlation
length and snow water equivalent from radar and pas-
sive microwave measurements, Remote Sens., 10, 170,
https://doi.org/10.3390/rs10020170, 2018.

Lemmetyinen, J., Ruiz, J. J., Cohen, J., Haapamaa, J., Kontu, A.,
Pulliainen, J., and Praks, J.: Attenuation of Radar Signal by a
Boreal Forest Canopy in Winter, IEEE Geosci. Remote Sens., 19,
2505905, https://doi.org/10.1109/LGRS.2022.3187295, 2022.

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, M.,
and Wood, E. F.: Inroads of remote sensing into hydrologic sci-
ence during the WRR era, Water Resour. Res., 51, 7309–7342,
https://doi.org/10.1002/2015WR017616, 2015.

Macelloni, G., Brogioni, M., Montomoli, F., and Fontanelli, G.:
Effect of forests on the retrieval of snow parameters from
backscatter measurements, Eur. J. Remote Sens., 45, 121–132,
https://doi.org/10.5721/EuJRS20124512, 2012.

Mätzler, C.: Autocorrelation functions of granular media with free
arrangement of spheres, spherical shells or ellipsoids, J. Appl.
Phys., 81, 1509–1517, https://doi.org/10.1063/1.363916, 1997.

Mätzler, C.: Relation between grain-size and corre-
lation length of snow, J. Glaciol., 48, 461–466,
https://doi.org/10.3189/172756502781831287, 2002.

Merkouriadi, I., Lemmetyinen, J., Liston, G. E., and Pulliainen,
J.: Solving Challenges of Assimilating Microwave Remote
Sensing Signatures With a Physical Model to Estimate Snow
Water Equivalent, Water Resour. Res., 57, e2021WR030119,
https://doi.org/10.1029/2021WR030119, 2021.

Mironov, V. L., Dobson, M. C., Kaupp, V. H., Komarov, S. A.,
and Kleshchenko, V. N.: Generalized refractive mixing dielectric
model for moist soils, IEEE T. Geosci. Remote, 42, 773–785,
https://doi.org/10.1109/TGRS.2003.823288, 2004.

Mironov, V. L., Kosolapova, L. G., Lukin, Y. I., Karavaysky, A.
Y., and Molostov, I. P.: Temperature- and texture-dependent di-
electric model for frozen and thawed mineral soils at a fre-
quency of 1.4 GHz, Remote Sens. Environ., 200, 240–249,
https://doi.org/10.1016/j.rse.2017.08.007, 2017.

Mo, T., Schmugge, T. J., and Wang, J. R.: Calculations of
the Microwave Brightness Temperature of Rough Soil Sur-
faces: Bare Field, IEEE T. Geosci. Remote, GE-25, 47–54,
https://doi.org/10.1109/TGRS.1987.289780, 1987.

Montpetit, B., Royer, A., Wigneron, J. P., Chanzy, A., and Mi-
alon, A.: Evaluation of multi-frequency bare soil microwave
reflectivity models, Remote Sens. Environ., 162, 186–195,
https://doi.org/10.1016/j.rse.2015.02.015, 2015.

Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R.,
Kelly, R., and Tedesco, M.: Evaluation of long-term Northern
Hemisphere snow water equivalent products, The Cryosphere,
14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, 2020.

Nijssen, B., Schnur, R., and Lettenmaier, D. P.: Global Ret-
rospective Estimation of Soil Moisture Using the Vari-
able Infiltration Capacity Land Surface Model, 1980–93,
J. Climate, 14, 1790–1808, https://doi.org/10.1175/1520-
0442(2001)014<1790:GREOSM>2.0.CO;2, 2001.

Saberi, N., Kelly, R., Pan, J., Durand, M., Goh, J., and Scott,
K. A.: The Use of a Monte Carlo Markov Chain Method
for Snow-Depth Retrievals: A Case Study Based on Airborne
Microwave Observations and Emission Modeling Experiments
of Tundra Snow, IEEE T. Geosci. Remote, 59, 1876–1889,
https://doi.org/10.1109/TGRS.2020.3004594, 2021.

Pan, J., Durand, M. T., Vander Jagt, B. J., and Liu, D.: Ap-
plication of a Markov Chain Monte Carlo algorithm for
snow water equivalent retrieval from passive microwave
measurements, Remote Sens. Environ., 192, 150–165,
https://doi.org/10.1016/j.rse.2017.02.006, 2017.

Pan, J., Yang, J., Jiang, L., Xiong, C., Pan, F., Gao, X.,
Shi, J., and Chang, S.: Combination of Snow Process
Model Priors and Site Representativeness Evaluation to Im-
prove the Global Snow Depth Retrieval Based on Pas-
sive Microwaves, IEEE T. Geosci. Remote, 61, 4301120,
https://doi.org/10.1109/TGRS.2023.3276651, 2023.

Pan, J., Durand, M., and Liu, D.: The BASE-AM source code for
snow water equivalent estimation (BASE-AM), Zenodo [code],
https://doi.org/10.5281/zenodo.10886225, 2024.

Picard, G., Löwe, H., Domine, F., Arnaud, L., Larue, F., Favier,
V., Le Meur, E., Lefebvre, E., Savarino, J., and Royer, A.: The
Microwave Snow Grain Size: A New Concept to Predict Satel-
lite Observations Over Snow-Covered Regions, AGU Adv., 3,
e2021AV000630, https://doi.org/10.1029/2021AV000630, 2022.

Proksch, M., Mätzler, C., Wiesmann, A., Lemmetyinen, J.,
Schwank, M., Löwe, H., and Schneebeli, M.: MEMLS3&a:
Microwave Emission Model of Layered Snowpacks adapted

https://doi.org/10.5194/tc-18-1561-2024 The Cryosphere, 18, 1561–1578, 2024

https://doi.org/10.1201/9780429258480
https://globalcryospherewatch.org/reference/documents/files/igos_cryosphere_report.pdf
https://globalcryospherewatch.org/reference/documents/files/igos_cryosphere_report.pdf
https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/476650/sntherm/
https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/476650/sntherm/
https://doi.org/10.1109/TGRS.2022.3216324
https://doi.org/10.1016/j.rse.2018.05.028
https://doi.org/10.5194/gi-5-403-2016
https://doi.org/10.1016/j.rse.2016.02.002
https://doi.org/10.3390/rs10020170
https://doi.org/10.1109/LGRS.2022.3187295
https://doi.org/10.1002/2015WR017616
https://doi.org/10.5721/EuJRS20124512
https://doi.org/10.1063/1.363916
https://doi.org/10.3189/172756502781831287
https://doi.org/10.1029/2021WR030119
https://doi.org/10.1109/TGRS.2003.823288
https://doi.org/10.1016/j.rse.2017.08.007
https://doi.org/10.1109/TGRS.1987.289780
https://doi.org/10.1016/j.rse.2015.02.015
https://doi.org/10.5194/tc-14-1579-2020
https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1790:GREOSM>2.0.CO;2
https://doi.org/10.1109/TGRS.2020.3004594
https://doi.org/10.1016/j.rse.2017.02.006
https://doi.org/10.1109/TGRS.2023.3276651
https://doi.org/10.5281/zenodo.10886225
https://doi.org/10.1029/2021AV000630


1578 J. Pan et al.: SWE retrieval based on 3-frequency radar

to include backscattering, Geosci. Model Dev., 8, 2611–2626,
https://doi.org/10.5194/gmd-8-2611-2015, 2015.

Rincon, R., Osmanoglu, B., Racette, P., Perrine, M., Brucker,
L., Seufert, S., Kielbasa, C., and Warren, A.: Perfor-
mance of Swesarr’s Multi-Frequency Dual-Polarimetry Syn-
thetic Aperture Radar During Nasa’S Snowex Airborne Cam-
paign, in: 2020 IEEE International Geoscience and Re-
mote Sensing Symposium, Waikoloa, HI, USA, 6150–6153,
https://doi.org/10.1109/IGARSS39084.2020.9324391, 2020.

Rott, H., Duguay, C., Etchevers, P., Essery, R., Hajnsek I., Macel-
loni, G., Malnes, E., and Pulliainen, J.: Report for Mission Se-
lection: CoReH20, ESA SP-1324/2, ESA Communications, No-
ordwijk, the Netherlands, 192 pp., https://esamultimedia.esa.int/
docs/EarthObservation/SP1324-2_CoReH2Or.pdf (last access:
22 March 2024), 2012.

Rutter, N., Sandells, M. J., Derksen, C., King, J., Toose, P., Wake,
L., Watts, T., Essery, R., Roy, A., Royer, A., Marsh, P., Larsen,
C., and Sturm, M.: Effect of snow microstructure variability on
Ku-band radar snow water equivalent retrievals, The Cryosphere,
13, 3045–3059, https://doi.org/10.5194/tc-13-3045-2019, 2019.

Shi, J., Dong, X., Zhao, T., Du, J., Jiang, L., Du, Y., Liu,
H., Wang, Z., Ji, D., and Xiong, C.: WCOM: The sci-
ence scenario and objectives of a global water cycle ob-
servation mission, in: 2014 IEEE Geoscience and Remote
Sensing Symposium, Quebec City, QC, Canada, 3646–3649,
https://doi.org/10.1109/IGARSS.2014.6947273, 2014.

Stogryn, A.: Equations for Calculating the Dielec-
tric Constant of Saline Water (Correspondence),
IEEE Trans. Microw. Theory Tech., 19, 733–736,
https://doi.org/10.1109/TMTT.1971.1127617, 1971.

Sturm, M., Holmgren, J., and Liston, G. E.: A seasonal
snow cover classification system for local to global applica-
tions, J. Climate, 8, 1261–1283, https://doi.org/10.1175/1520-
0442(1995)008<1261:ASSCCS>2.0.CO;2, 1995.

Takala, M., Luojus, K., Pulliainen, J., Derksen, C., Lemmetyi-
nen, J., Kärnä, J. P., Koskinen, J., and Bojkov, B.: Estimating
northern hemisphere snow water equivalent for climate research
through assimilation of space-borne radiometer data and ground-
based measurements, Remote Sens. Environ., 115, 3517–3529,
https://doi.org/10.1016/j.rse.2011.08.014, 2011.

Tsang, L., Durand, M., Derksen, C., Barros, A. P., Kang, D.-
H., Lievens, H., Marshall, H.-P., Zhu, J., Johnson, J., King, J.,
Lemmetyinen, J., Sandells, M., Rutter, N., Siqueira, P., Nolin,
A., Osmanoglu, B., Vuyovich, C., Kim, E., Taylor, D., Merk-
ouriadi, I., Brucker, L., Navari, M., Dumont, M., Kelly, R.,
Kim, R. S., Liao, T.-H., Borah, F., and Xu, X.: Review arti-
cle: Global monitoring of snow water equivalent using high-
frequency radar remote sensing, The Cryosphere, 16, 3531–
3573, https://doi.org/10.5194/tc-16-3531-2022, 2022.

Wegmüller, U. and Mätzler, C.: Rough bare soil reflec-
tivity model, IEEE T. Geosci. Remote, 37, 1391–1395,
https://doi.org/10.1109/36.763303, 1999.

Wu, S., Zhao, T., Pan, J., Xue, H., Zhao, L., and Shi, J.: Improve-
ment in Modeling Soil Dielectric Properties During Freeze-Thaw
Transitions, IEEE Geosci. Remote Sens. Lett., 19, 2001005,
https://doi.org/10.1109/LGRS.2022.3154291, 2022.

Xu, X., Liang, D., Tsang, L., Andreadis, K. M., Josberger,
E. G., Lettenmaier, D. P., Cline, D. W., and Yueh, S.
H.: Active Remote Sensing of Snow Using NMM3D/DMRT
and Comparison With CLPX II Airborne Data, IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens., 3, 689–697,
https://doi.org/10.1109/JSTARS.2010.2053919, 2010.

Zhu, J., Tan, S., King, J., Derksen, C., Lemmetyinen, J., and Tsang,
L.: Forward and Inverse Radar Modeling of Terrestrial Snow Us-
ing SnowSAR Data, IEEE T. Geosci. Remote, 56, 7122–7132,
https://doi.org/10.1109/TGRS.2018.2848642, 2018.

Zhu, J., Tan, S., Tsang, L., Kang, D., and Kim, E. : Snow Wa-
ter Equivalent Retrieval Using Active and Passive Microwave
Observations, Water Resour. Res., 57, e2020WR027563,
https://doi.org/10.1029/2020wr027563, 2021.

The Cryosphere, 18, 1561–1578, 2024 https://doi.org/10.5194/tc-18-1561-2024

https://doi.org/10.5194/gmd-8-2611-2015
https://doi.org/10.1109/IGARSS39084.2020.9324391
https://esamultimedia.esa.int/docs/EarthObservation/SP1324-2_CoReH2Or.pdf
https://esamultimedia.esa.int/docs/EarthObservation/SP1324-2_CoReH2Or.pdf
https://doi.org/10.5194/tc-13-3045-2019
https://doi.org/10.1109/IGARSS.2014.6947273
https://doi.org/10.1109/TMTT.1971.1127617
https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008<1261:ASSCCS>2.0.CO;2
https://doi.org/10.1016/j.rse.2011.08.014
https://doi.org/10.5194/tc-16-3531-2022
https://doi.org/10.1109/36.763303
https://doi.org/10.1109/LGRS.2022.3154291
https://doi.org/10.1109/JSTARS.2010.2053919
https://doi.org/10.1109/TGRS.2018.2848642
https://doi.org/10.1029/2020wr027563

	Abstract
	Introduction
	Data
	Methods
	The Markov Chain Monte Carlo method
	The MEMLS3&a snow backscattering model
	Soil models

	Results
	MCMC performance for active SWE retrieval
	Estimation of snow depth and snow water equivalent
	Estimation of snow microstructure

	Discussion
	Concerning snow density, soil roughness, and soil moisture
	The influence of the number of modeled snow layers on the retrieval

	Conclusions
	Appendix A: The soil dielectric constant model
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

