Articles | Volume 17, issue 9
Research article
21 Sep 2023
Research article |  | 21 Sep 2023

New estimates of pan-Arctic sea ice–atmosphere neutral drag coefficients from ICESat-2 elevation data

Alexander Mchedlishvili, Christof Lüpkes, Alek Petty, Michel Tsamados, and Gunnar Spreen

Related authors

Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487,,, 2022
Short summary

Related subject area

Discipline: Sea ice | Subject: Remote Sensing
Ice floe segmentation and floe size distribution in airborne and high-resolution optical satellite images: towards an automated labelling deep learning approach
Qin Zhang and Nick Hughes
The Cryosphere, 17, 5519–5537,,, 2023
Short summary
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Philip Rostosky and Gunnar Spreen
The Cryosphere, 17, 3867–3881,,, 2023
Short summary
Observing the evolution of summer melt on multiyear sea ice with ICESat-2 and Sentinel-2
Ellen M. Buckley, Sinéad L. Farrell, Ute C. Herzfeld, Melinda A. Webster, Thomas Trantow, Oliwia N. Baney, Kyle A. Duncan, Huilin Han, and Matthew Lawson
The Cryosphere, 17, 3695–3719,,, 2023
Short summary
Lead fractions from SAR-derived sea ice divergence during MOSAiC
Luisa von Albedyll, Stefan Hendricks, Nils Hutter, Dmitrii Murashkin, Lars Kaleschke, Sascha Willmes, Linda Thielke, Xiangshan Tian-Kunze, Gunnar Spreen, and Christian Haas
The Cryosphere Discuss.,,, 2023
Revised manuscript accepted for TC
Short summary
Spaceborne thermal infrared observations of Arctic sea ice leads at 30 m resolution
Yujia Qiu, Xiao-Ming Li, and Huadong Guo
The Cryosphere, 17, 2829–2849,,, 2023
Short summary

Cited articles

Andreas, E. L. and Cash, B. A.: Convective heat transfer over wintertime leads and polynyas, J. Geophys. Res.-Oceans, 104, 25721–25734,, 1999. a
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P. O. G., Fairall, C. W., Guest, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone, Q. J. Roy. Meteor. Soc., 136, 927–943,, 2010. a, b, c, d
Arya, S. P. S.: Contribution of form drag on pressure ridges to the air stress on Arctic ice, J. Geophys. Res., 78, 7092–7099,, 1973. a, b, c, d, e
Arya, S. P. S.: A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice, J. Geophys. Res., 80, 3447–3454,, 1975. a, b, c, d, e, f
Bagnardi, M., Kurtz, N. T., Petty, A. A., and Kwok, R.: Sea Surface Height Anomalies of the Arctic Ocean From ICESat-2: A First Examination and Comparisons With CryoSat-2, Geophys. Res. Lett., 48, e2021GL093155,, 2021. a
Short summary
In this study we looked at sea ice–atmosphere drag coefficients, quantities that help with characterizing the friction between the atmosphere and sea ice, and vice versa. Using ICESat-2, a laser altimeter that measures elevation differences by timing how long it takes for photons it sends out to return to itself, we could map the roughness, i.e., how uneven the surface is. From roughness we then estimate drag force, the frictional force between sea ice and the atmosphere, across the Arctic.