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Abstract. The effect that sea ice topography has on the mo-
mentum transfer between ice and atmosphere is not fully
quantified due to the vast extent of the Arctic and limita-
tions of current measurement techniques. Here we present a
method to estimate pan-Arctic momentum transfer via a pa-
rameterization that links sea ice–atmosphere form drag coef-
ficients with surface feature height and spacing. We measure
these sea ice surface feature parameters using the Ice, Cloud
and land Elevation Satellite-2 (ICESat-2). Though ICESat-2
is unable to resolve as well as airborne surveys, it has a higher
along-track spatial resolution than other contemporary al-
timeter satellites. As some narrow obstacles are effectively
smoothed out by the ICESat-2 ATL07 spatial resolution, we
use near-coincident high-resolution Airborne Topographic
Mapper (ATM) elevation data from NASA’s Operation Ice-
Bridge (OIB) mission to scale up the regional ICESat-2 drag
estimates. By also incorporating drag due to open water, floe
edges and sea ice skin drag, we produced a time series of
average total pan-Arctic neutral atmospheric drag coefficient
estimates from November 2018 to May 2022. Here we have
observed its temporal evolution to be unique and not directly
tied to sea ice extent. By also mapping 3-month aggregates
for the years 2019, 2020 and 2021 for better regional anal-
ysis, we found the thick multiyear ice area directly north of
the Canadian Archipelago and Greenland to be consistently
above 2.0× 10−3, while most of the multiyear ice portion of
the Arctic is typically around ∼ 1.5× 10−3.

1 Introduction

Arctic sea ice is heterogeneous with respect to several char-
acteristics, including its concentration, thickness and rough-
ness (e.g., Thorndike et al., 1975; Bourke and Garrett, 1987).
The understanding of how these parameters vary with space
and time is important for several reasons, including its im-
pact on human activities, e.g., navigation, and its impact on
the physical system, e.g., the transfer of momentum and en-
ergy between the atmosphere and ocean.

Studies of Arctic sea ice have arguably focused more on
constraining variability in concentration and thickness to-
wards estimating sea ice volume and its variability in time
and space. However, the surface roughness of sea ice also ex-
hibits strong spatial and temporal variability (e.g., Andreas
et al., 2010; Lüpkes et al., 2012; Castellani et al., 2014;
Petty et al., 2017) that needs to be better understood. Sur-
face roughness can be related to the neutral drag coefficient
by applying the Monin–Obukhov theory. Since the rough-
ness length for momentum and the scalar roughness length
for heat and moisture also occur in the non-neutral transfer
coefficients, surface roughness directly impacts not only mo-
mentum transport but also the transfer of heat and moisture
between the atmosphere and the underlying surface. Rougher
surfaces can create more turbulence and enhance mixing,
thereby influencing the stability of the atmospheric boundary
layer (e.g., Garratt, 1992; Schneider et al., 2022; Lüpkes and
Gryanik, 2015). Due to its impact on momentum and heat
transport over and below the sea ice layer, surface roughness
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is a fundamental parameter influencing the distribution of sea
ice (e.g., Yu et al., 2020; Brenner et al., 2021). Its relevance
for both heat and moisture transfer and momentum transfer
are described by the Monin–Obukhov theory for the determi-
nation of turbulent fluxes, where surface roughness serves as
an essential parameter (e.g., Lüpkes et al., 2012; Lüpkes and
Gryanik, 2015). The process of becoming rough is driven in
part by pressure ridging, which redistributes ice vertically,
and the presence of snow features such as dunes and sastrugi
(e.g., Arya, 1975; Hopkins, 1998; Petty et al., 2016). Sum-
mer melt can facilitate the smoothing of obstacles like ridges
but can also increase roughness through ice melt (e.g., An-
dreas et al., 2010; Landy et al., 2015; Castellani et al., 2014).
Rougher sea ice is generally found in the thick, multiyear
ice regions north of the Arctic Archipelago and Greenland.
Landfast rough ice in these areas is an important factor for
determining transportation routes for local residents and in-
dustry (Dammann et al., 2018). Newly formed first-year ice
is typically much smoother, although this division is compli-
cated by the accumulation of snow and its ability to smooth
out ice surface variability (e.g., Garbrecht et al., 2002). Ob-
servational (e.g., Castellani et al., 2014) and model studies
(e.g., Tsamados et al., 2014) suggest that sea ice roughness
varies more with space, e.g., between first-year ice and multi-
year ice regions, than it does with time, e.g., between freeze-
up and melt seasons. With the decline in rough multiyear ice
due to recent sea ice minima (e.g., Stroeve et al., 2012), the
central Arctic and areas north of Eurasia and Alaska are pre-
dominantly composed of first-year ice during winter months
and are therefore smoother in comparison (e.g., Castellani
et al., 2014; Petty et al., 2017).

The roughness of sea ice is heavily linked with its mo-
tion as a result of momentum and energy transfer between
the ocean, sea ice and the atmosphere. Disregarding the pro-
portionally little Arctic sea ice that is fastened to the sur-
rounding landmasses, the remaining majority is subject to
motion from the balance of drag forces from ocean currents
and winds and internal forces (e.g., Thorndike and Colony,
1982; Steele et al., 1997). Ice motion redistributes ice and
snow around the Arctic and controls the rate of discharge
from the Arctic basin. The balance of forces governing this
motion is described in the momentum balance equation for
sea ice, in which the interactions between ice, atmosphere
and ocean are quantified via drag coefficients. The turbulent
surface flux of momentum τ that describes this interaction is
as follows

τ = ρCd(z)U(z)
(

cosθ U(z)+ sinθ k̂×U(z)
)
, (1)

where ρ is the air density, U(z) is the difference in air and
ice velocities at a given height z, U(z) is its magnitude, k̂ is
the vertical unit vector, and θ is the turning angle. The drag
coefficient Cd is usually written as a product of the neutral
drag coefficient Cn

d and a surface-roughness-dependent sta-
bility function fm (e.g., Garratt, 1992; Birnbaum and Lüp-

kes, 2002; Lüpkes and Gryanik, 2015; Gryanik and Lüpkes,
2018). The height above sea level z is most commonly set to
a reference height of 10 m to match the layer for which the
Monin–Obukhov theory for the determination of turbulent
fluxes is valid. It is furthermore nearest to the lowest height
level of high-resolution climate and weather prediction mod-
els. The neutral drag coefficient Cn

d assumes a neutrally strat-
ified atmospheric surface layer and is the key parameter that
is investigated in this study. The total drag coefficient over a
given sea ice surface is commonly subdivided into a contri-
bution from skin drag Cd,s caused by microscale roughness
and a contribution by form drag Cd,f caused by large dis-
tinct obstacles (Arya, 1973, 1975). This division is the basis
for the drag parameterization developed by Garbrecht et al.
(2002). The derived parameterization is developed for esti-
mating the form drag component of the total neutral 10 m
drag coefficient Cn

d10,f from the distribution of distinct obsta-
cles and their heights relative to the surface.

The difference in air and ice velocities U(z) varies in
space and time, and thus the associated momentum trans-
fer and drag forces also show a corresponding variability.
Given the changing Arctic climate and the abovementioned
shift from multiyear ice to first-year ice, we can expect that,
with a changing distribution of spatial roughness, the associ-
ated drag forces will also change. It is therefore in our best
interest to help constrain drag coefficients to better model sea
ice–atmosphere momentum transfer and, in turn, the Arctic
climate system. In this study, we will be focusing on the inter-
action between the atmosphere and sea ice and the related at-
mospheric (wind) drag force but will avoid extrapolating our
findings to the equally important interaction between ocean
and sea ice since our observations are limited to satellite and
airborne measurements.

The Garbrecht et al. (2002) parameterization, discussed
further in subsequent sections, has been used in various Arc-
tic regions using airborne topographic data (Castellani et al.,
2014; Petty et al., 2017). We now aim to extend the applica-
bility of said parameterization onto the high-resolution pan-
Arctic topographic data measured by the Advanced Topo-
graphic Laser Altimeter System (ATLAS) onboard NASA’s
Ice, Cloud and land Elevation Satellite-2 (ICESat-2) and bet-
ter characterize the spatiotemporal variability in form drag.
With this data product we hope to aid the development of fu-
ture climate models with integrated form drag parameteriza-
tion schemes (e.g., Tremblay and Mysak, 1977; Steiner et al.,
1999; Tsamados et al., 2014; Yu et al., 2020; Elvidge et al.,
2021). Model studies with integrated form drag schemes
have been shown to better characterize both ice–atmosphere
and ice–ocean interactions and inherent properties of sea ice
like its thickness (e.g., Tsamados et al., 2016; Martin et al.,
2016). However, the degree of uncertainty remains large pri-
marily due to a lack of constraints in these form drag pa-
rameterization schemes. While airborne topographic data are
perhaps the best record of measured sea ice drag coefficients
in the Arctic, this cannot be reliably used to constrain model
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drag coefficients because of the incomplete temporal and
spatial coverage. Satellite drag coefficient evaluations using
topography data, on the other hand, have in the past been im-
practical due to their inability to detect sea ice roughness on
sufficiently small scales (e.g., Landy et al., 2015; Castellani
et al., 2014). With the launch of NASA’s ICESat-2 laser al-
timeter satellite in 2018, which is able to collect topographic
data over sea ice at a resolution that is higher than its pre-
decessors (tens of meters – able to resolve distinct sea ice
features), this study aims to make use of the advancements
in satellite altimetry to estimate the neutral drag coefficients
across the entire Arctic and highlight its regional and sea-
sonal variability for the first time.

2 Data and methods

This section describes the datasets involved in this study and
the parameterizations used to calculate drag coefficients.

2.1 ATLAS on ICESat-2

The Advanced Topographic Laser Altimeter System (AT-
LAS) is a lidar instrument onboard ICESat-2 that collects
high-resolution surface elevation data using a sophisticated
split-beam photon-counting laser system (Neumann et al.,
2019). By determining the travel time of reflected laser
pulses, ATLAS is able to accurately measure small changes
in topography through differences in along-track elevation.
The six laser beams are divided into three beam pairs con-
sisting of a strong and a weak beam. The separation be-
tween each of the beam pairs is about 3.3 km across the track,
whereas the separation between the strong and weak beams
making up the pairs is 2.3 km along the track and 90 m across
the track (Markus et al., 2017). At an altitude of 500 km, the
10 kHz laser pulses that ATLAS transmits result in roughly
11 m diameter laser footprints (Magruder et al., 2020, 2021)
that are spaced 0.7 m apart. Here what we refer to as a foot-
print is the spatial extent of the laser energy illumination on
the observed surface (Magruder et al., 2020).

In this study we focus on the along-track heights for sea
ice and open-water leads (ICESat-2 ATL07/L3A level 3a
data product). ATL07/L3A takes the global geolocated pho-
ton data (ATL03/L2) as input and further processes it to ob-
tain information on sea ice topography (e.g., Kwok et al.,
2021a, 2019b). For each of the six laser beams, estimates of
sea ice surface heights are computed by applying various fil-
ters (to remove background photons) and a dual-Gaussian fit
to segments of varying length, over which 150 signal photons
are accumulated. This is done to reduce the vertical errors
from∼ 30 cm for each photon height to∼ 2 cm (over flat sur-
faces) for each ATL07 segment height (Kwok et al., 2019a).
The segment length varies based on surface type, which in-
fluences photon counts such that when photon counts are
low, segment length is high and vice versa (Kwok et al.,

2021a). The spatial resolution is then the sum of the segment
length and beam footprint and are on average ∼ 30 m for the
strong beams and ∼ 70 m for the weak beams (Kwok et al.,
2019a). The strong beams (beams 1, 3 and 5) are roughly 4
times stronger in terms of pulse energy than the weak beams
(beams 2, 4 and 6), which results in these segment length
differences (Kwok et al., 2019b). As a result, we only use
the three strong beams for this study to take advantage of
the better resolution that they provide. The retrieved heights
are referenced to the WGS84 ellipsoid and include various
geophysical corrections (e.g., ocean tides, inverted barome-
ter, mean sea surface). ATLAS distinguishes water and ice
surfaces by utilizing the surface photon rate, the width of
the photon distribution and the background rate (Kwok et al.,
2021a). ATL07 is also restricted to regions of ice concentra-
tion greater than 15 % based on passive microwave data.

The ICESat-2 level 2 geolocated photon product ATL03
provides data at higher spatial resolution than the aggregated
ATL07 dataset, but this comes at the cost of reduced preci-
sion and vastly increased data volume. The use of ATL03 and
higher-resolution along-track aggregations has been shown
to help better detect and resolve distinct pressure ridge sail
heights compared to ATL07 (Ricker et al., 2023). However,
for this study we opted to use the more readily available
ATL07 dataset together with our Operation IceBridge down-
scaling to ensure that our ridge detection and form drag
methodology can be directly applied to all existing and up-
coming ICESat-2 sea ice elevation data.

2.2 ATM lidar on Operation IceBridge airplanes

The Airborne Topographic Mapper (ATM) is an instrument
suite that contains two high-resolution conically scanning
laser altimeters at 1.5 and 2.5◦ off-nadir angles that are able
to measure surface elevation with swath widths 245 and
40 m, respectively (Studinger, 2020; MacGregor et al., 2021;
Studinger et al., 2022). Like ATLAS, the lidar uses a 532 nm
laser (the narrow scanner also uses a 1064 nm laser) and a
10 kHz pulse repetition frequency, with each laser spot hav-
ing a footprint of ∼ 1 m and a vertical precision of ∼ 10 cm
(Martin et al., 2012; Studinger et al., 2022). Here we use the
wide scanner (1.5◦ off-nadir) to take advantage of its high
data density at the edges of the swath. NASA carried out sev-
eral airborne campaigns in the Arctic and Antarctic named
Operation IceBridge (OIB) during recent years targeting land
and sea ice observations (MacGregor et al., 2021). Through-
out OIB the ATM lidar instrument was installed on board
and carried by NASA aircraft (NASA P3-B and NASA DC8
aircraft) (Kwok et al., 2019a).

The OIB ATM dataset used in this study is from
April 2019, when four of the flights over sea ice are near co-
incident in space and time with ICESat-2. This includes all
data from 8, 12, 19 and 22 April 2019, throughout which co-
incidence was variable but sufficient for comparing observa-
tions of similar ice regimes (Kwok et al., 2019a). This dataset
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is used to derive a scaling factor via regression with ICESat-
2 ATL07-derived drag coefficients as it is has a better spa-
tial resolution and therefore better resolves sea ice features.
By applying this factor to the ICESat-2 ATL07-derived drag
coefficients using near-coincident OIB ATM data, we hope
to mitigate the spatial sampling biases discussed in Sect. 3.
In addition, the 6 and 20 April 2019 flights across sea ice
that were not coincident with any ICESat-2 tracks are used
to independently evaluate our ICESat-2 ATL07 monthly pan-
Arctic neutral drag coefficient estimates. The OIB flight lines
are outlined in Fig. 3a of Sect. 3.

2.3 Extracting sea ice feature data

The Garbrecht et al. (2002) sea ice drag parameterization
requires obstacle (sea ice feature, e.g., pressure ridge, rub-
ble field, hummock, snow dune, sastrugi) height and spacing
for the calculation of drag coefficients. Regional averages of
these quantities are derived from the ATL07 data over seg-
ments that are chunked prior to the sea ice feature extraction
(please see Fig. A8 in Appendix A, where this chunking pro-
cedure, as well as the processing steps that follow, are de-
picted and further described). After experimenting with mul-
tiple segment sizes over which to calculate those regional av-
erages, 10 km segments were chosen as in Castellani et al.
(2014); 10 km is a typical grid length of a high-resolution re-
gional climate model and is proposed to be a reasonable min-
imum for the drag parameterizations used (Garbrecht et al.,
2002; Lüpkes et al., 2012). Importantly, the data are not
equally spaced due to the influence of surface reflectivity on
photon counts, and thus the along-track distance parameter
(in meters) is used to chunk the data into 10 km segments.
As a result, the 10 km segments end up having a similar but
not equal amount of values. To see the typical spacing be-
tween Arctic-wide measurements and the spatial variability
thereof, see Fig. A1b in Appendix A. Lastly, to increase the
number of segments and the stability of drag estimates, the
10 km segments over which average sea ice feature statistics
are calculated are shifted by 1 km along the track, meaning
that they have large overlap and that only every 10th seg-
ment is fully uncorrelated. Importantly, 10 km segments with
a measurement spacing that exceeds 1 km, a value that is
sufficiently higher than what can be attributed to dark non-
reflective surfaces, are assumed to have cloud contamination
and are therefore omitted.

After segmentation, the surface level is subtracted from all
values per 10 km segment. While the surface height estimates
are referenced with respect to the mean sea surface (Kwok
et al., 2021a), the drag calculations require obstacle heights
above level ground and not the sea surface (freeboard). Thus,
the sea ice heights are first binned (rounded to the nearest
centimeter), and then the height of the surface level is calcu-
lated by computing the mode for all heights within the 10 km
segment. By subtracting this mode, all heights are referenced
to the regional ice level surface. For bimodal distributions,

the higher mode is used so as to avoid modes associated with
leads and young ice.

The produced 10 km segments of elevation from the re-
gional sea ice surface are used to calculate average obstacle
height and obstacle spacing per segment. A four-step process
is applied to each segment to compute these regional param-
eters.

1. The first step involves finding local maxima, i.e., obsta-
cle heights along the segment.

2. The second step is to omit obstacle heights that are be-
low a chosen threshold value.

3. The third step is to distinguish individual features by
omitting obstacles that do not fulfill the Rayleigh crite-
rion (explained below).

4. Finally, the fourth step is to compute the spacing be-
tween the obstacles that fulfill the Rayleigh criterion.

The Rayleigh criterion states that two maxima (obstacles)
must be separated by a minimum that is less than half the
value of the higher maxima for them to be classified as two
separate features (e.g., Hibler, 1975; Wadhams and Davy,
1986). After omitting all elevation maxima that do not fulfill
the Rayleigh criterion, the obstacle heights and the spacing
between them (both in meters) are averaged over each 10 km
segment before calculating the neutral drag coefficients at
this same scale.

While the chosen threshold value of 0.2 m elevation is ex-
pected to detect not only pressure ridges but also all topo-
graphic features like rubble fields and hummocks, here we
define an obstacle as any series of connected elevation val-
ues above the cutoff. This is because all obstacles have the
ability to impart form drag, and it is therefore not necessary
to distinguish between them. Nevertheless, some cutoff must
be introduced to effectively partition centimeter-scale rough-
ness that is associated with skin drag and form drag associ-
ated with obstacles (in this case anything above the 20 cm
cutoff), and we chose one which has been used before (e.g.,
Castellani et al., 2014; Petty et al., 2017) for a better compari-
son with previous evaluations of Arctic sea ice topography. A
more pressure-ridge-focused threshold value of 0.8 m (used
alongside 0.2 m in Castellani et al., 2014) was also tested and
produced similar results (not shown).

As will be shown in Sect. 3, the higher-resolution OIB
ATM data, which are able to better resolve sea ice features,
are used to bias correct and account for sampling differ-
ences in ICESat-2 ATL07 data. Prior to extracting sea ice
features, the conically scanned along-track topographic two-
dimensional data from ATM must also be converted into a
one-dimensional track. To do so, we adopt the methods from
Petty et al. (2017), wherein using a given azimuth angle
range we can isolate different parts of the conically scanned
ATM swath. We use the ranges 355 to 5 and 175 to 185◦

to extract the outermost narrow parts of the full ATM swath
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with the highest data density. This narrow track is then or-
dered as a function of distance from the first data point and
interpolated to fix the resolution at 1 m along the track. Once
ordered, as with ICESat-2 ATL07 elevation data, the OIB
ATM dataset undergoes the 10 km chunking and the four-step
process outlined above.

The OIB ATM high-resolution airborne dataset is then pro-
cessed, and drag coefficients are calculated from the sea ice
feature statistics obtained for 10 km segments (see Sect. 2.4
for more about the calculation step). The processed OIB
ATM data serve as an independent drag coefficient estimate
to which we compare the processed ICESat-2 ATL07 data.
The comparison is done on a regional scale by binning both
output datasets onto a polar stereographic projection grid
with nominal gridded resolution of 12.5 km. The polar stere-
ographic projections are true at 70◦ north with up to 6 % dis-
tortion at the poles (Knowles, 1993), making them an ideal
candidate for pan-Arctic maps. The resampling step for the
two datasets is done to compare drag coefficients averaged
over the same area; this is because the 10 km segments are
not perfectly aligned with one another. Once all coincident
grid cells are identified, the bivariate distribution of the two
gridded data products is generated.

We use the OIB ATM data as reference to account for
the spatial sampling differences with the lower-resolution
ICESat-2 data. A Huber regressor is calculated from filled
grid cells of near-coincident data, and model parameters are
then used to linearly scale up the ICESat-2 ATL07 drag co-
efficient estimates. Unlike the traditional linear fit, the Huber
regressor applies a linear loss to samples with an absolute
error |z| larger than a given threshold value ε (set to 1.35
to achieve 95 % statistical efficiency), thereby weighting “in-
liers” and “outliers” differently (Huber and Ronchetti, 2009).
This is done to reduce the sensitivity of the loss function to
outliers that are expected in the data due to the high level of
uncertainty when comparing quantities averaged over large
spatial scales. Importantly, OIB ATM data are taken as the in-
dependent true variable upon training the model, as ICESat-
2 ATL07 is expected to underestimate obstacles due to its
lower spatial resolution and therefore overestimate obstacle
spacing because of the cutoff.

2.4 Calculating neutral form drag coefficient

With the extracted sea ice feature statistics, we apply the
form drag parameterization developed in Garbrecht et al.
(2002) to them. The parameterization is based on the for-
mulation of Garbrecht et al. (1999), which itself is built
upon findings by Arya (1973, 1975) and Hanssen-Bauer and
Gjessing (1988) on momentum fluxes by single obstacles.
While there are other parameterizations of surface drag (e.g.,
Lüpkes et al., 2012, 2013; Tsamados et al., 2014), here we
focus on the one by Garbrecht et al. (2002) as it is optimized
for one-dimensional data like ICESat-2 ATL07 and better

suited for estimating drag due to obstacles over consolidated
ice cover.

The generalized Garbrecht et al. (2002) formulation for the
atmosphere–ice form drag coefficient is as follows:

Cd,zr,f =
1
2
cw

1x

[
1

ln(zr/z0)−9(zr/L)

]2

Hr∫
z0

[
ln(z/z0)−9(z/L)

]2 dz , (2)

where cw is the coefficient of resistance, zr is the reference
height, z0 is surface roughness length and 9(z/L) is the
Monin–Obukhov stability correction function. Hr and 1x
represent obstacle height and obstacle spacing, respectively,
which, as in Garbrecht et al. (2002), we will generalize to
ensemble mean values He and xe. We use a 10 m reference
height zr since it is the widely accepted value and is often the
lowest level available from atmospheric models. Computing
drag coefficients without knowing the orientation of obsta-
cles brings with it its own uncertainty, and the Garbrecht et al.
(2002) parameterization accounts for this problem by reduc-
ing the form drag by a factor of 2/π given the assumption
that obstacles are oriented randomly (Mock et al., 1972). An
uncertainty of roughly ±20 % is introduced on account of
this assumption (Castellani et al., 2014). Lastly, to simplify
further, we estimate the atmospheric neutral drag coefficient
Cn

d only and do not consider the stability correction. The ef-
fect of the latter on form drag is explained in Birnbaum and
Lüpkes (2002) and in more detail by Lüpkes and Gryanik
(2015). With all the caveats taken into account and the inte-
gral having been evaluated, we get the equation as presented
in Castellani et al. (2014):

Cn
d,10,f =

cwHe

πxe

[
ln(He/z0)− 1

]2
+ 1− 2(z0/He)[

ln(10/z0)
]2 . (3)

This equation goes back to Garbrecht et al. (2002), but
since only neutral atmospheric stability conditions are con-
sidered, the integrals in the corresponding equation can be
solved analytically. Averaged obstacle heightHe and spacing
xe are the two parameters that are extracted from the ICESat-
2 sea ice height data as mentioned in the previous section.
Here we use the Garbrecht et al. (2002) formulation for the
coefficient of resistance and compute it as a function of ob-
stacle height cw = 0.185+ 0.147He (where 0.147 is in m−1

so that cw is unitless).
To calculate the total neutral drag coefficient Cd,10,s we

follow (Arya, 1973, 1975) and add the skin drag coefficient
using a value that has been derived by Garbrecht et al. (2002)
from airborne turbulence measurements over very smooth
sea ice. They obtained the value 8.38× 10−4 by use of

Cn
d,10,s =

[
κ

ln(10/z0)

]2

, (4)
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with the von Kármán constant κ = 0.4 and z0 = 1× 10−5 m.
This value has its own associated uncertainty (see Sect. 3.6).
It is important to note that Eq. (2) and by extension Eq. (3)
are only valid with the assumption of obstacle spacing being
large enough such that the flow can return to its undisturbed
state in between obstacles (Garbrecht et al., 2002). In Gar-
brecht et al. (2002), although the critical value of He/xe =

0.015 for which this condition is satisfied was exceeded by
the observed aspect ratio, the parameterization that accounts
for this effect (Hanssen-Bauer and Gjessing, 1988) was ne-
glected since the resulting form drag Cd,10,f was changed by
less than 3 %. Similarly, in Castellani et al. (2014), includ-
ing the sheltering effect leads to a modification of less than
0.05 % of the total drag coefficient. In this study, the shel-
tering function (1−exp(−0.5xe/He))

2 (e.g., Hanssen-Bauer
and Gjessing, 1988; Lüpkes et al., 2012; Castellani et al.,
2014) is multiplied by OIB ATM-derived form drag coeffi-
cient estimates (derived via Eq. 3) but not ICESat-2 ATL07
data because due to the smoothing effect overestimating ob-
stacle spacing (discussed further in Sect. 3), the aspect ratio
ends up predominantly being less than 0.015 Arctic-wide for
ICESat-2. Despite this, we did conduct our own sensitivity
study to see the effect of the sheltering function on ICESat-
2 ATL07 topography data, and we elaborate further on this
topic in Sect. 3.6.

2.5 Calculating total neutral drag coefficient

As the last step in our study, we also included the skin drag
coefficient of open water Cn

d,10,ow and the form drag coef-
ficient of floe edges Cn

d,10,e. For the drag coefficient over
open water Cn

d,10,ow, we use the constant value 1.5× 10−3,
which is multiplied by (1−A), where A is the sea ice con-
centration.Cn

d,10,e is implemented using the parameterization
of form drag by floe edges of Lüpkes et al. (2012), given
in the most simplified form (hierarchy level 4) as Cn

d,10,e =

3.67(1−A)×10−3, where the latter term (1−A) when mul-
tiplied by A peaks at 50 % sea ice concentration, signifying
areas with both ice and water. The parameterization does not
just represent a simple fit to observations but was instead de-
rived from physical concepts and assumptions based upon
the drag partitioning scheme by Arya (1973, 1975); for fur-
ther information, please see Lüpkes et al. (2012). We use
sea ice concentration from the AMSR2 microwave radiome-
ter at 6.25 km grid resolution based on the ARTIST Sea
Ice (ASI) algorithm (Melsheimer and Spreen, 2019; Spreen
et al., 2008). The combined equation for the neutral 10 m sea
ice–atmosphere drag, taken from Petty et al. (2017), is then
as follows

Cn
d,10,T = (1−A)C

n
d,10,ow+A

(
Cn

d,10,s+C
n
d,10,e+C

n
d,10,o

)
, (5)

whereCn
d,10,o is the form drag coefficient caused by obstacles

(e.g., pressure ridges, sastrugi) calculated from ICESat-2 ele-
vation data with Eq. (3). All terms of Eq. (5) are referenced to

a height of 10 m and thus so isCn
d,T. Equation (5) is evaluated

on daily ICESat-2 ATL07 tracks, and we match daily ASI sea
ice concentration maps to the ICESat-2 ATL07 tracks for the
given day to ensure consistent sampling approaches from the
different datasets.

3 Results and discussion

The four-step process explained in Sect. 2.3 is evaluated on
near-coincident OIB ATM data (Fig. 1a, b) and ICESat-2
ATL07 data (Fig. 1c). Local maxima are found, and those
below the threshold of 20 cm (marked with a dashed red line
in Fig. 1) are omitted (maxima that above the threshold are
marked with a filled-in black circle in Fig. 1). Thereafter, the
Rayleigh criterion is evaluated (those that fulfill the criterion
are marked with a yellow “x”). This is why we see a lot of un-
marked black circles on the side of obstacles, as the Rayleigh
criterion assures that only the maximum of the whole fea-
ture is considered (most clearly visible in Fig. 1a). Figure 1a
and b both depict the same 1 km long ATM segment from an
OIB flight carried out on 19 April 2019. The segment cho-
sen is along the 88th parallel north and spans the longitude
range 170.60–170.85◦ E, putting it firmly within the central
Arctic. The difference between Fig. 1a and b is that Fig. 1b
has a moving average filter of 30 m box size applied. This
is done to simulate the 30 m ICESat-2 ATL07 footprint (see
Sect. 2.1), which, as a result of the dual-Gaussian fit needed
to reduce vertical uncertainty, in effect also smooths out the
topography. For a more detailed description and case study
of this smoothing effect, the reader is referred to Ricker et al.
(2023). Once the topography data are smoothed using this
30 m box filter, small clusters of narrow obstacles are viewed
as one and the average distance between them for a given
length scale is enlarged. In the case presented, average ob-
stacle spacing xe increases by a factor of ∼ 5.2. Average ob-
stacle height He comes out at 0.35 m for both plots. While
the maximum obstacle height is larger in the original data,
the smoothed data also have a smaller number of shorter ob-
stacles that bring down the average. In general, we expect
the height of tall narrow ridges to be underestimated due to
sampling. We can observe the smoothing effect in Fig. 1c,
wherein near-coincident ICESat-2 ATL07 data, with low spa-
tial resolution relative to OIB ATM, also exhibit larger aver-
age obstacle spacing (factor of ∼ 3.5) and therefore lower
drag coefficient. As Fig. 1 covers only a small distance of
1 km to demonstrate the obstacle peak finding method, val-
ues presented are likely not representative of all data.

3.1 Drag coefficient regression with airborne lidar
measurements

Taking the spring 2019 OIB/ICESat-2 underflights (4 d in
2019) that were near coincident with the measurements
of ICESat-2, we can calculate drag coefficients from both
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Figure 1. (a) Sea ice feature statistics from a sample OIB ATM flight on 19 April 2019 (88.0◦ N,∼ 170.7◦ E). Panel (b) is the same as (a) but
smoothed to the ICESat-2 resolution via a moving average filter with box size of 30 m. (c) Sea ice feature statistics from a near-coincident
ICESat-2 ATL07 track section. Black dots show all identified maxima; the yellow “x” symbols show maxima that satisfy the Rayleigh
criterion, the dashed red line shows the 0.2 m threshold, the blue line with dividers shows identified obstacle spacing. All data are referenced
to level ice (mode).

datasets and compare the results. The shortest time lag during
the underflight was less than 1 min for three of the flights (8,
12 and 19 April 2019) (Kwok et al., 2019a); however, 8 and
12 April are overlapping racetracks conducted for a time pe-
riod of∼ 8 h, and thus the time lag is highly variable (all legs
were considered to maximize the total amount of data). The
shortest time lag on 22 April, also used for this comparison,
was ∼ 38 min (Kwok et al., 2019a). We used a subset of all
OIB data that fell within the specified azimuthal angle range
of the ATM scanner, which likely reduced the spatial coinci-
dence as well. As a result, we did not simulate a one-to-one
elevation comparison as has already been done in Kwok et al.
(2019a) and Ricker et al. (2023), and thus we did not employ
any drift correction. Since we look at 10 km averages for the
purpose of comparing regional average form drag, it was suf-
ficient to compare averaged data of similar ice regimes and
not to focus on the coincidence itself. Since the averages are

not aligned, the datasets are gridded to a 12.5 km grid, and
the comparison takes place between matching filled-in grid
cells (see Fig. 2).

Thus, Fig. 2 shows a comparison between form drag co-
efficients calculated from ICESat-2 ATL07 and OIB ATM
segments (blue). This slope (in blue) is the scaling that is ap-
plied to the ICESat-2 ATL07 drag coefficients to amplify the
retrieved signal, while the orange, green and pink lines are
simply tests done to better explain the relation between the
satellite and airborne datasets. As expected, the majority of
form drag coefficients calculated from OIB ATM occupy a
wider range (∼ 0.3–1.3×10−3) than their ICESat-2 ATL07
grid cell counterparts (∼ 0–0.3×10−3). As demonstrated in
Fig. 1, we can simulate ICESat-2 ATL07 by passing all OIB
ATM data through a moving average filter of varying box size
(15, 30 and 45 m) and observe that we can get the line of best
fit to match the one-to-one line depending on the size of the
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Figure 2. Heat maps of 12.5 km grid resampled 10 km aver-
age ICESat-2 ATL07 form drag coefficients plotted against those
computed from OIB ATM drag coefficients from 4, 8, 19 and
22 April 2019, which are resampled and calculated in the same man-
ner. The blue heat map and line of best fit represent the base drag
coefficients from ICESat-2 ATL07 and the full-resolution OIB ATM
data; this regression is the basis for the scaling applied to ICESat-2
drag coefficients. The other three heat maps feature OIB ATM data
smoothed by a moving average filter with window sizes of 15 m (in
orange), 30 m (in green) and 45 m (in pink). The norm for each of
the heat maps is different to show the full variability of each and
avoid oversaturation. The lines represent Huber fits with color cod-
ing matching that of the bivariate heat maps (except for the dashed
black line that represents the identity line).

averaging box (Fig. 2). Smoothing with a box size of 30 m,
which is comparable to the ATL07 strong beam ∼ 30 m spa-
tial resolution (Kwok et al., 2019b), results in a line of best
fit that is the closest match to the one to one line, which is
encouraging. Box sizes of 15 and 45 m are shown for com-
parison’s sake and are meant to demonstrate how both too
little and too much of this smoothing can fail to produce val-
ues comparable to that of ICESat-2.

The beam used for model training is the second strong
beam as it is in best spatial agreement with all four OIB
ATM flight near-coincident datasets (Kwok et al., 2019a).
Using the line of best fit from Fig. 2 (in blue), we correct
the ICESat-2 ATL07 form drag coefficients towards the OIB
ATM form drag coefficient range using the scaling factor
5.28. Here we focused on comparing the average drag coeffi-
cients from satellite and airborne instruments rather than the
component parameters: obstacle height and obstacle spacing.
The reason for this approach is because that is where the best
regression was found. Regressing obstacle heights shows de-
cent agreement, but evaluating the different box sizes on the

OIB values shows very small differences. The differences are
small because while the smoothing introduced in ATL07 ef-
fectively retrieves the tall narrow ridges as smaller than they
really are, this also pushes a lot of small ridges below the cut-
off, reducing the sample size. This reduction results in similar
averaged values between the smoothed and high-resolution
datasets, as can be seen in Fig. 1a and b, where the aver-
age obstacle height He is the same. The only exceptions are
the features that are not detected at all (Ricker et al., 2023),
which force the regression to be steeper than expected. With
obstacle spacing, the smoothing gets in the way of extracting
any meaningful relationship. As can be seen in Fig. 1a and
b, the smoothing reduces the sample size, which is directly
proportional to obstacle spacing, as fewer obstacles translate
to a higher average spacing between them. It is only through
evaluating Eq. (3) with the input parameters where we see
a reasonable relationship. Comparing ICESat-2 ATL07 with
OIB ATM form drags with varying box size smoothing ap-
plied also shows expected results (Fig. 2), further confirming
to us that regressing form drags is the best approach.

The correlation found between the drag coefficients com-
puted from the different instruments is 0.61 (blue heat map
in Fig. 2), and the mean square error (MSE) between the OIB
ATM drag coefficients and the ICESat-2 ATL07 coefficients
with the scaling factor applied (5.28) is 1.1× 10−4. Con-
sidering some ridges are not detected (Ricker et al., 2023)
due to sampling issues and the lack of perfect coincidence,
we do not expect perfect correlation. Moreover, we are look-
ing at spatial averages here, where the smoothing has a very
strong effect on the ridge spacing (as can be seen in Fig. 1);
this is why a topography comparison where the sampling of
ICESat-2 is simulated with the OIB ATM data can show bet-
ter agreement, as in Kwok et al. (2019a). However, that is
not our aim in this study, here we try to make the Garbrecht
et al. (2002) parameterization applicable to ICESat-2 ATL07
data and correct for the sampling issues using OIB ATM. For
comparison’s sake, we try to simulate ICESat-2 ATL07 with
OIB ATM data with the moving average filters in Fig. 2, but
we chose not to simulate the elliptical footprint of ICESat-2
in detail as in Kwok et al. (2019a) and Ricker et al. (2023)
for that is not needed for the monthly pan-Arctic drag coef-
ficient product which is the end result of this study. Unsur-
prisingly, comparing the correlation and MSE with the OIB
ATM data (in blue) to the smoothed version (30 m box, in
green, which has the best agreement with the identity line),
we have found a correlation of 0.72 and a MSE of 2.4×10−6

(with the scaling factor 0.89 as in Fig. 2) for the latter. This
better agreement is observed as here the OIB ATM data are
sampled similar to how ICESat-2 ATL07 are, and making the
methods identical will raise the correlation even higher, as in
Kwok et al. (2019a). What we require for our study is for
the drag coefficients to be calculated as in Castellani et al.
(2014) and Petty et al. (2017), making use of high resolu-
tion and high sampling of the airborne datasets, and then re-
gressing the OIB ATM values with estimates of the spatially

The Cryosphere, 17, 4103–4131, 2023 https://doi.org/10.5194/tc-17-4103-2023



A. Mchedlishvili et al.: ICESat-2 pan-Arctic sea ice–atmosphere neutral drag coefficients 4111

averaged ICESat-2 drag coefficient. In this way, we aim to
improve the ICESat-2 product and amplify the signal that is
lower than expected due to sampling.

For an inter-comparison of the drag coefficients processed
for each of the three strong beams, see Fig. A2 in Appendix
A. Using the first and third strong beams we can produce a
similar result despite the model being trained with the second
strong beam (the most coincident beam). To incorporate the
full available high-resolution dataset and minimize random
sampling errors from here on we use all three strong beams
for all ICESat-2 ATL07 parameter maps.

In Fig. 3, we map average obstacle height and spacing
used as input in Eq. (3) and the resulting obstacle form drag
coefficient (Cn

d,10,o), with the skin drag coefficient constant
(Cn

d,10,s = 8.38× 10−4) added, for the month of April 2019.
Here we do not scale with sea ice concentration (A) or con-
sider floe edge and open-water drag components so as to fo-
cus on the difference between the scaled and base ICESat-2
ATL07 drag coefficients. The areas outlined in Fig. 3a rep-
resent the area where near-coincident OIB ATM flights took
place (in red) and additional topographic data over sea ice
from the month of April 2019 (6 and 20 April) that are used
for the evaluation study in Sect. 3.2 (in blue). Looking just
at the drag coefficients, in Fig. 3c and d we can see that
with the OIB ATM scaling factor applied, the data product
are in much better agreement with the pan-Arctic maps pro-
duced in Petty et al. (2017) and the regional drag assessments
conducted in Castellani et al. (2014). The spatial variability
across all parameters in Fig. 3 also confirms the expecta-
tion of multiyear ice that is predominantly north of Green-
land and the Canadian Archipelago being more rough (Cn

d >

1.2×10−3 before scaling up; Cn
d > 2.2×10−3 after) and as a

consequence exhibiting a higher concentration of tall ridges
(He > 0.8 m) and thereby shorter spacing (xe < 100 m) be-
tween them.

3.2 Evaluation study

We take advantage of OIB data from north of Greenland
(outlined in blue in Fig. 3a) and collocate it to ICESat-
2 ATL07 drag coefficient data produced for the month of
April 2019 to perform an evaluation study of our product.
In Fig. 4, we compare the drag coefficients computed from
the OIB ATM dataset using the methods (see Sect. 2.3) that
were used on the near-coincident “training” dataset (out-
lined in red in Fig. 3a) to matching grid cells from the
2019 ICESat-2 ATL07 drag coefficient map. Both the orig-
inal values (Fig. 3c) in green and those multiplied by the
OIB ATM scaling factor (Fig. 3d) in orange are shown along
with the ones computed from the OIB ATM dataset. Notably,
the distribution of the base drag coefficients is overall much
narrower than the other two, with the main peak centered
around ∼ 1.0× 10−3 and a secondary peak at ∼ 1.4× 10−3.
Meanwhile, the distribution of OIB ATM and scaled ICESat-
2 ATL07 drag coefficients both show a similar distribu-

tion, with the main peaks centered around ∼ 1.6× 10−3 and
smaller secondary peaks at ∼ 4.0× 10−3. This suggests that
our scaled ICESat-2 ATL07 drag coefficients perform rea-
sonably well to represent the drag variability, at least for this
part of the Arctic. Given that the two datasets are retrieved
on different days (within the same month) with ice drifting in
between, comparing them grid cell to grid cell is not mean-
ingful as drag coefficients vary in time. If further ATM data
become available from different regions in the Arctic, this
evaluation should be extended.

3.3 Interannual drag coefficient estimates

To increase the temporal coverage of Fig. 3, we look at spa-
tial variability in 3-month aggregates throughout 2019 in
Fig. 5 (see Figs. A5 and A6 in Appendix A for the years
2020 and 2021). Here 3 months are chosen to be a reasonable
time frame to maximize the data contained within individual
maps on account of ICESat-2’s 91 d repeat cycle (e.g., Kwok
et al., 2021a, 2019b). All rows of maps within Fig. 5 contain
obstacle height, spacing and drag coefficient for consecutive
3-month periods.

In the rightmost column of Fig. 5, we include the floe edge
and open-water drag coefficient terms according to Eq. (5);
there we can observe drag coefficients > 1.5× 10−3 along
the marginal ice zone (MIZ). This combined parameteriza-
tion is our best estimate for satellite-derived atmosphere–ice
drag. It includes variable form drag due to obstacles and floe
edges and constants for open-water and ice skin drag. How-
ever, drag due to floe edges next to frozen-over leads and
at the edges of melt ponds in summer is not accounted for
(which could be a future enhancement). By looking at the full
year separated into 3-month aggregates, we can observe the
spatiotemporal evolution of drag coefficients Arctic-wide.
We observe a seasonal variability of up to ±1.0× 10−3 in
some multiyear ice regions, although there is a thin band of
ice close to the Canadian archipelago that is consistently >
2.0×10−3. Arctic-wide, this effect is comparatively smaller,
but nevertheless a change of up to ±0.5× 10−3 in total drag
coefficient occurs in most areas of the Arctic. This is consis-
tent for the years 2020 and 2021 as well (see Figs. A5 and
A6 in Appendix A).

For both the center right and rightmost in Fig. 5 it is impor-
tant to mention that the summer months likely exhibit higher
levels of uncertainty, e.g., due to data gaps caused by clouds
and due to melt ponds that can saturate the ICESat-2 photon
detection system (Tilling et al., 2020). This is a consequence
of melt ponds being highly specular and typically reflecting a
large amount of signal photons. When ATLAS strong-beam
timing channels receive more photons than they can handle
within a dead time interval, they can no longer detect addi-
tional incoming photons, which can lead to short gaps in the
topography data. See Tilling et al. (2020) for more informa-
tion on how ICESat-2 views melt ponds.
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Figure 3. Data computed from April 2019 ICESat-2 ATL07 tracks (all three strong beams): (a) average obstacle height, (b) average obstacle
spacing, (c) total neutral 10 m atmospheric drag as computed with Eq. (3) from ICESat-2 average obstacle height and spacing. Panel (d) is
the same as (c) but with the OIB ATM scaling factor (5.28) applied. In (a) zones marked in red and blue represent near-coincident OIB ATM
topographic data used to generate the scaling factor via regression (8, 12, 19, 22 April 2019) and data used for evaluation (6, 20 April 2019),
respectively.

To observe the seasonality as well as the monthly evo-
lution of our best estimate of pan-Arctic total neutral drag
coefficients on an interannual scale from November 2018
to June 2022, we plot the average drag coefficient, obstacle
height and spacing for each month along with the total area
of grid cells covered with ICESat-2 data in Fig. 6. Impor-
tantly, the total area covered is not the same as sea ice extent
and is generally less than the latter due to clouds and returns
with ice concentrations < 15 % not being processed (Kwok
et al., 2021b). Notably, both obstacle height and spacing are
used to calculate the base ICESat-2 ATL07 drag coefficients;
for these no corrections are applied, and thus it is expected
that the heights are underestimated and the spacing overes-
timated as compared to OIB ATM due to smoothing by the
larger ICESat-2 footprint. In addition to pan-Arctic averages,
we also produce these statistics for multiyear ice (MYI) and
first-year ice (FYI). Here, we make use of the MYI concen-
tration retrieved using brightness temperatures from the mi-
crowave radiometer AMSR2 and radar backscatter from the

C-band scatterometer ASCAT (Shokr et al., 2008; Ye et al.,
2016a, b; Melsheimer et al., 2023). Sea ice area classified
as below 50 % MYI according to the retrieval is considered
FYI and used to compute FYI averages, and conversely all
values equal to and above 50 % are used to compute MYI
averages (see Fig. A7 for the distribution of MYI over 3-
month time periods when available). By comparing the two
ice types we can study the differences in their areal aver-
ages. As expected, we see higher drag coefficients (MYI:
Cn

d ≈ 1.2–2.0× 10−3; FYI: Cn
d ≈ 1.0–1.6× 10−3) and ob-

stacle heights (MYI: He ≈ 0.4–0.6 m; FYI: He ≈ 0.3–0.4 m)
and conversely lower obstacle spacings (MYI: xe ≈ 200–
500 m; FYI: xe ≈ 250–1000 m) in the averages from the MYI
ice portion of the Arctic. The MYI concentration data prod-
uct is only available for winter months, explaining the lack
of data for the summer months in the time series. As a result
this means we are unable to distinguish the FYI contribu-
tion of the form drag due to floe edges peak in August and
can only estimate that upper bound given the full dataset. As
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Figure 4. Histograms of ICESat-2 ATL07 drag coefficients with (in blue) and without (in green) the scaling factor applied and the OIB
ATM drag coefficients (in red). Here (a) shows the absolute number of matched grid cells within a given drag coefficient range, while (b) is
normalized such that every value is divided by the maximum for each dataset.

for temporal evolution, there is an annual cycle in all three
parameters such that the annual maximum (minimum) aver-
age drag coefficient and obstacle height (obstacle spacing) in
May lags behind maximum sea ice extent, which is typically
in March.

3.4 Spatial and temporal variability

Looking at our 3-monthly spatial analysis (Figs. 5, A5 and
A6) and the monthly time series (Fig. 6), we corroborate the
results found in Petty et al. (2017) with the MYI sea ice re-
gions north of the Canadian Archipelago and Greenland ex-
hibiting high drag (Cn

d,10 > 1.5× 10−3) and the smooth FYI
sea ice regions of the Beaufort (north of Alaska and western
Canada), Chukchi (north of Fram Strait) and Siberian (north
of Siberia) seas exhibiting low drag (Cn

d,10 < 1.0×10−3). We
corroborate Duncan and Farrell (2022) in terms of the distri-
bution of spatial variability of 10 km average obstacle spac-
ing, e.g., < 200 m near the Canadian Archipelago, for the
winters of 2019, 2020, and 2022 that they have produced us-
ing the University of Maryland-Ridge Detection Algorithm.
Based on the limited amount of data we analyzed, we also
corroborate that the drag coefficient variability in space is
larger than the variability across seasons as was found by
others (Castellani et al., 2014; Tsamados et al., 2014).

We observed interesting features of ice topography, in-
cluding a tongue of (Cn

d,10 > 1.5× 10−3) sea ice that forms
across the Beaufort Sea and towards a rough ice patch sur-
rounding the Wrangel Island (near Fram Strait along the anti-
meridian) only in select months (see Figs. 5b and A6b). Sim-
ilarly, when Arctic sea ice extends across the Arctic Ocean
and to Siberia, Severnaya Zemlya is often (but not always)

surrounded by rough ice as well (Cn
d,10 > 1.5× 10−3) (see

Figs. 5b and A5b). These effects may be attributed to the
movement of the Beaufort Gyre and to the tendency of ice
to ridge near land. Notably, within the time span we an-
alyzed, May is the month that repeatedly exhibits annual
minimum obstacle spacing and annual maximum obstacle
height and drag coefficient. This supports the notion that sea
ice–atmosphere drag exhibits an annual cycle (e.g., Andreas
et al., 2010). By also including drag due to floe edges, we
also observe a smaller peak in August, when the ice–water
boundary is at its longest. We observe a decrease in the yearly
maximum average drag coefficient across all ice types during
the 4 years we looked at, but given the short time frame we
cannot attribute this decrease to anything more than natural
variability.

3.5 Uncertainty due to sampling

While ICESat-2 has a very high resolution when compared
with other laser altimeter satellites, it is still larger than the
1 m resolution of the OIB ATM data. The ATL07 segment
length of about 30 m, over which 150 signal photons are ob-
tained to lower noise in the height retrieval, smooths out the
topography via the dual-Gaussian fit much like the moving
average filter we applied to the OIB ATM data. This smooth-
ing effect is discussed in detail in a recent study by Ricker
et al. (2023) where coincident ICESat-2 ATL07 and airborne
altimeter laser scanner (ALS) data from the MOSAiC (Multi-
disciplinary drifting Observatory for the Study of Arctic Cli-
mate) expedition were compared. Ricker et al. (2023) show
that the ICESat-2 ATL07 strong beam could detect only 16 %
of obstacles above the threshold of 0.6 m that were registered
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Figure 5. The 2019 obstacle height (He); obstacle spacing (xe); drag coefficient as a sum of sea ice skin drag and form drag due to obstacles
(Cn

d,10,o+C
n
d,10,s); and total drag coefficient as a sum of the sea ice skin drag, form drag due to obstacles and floe edges, and open-water

drag (Cn
d,10,T). Importantly, the leftmost and center left columns are the obstacle heights and spacings as retrieved from ATL07, whereas in

the center right and rightmost columns the form drag due to obstacles is multiplied by the OIB ATM scaling factor. The periods for which
these parameters are calculated are January to March (a), April to June (b), July to September (c) and October to December (d) 2019.

by ALS. A comparatively higher detection rate of 42 % was
achieved by processing ATL03 using a higher-resolution to-
pography dataset (Duncan and Farrell, 2022). Notably, nei-
ther of the two ICESat-2 sea ice height products were able
retrieve the full extent of surface topography (Ricker et al.,
2023). Assuming the lower threshold value of 0.2 m used in
this study, we can expect these detection rates to rise but at
some point hit a limit imposed by ICESat-2 ATL03’s foot-

print of 11 m (Magruder et al., 2020, 2021) that is inferior to
the resolution used in most modern airborne surveys looking
at topography, e.g., OIB, ATM and ALS. Thus, for the pur-
poses of our pan-Arctic study, we have chosen to stick with
the publicly available and regularly updated ATL07 dataset,
as either of these two data products will require some type
of correction if realistic drag coefficient estimates are to be
computed from them. While ATL07 has a lower obstacle de-
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Figure 6. Time series from November 2018 to June 2022 of total ICESat-2 drag coefficient (as computed in Eq. 5) with the OIB ATM
scaling factor applied (a), obstacle height (b), obstacle spacing (c), and total area covered by ICESat-2 observations (d) for the whole Arctic
(in black), multiyear ice (in red), and first-year ice (in blue).

tection rate locally and the obstacle height (spacing) is typi-
cally overestimated (underestimated), the spatial information
on Arctic-wide obstacle distribution should be conserved ac-
cording to our comparisons to airborne data (Sect. 3.1). That
is why we use a regression transfer model that is trained by
near-coincident OIB ATM to scale up these underestimated
ICESat-2 drag values and obtain them closer to the expected
form drag range estimated from higher-resolution airborne
laser data.

How representative the scaling factor is for the whole
of the Arctic is difficult to gauge, and with limited spatial
and temporal near-coincident coverage we expect there to
be some uncertainty. Despite these limitations, the racetrack
OIB flights from 8 and 12 April 2019 were flown over two
distinct ice types. The 8 April racetrack was 100 km north of
the Sverdrup Islands (80.5◦ N) and the 12 April one was cen-
tered at 86.5◦ N in the central Arctic (Kwok et al., 2019a). As
a result, the former was over thicker and rougher ice, while
the latter was over thinner and smoother ice, giving us the op-
portunity to see how the drag coefficients compare between

the two instruments in the different regimes. The scaling fac-
tors derived for the two different days are 4.42 and 5.36,
respectively, resulting in an uncertainty that is in the range
of ±17.5 %. This small discrepancy can also be explained
by ATL07 sampling: with a smaller obstacle frequency over
smooth ice, the likelihood of not detecting the few that are
present increases (Ricker et al., 2023), thereby increasing
the obstacle spacing used in the calculation of drag coeffi-
cients for every 10 km segment. Where the obstacle density
is generally high, like in rough deformed areas near the Cana-
dian Archipelago, there will always be an ample amount per
10 km segment to detect a higher drag coefficient signal de-
spite the detection rate being low. Thus, the sampling issue
with regard to computing drag coefficients from topography
features is more prevalent over smooth ice than rough ice,
and a higher correction is needed. As the 19 and 22 April
OIB flights cover larger areas and the rougher deformed ice
near the archipelago is rather small in extent, the scaling fac-
tor derived from all 4 d is closer to that of the 12 April race-
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track and more representative of the whole Arctic, which is
predominantly smoother than the ice surveyed on the 8 April.

3.6 Discussion and concluding remarks

In this study we used a combination of the Garbrecht et al.
(2002) and Lüpkes et al. (2012) parameterizations to calcu-
late obstacle drag coefficients. Although it is important to
understand that this method has some uncertainty, it repre-
sents the state of the art. Currently, it is the only available
parameterization of drag coefficients accounting for the ef-
fect of pressure ridges over closed sea ice cover and of floe
edges in regions with fractional sea ice cover. In the follow-
ing, we address the background and the uncertainties in the
parameterizations, e.g., on the basis of results obtained with
alternative formulations.

The parameterization idea for the effect of ridges (and
other sea ice features over closed sea ice) was first tested
by Garbrecht et al. (1999) on the basis of turbulence mea-
surements made at the bow mast of RV Polarstern when the
ship was drifting at different positions downstream of a large
pressure ridge. Thus, this dataset was independent from the
airborne turbulence data that were the main data source for
Garbrecht et al. (2002). The latter dataset was validated once
more in a thesis by Ropers (2013), who compared the Gar-
brecht et al. (2002) drag coefficients with drag coefficients
derived from additional airborne turbulence and topography
data. Furthermore, Castellani et al. (2014) showed that at
least the average neutral 10 m drag coefficient, obtained from
the Garbrecht et al. (2002) parameterization with parameters
given in Sect. 2.4, agrees well with values for closed sea ice
derived from Andreas et al. (2010) using SHEBA data.

It is important to understand that all available sea ice
form drag parameterizations, including those for the effect
of pressure ridges and of floe edges, are based on a similar
formulation of dynamic pressure acting on these obstacles
(Gryanik and Lüpkes, 2023). While the Lüpkes et al. (2012)
approach, first formulated in a modified version by Hanssen-
Bauer and Gjessing (1988), is a 2D approach, the Garbrecht
et al. (2002) approach is only 1D. Ropers (2013) investigated
if more complex assumptions for the latter scheme concern-
ing the ridge geometry would improve the results, but the
main conclusion was that more complex models require in-
put variables, which are usually not available. It is further-
more important that the addition of ridge form drag to the
scheme of Lüpkes et al. (2012) considered here does not rep-
resent a competing scheme. On the contrary, the formulation
of Lüpkes et al. (2012) allowed the specification of the ridge
component from the very beginning. Only for simplicity did
they assume an average roughness of ridge-covered sea ice
so that they could concentrate their work on just the edge ef-
fect. The latter was expected to be dominating in the MIZ
and perhaps also in the inner Arctic under melt conditions
with many leads and ponds.

The approach for floe edge form drag was also used in
mesoscale modeling studies. Vihma et al. (2003) showed
that the application of the scheme led to a very good agree-
ment between modeled and observed meteorological mean
variables and turbulent fluxes. Inclusion of form drag in the
marginal sea ice zones using the Lüpkes et al. (2012) scheme
with parameter values based on Elvidge et al. (2016) resulted
in an improvement of atmospheric model results (Renfrew
et al., 2019). Birnbaum and Lüpkes (2002) also investigated
the effect of floe-edge-generated form drag in the marginal
sea ice zone on meteorological parameters by applying a
mesoscale nonhydrostatic model. They pointed to the impor-
tance of a proper choice of the coefficient of resistance cw to
obtain realistic fluxes when the form drag parameterization
was included. Finally, Martin et al. (2016) show that the in-
clusion of atmospheric form drag leads to improvements in
the modeling of sea ice drift. The latter work addresses only
floe edge form drag, but one can expect that further improve-
ment is possible when ridge-generated form drag is included
as well.

Thus, for the analysis of uncertainty we concentrate on
the combined approach as described in Sect. 2.4. Naturally,
the chosen values and formulations, e.g., for the coefficient
of resistance, value of the skin drag coefficient and the in-
clusion of the sheltering function, contain their own uncer-
tainties, especially when generalizing in time and space. As
mentioned in Sect. 2.4, for the coefficient of resistance cw,
we use an approach by Garbrecht et al. (2002) where cw de-
pends linearly on the obstacle height He. The given coeffi-
cients in this parameterization 0.185 and 0.147 have some
uncertainty because they have been derived from pressure
measurements over only a few sea ice ridges. For this rea-
son, we performed sensitivity studies with different cw for-
mulations (e.g., Garbrecht et al., 1999; Ropers, 2013). Re-
sults are shown in Fig. A4 for April 2019 where the ob-
stacle form drag coefficients have been calculated with the
different formulations for the coefficient of resistance, tak-
ing into account necessary adjustments (modified aerody-
namic roughness length and thus adjusted neutral skin drag
coefficient, e.g., in the case of the Ropers (2013) version).
The conducted studies showed that the principal results (ge-
ographic distribution) were unchanged, but small differences
between drag coefficients are observed with the different for-
mulations of the coefficient of resistance cw. The standard
deviation (mean) was found to be 2.5× 10−4 (2.9× 10−4),
4.6× 10−4 (5.3× 10−4) and 5.8× 10−4 (6.1× 10−4) for the
Garbrecht et al. (2002) formulation with the original coeffi-
cients (cw = 0.05+0.14He), the version with the natural log-
arithm (cw = 0.22ln(He/0.2)) and the Ropers (2013) formu-
lation (cw = 0.05+ 0.35He), respectively. These results are
altogether not too different from the Garbrecht et al. (2002)
formulation using cw = 0.185+ 0.147He). The standard de-
viation (mean) amounts to 4.6×10−4 (6.0×10−4). Most im-
portantly, the spatial distribution of high and low obstacle
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form drag regimes is conserved independent of the used cw
parameterization.

Here, we tested a different hierarchy level of the Lüpkes
et al. (2012) scheme than that which is used for this study
(level 4). It is their level 2 parameterization which allows
for specifying the measured grid-cell-averaged freeboard. In-
stead of the constant value 0.41 m that is implicitly used in
the Lüpkes et al. (2012) version used in the previous sec-
tions, we considered the data from ATLAS/ICESat-2 L3B
Daily and Monthly Gridded Sea Ice Freeboard, version 3
(ATL20), thereby implementing freeboard from satellite re-
mote sensing measurements. Because of the smoothing im-
posed by sampling, the results did not show any significant
improvement over using constant freeboard hf = 0.41 m as
recommended in Lüpkes et al. (2012) for the simpler level.
Ideally, all components of floe edge form drag coefficients
should be taken from remote sensing to better monitor the
changing Arctic system; however, especially with regards
to floe edge sizes, ICESat-2 cannot reliably determine this
parameter Arctic-wide. Though it is beyond the scope of
this study, we encourage future work in this direction with
a multi-satellite approach that might remedy the limitations
of each individual instrument. However, since in the Lüpkes
et al. (2012) parameterization form drag still depends on the
sea ice fraction A, the contribution of the form drag is rather
small in regions with A near 1. This is the main reason why
form drag is still underestimated by the level 2 scheme even
when variable freeboard is allowed. This especially holds
true near Greenland where ridges are tall. With respect to
the application discussed here, the Lüpkes et al. (2012) floe
edge form drag parameterization has uncertainties imposed
by the limitations of satellite remote sensing. Namely, here
we use ice concentration derived from passive microwave
data (AMSR2 microwave radiometer in this case) as input,
while frozen-over leads and ponds are not considered. As this
freezing can already happen in August, the overall drag from
floe edges is likely underestimated then. The proportionality
coefficient 3.67×10−3 of the Lüpkes et al. (2012) level 4 hi-
erarchy parameterization carries with it its own uncertainty.
It depends on, e.g., floe sizes and sea ice freeboard (see Lüp-
kes et al., 2012). Their uncertainty stems from the fact that
the constant is region dependent. For this reason, sensitivity
studies were carried out (not shown) in which these values
were varied within realistic and recommended ranges given
in Lüpkes et al. (2012) (see also Elvidge et al., 2016 and
Srivastava et al., 2022). The result of this sensitivity study
was that since the effect of ridge form drag was found to
be much larger than the floe edge form drag, the variability
in the abovementioned proportionality constant had only a
small impact on the total drag coefficient.

The Garbrecht et al. (2002) approach in principle also con-
tains the effect of sheltering by ridges. However, the shel-
tering function (1−exp(−0.5xe/He))

2 (e.g., Hanssen-Bauer
and Gjessing, 1988; Lüpkes et al., 2012; Castellani et al.,
2014), discussed in Sect. 2.4, was not applied to the main

ICESat-2 ATL07 data after being tested to see if the data
produced a non-negligible signal. By comparing the month
of April 2019 (shown in Fig. 5), with and without the shelter-
ing function implemented, the averaged absolute difference
for all filled 25 km grid cells was 7.39× 10−12. Thus, such
a negligible difference further confirmed that the use of the
sheltering function for ICESat-2 ATL07 data was not signif-
icant.

Our value for the skin drag differs from the one used in
Lüpkes et al. (2012), since there the effects of ridges and
other obstacles are included in the skin drag coefficient as
mentioned. By using the smaller skin drag coefficient and a
variable obstacle form drag coefficient (e.g., Castellani et al.,
2014; Petty et al., 2017), we may introduce a more realistic
obstacle form drag, since, as has been shown in this study,
it varies a lot in time and space, whereas we can assume
skin drag over smooth ice to be relatively constant in com-
parison. In the combined total drag (as derived in Eq. 5), the
Garbrecht et al. (2002) obstacle form drag and Lüpkes et al.
(2012) floe edge form drag parameterizations are meant to be
used together to better assess pan-Arctic drag coefficients.

As mentioned previously in Sect. 1, the drag coefficient
Cd also depends on the surface-roughness-dependent sta-
bility function fm, for which numerous versions exist (see,
e.g., Gryanik and Lüpkes, 2018, 2023). For this study we
have limited our research to assessing the neutral drag co-
efficients Cn

d . In the case of stable stratification, Cd becomes
smaller than Cn

d , whereas unstable stratification with more
turbulence causes Cd to be greater than Cn

d (Lüpkes and
Gryanik, 2015). The local near-surface stratification is heav-
ily impacted by open water that facilitates upward heat fluxes
(Andreas and Cash, 1999; Lüpkes and Gryanik, 2015) and
as a result varies between the more ice-covered inner Arctic
and the MIZ where open water is more common. Thus, it is
in summer, where more open water is present across the Arc-
tic ice cap, that our estimates of the neutral drag coefficients
Cn

d are likely below Cd. Conversely, over regions with large
sea ice cover, the stratification is expected to be more stable
in winter during polar nights (Lüpkes and Gryanik, 2015),
which will act to offset the impact of higher form drag, sug-
gesting our estimates of Cn

d for winter are more representa-
tive of Cd.

3.7 Significance and novelty of the analysis

Using our best estimates, we have demonstrated that drag
force between Arctic sea ice and the atmosphere varies an-
nually throughout the year (see Fig. 6). The implication of
this finding is that the turbulent surface flux of momentum,
given in Eq. (1), also varies. In other words, depending on the
month of the year, the ice is either more or less susceptible to
movement depending on the amount of energy transferred to
it via the atmosphere and by extension the ocean. We include
the ocean here because the sources of atmospheric drag we
looked at, primarily form drag due to obstacles, are closely
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related to the magnitude of oceanic form drag on account of
pressure ridges having both a sail (the part above water) and
a keel (the part below water) in roughly the same location
(Timco and Burden, 1997; Tsamados et al., 2014). Similarly,
form drag due to floe edges is also subject to energy transfer
from the ocean for the majority of the ice edge that is below
the water level. Thus both oceanic and atmospheric form drag
are expected to be both temporally and spatially correlated to
one another, wherein the oceanic drag is higher in magnitude
(Tsamados et al., 2014). Form drag from melt pond edges, a
parameter we did not look at here, we expect to be a unique
component of total atmospheric drag.

We observe that MYI ice exhibits the highest drag in May
(red line in Fig. 6a), due to an increase in the form drag due
to obstacles, and FYI ice peaks sometime in July–August
(according to the secondary peaks in the black line, i.e., all
data, in Fig. 6a and the associated presumed trajectory of the
blue line, i.e., FYI data) from a longer ice–water edge and
the associated floe edge drag in summer months. Looking at
the gridded data (Figs. 5, A5 and A6), we can further com-
ment on developments on regional scales. Notably, it is the
Lincoln Sea, north of Greenland, which exhibits the highest
form drag due to obstacles with high drag coefficients (2–3×
higher than smooth FYI areas, e.g., the East Siberian Sea)
reaching as far north as 85◦ in the months of spring (pan-
els a and b in each of the aforementioned figures). However
this is not consistent throughout the year as these relatively
high drag coefficients tend to retreat towards the Canadian
archipelago throughout summer and autumn (panels c and d
in each of the aforementioned figures). Interestingly, it is not
consistent across all years either, as this behavior was not ob-
served in 2021 (Fig. A6). Similarly, the neighboring Beaufort
Sea and Fram Strait (mixture of MYI and FYI) also exhibit
wide areas of higher form drag coefficients sometime in late
spring (panel b in each of the aforementioned figures). All
other Arctic seas (mostly FYI) primarily show an increase in
form drag due to floe edges along the MIZ (see the rightmost
column in the aforementioned figures) but also in small part
higher form drag due to obstacles near land features. Thus,
these data prove highly valuable in terms of identifying pre-
viously unknown spatial and temporal developments in pan-
Arctic and regional drag. This analysis is the first of its kind
as previous studies either assumed uniform drag across the
Arctic or did not provide sub-yearly temporal information.

In terms of climate modeling, our findings show that as-
suming a constant drag coefficient in both space and time
misrepresents the variability in momentum fluxes near the
surface and thus the main forcing of sea ice drift. This mis-
representation might in turn cause many other deficiencies in
air–ice interaction such as insufficient variability in the sea
ice concentration. Accordingly, a suitable further develop-
ment of drag parameterizations for a more realistic represen-
tation of form drag seems necessary. As for understanding
Arctic sea ice, we believe these data have the potential to
help with better understanding the interaction between sea

ice, ocean, and atmosphere; to better predict the motion of
sea ice; and to identify temporal and spatial variability in
pan-Arctic drag coefficients on a monthly basis. Most im-
portantly, this study helps us link yet another crucial sea ice
parameter to remote sensing. This link, given ICESat-2 or
similar future mission data are available for years to come,
has the potential to help us better understand the multiannual
changes in Arctic sea ice cover as the local climate warms
at an unprecedented pace (e.g., Serreze and Barry, 2011;
Stroeve et al., 2012).

4 Summary and outlook

This study makes use of measured sea ice topography to cal-
culate atmospheric drag coefficients across the Arctic ice cap
on monthly and 3-monthly temporal scales. To our knowl-
edge, it is the first analysis of monthly pan-Arctic drag coeffi-
cient estimates of its kind. The sea ice topography is obtained
from the ICESat-2 ATL07 data product at variable resolu-
tions that depend on surface reflectivity but average around
30 m for the strong beams (Kwok et al., 2019b). Using meth-
ods developed in Garbrecht et al. (1999, 2002) according to
the drag partitioning scheme proposed by Arya (1973, 1975),
we obtain obstacle, i.e., ridges, height, and spacing averages
for 10 km segments. We then combine the estimated form
drag due to obstacles with sea ice skin drag, drag due to floe
edges and a drag due to open water; all of which are incorpo-
rated as constants scaled differently with sea ice concentra-
tion.

In conclusion, from our analysis of pan-Arctic drag coef-
ficients from the year 2019 and to a lesser extent 2018, 2020,
2021 and 2022, we have observed several noteworthy natu-
ral phenomena. Pan-Arctic form drag due to obstacles fol-
lows an annual cycle that is similar in both MYI and FYI
regions. The yearly maximum average drag coefficient is not
connected to the yearly maximum sea ice extent and seems
to occur after the sea ice extent maximum. Form drag due
to obstacles is primarily spatially variable (high in MYI re-
gions and low in FYI regions) but nevertheless shows some
temporal variability (maximum in May and minimum in De-
cember). Our results suggest that form drag due to floe edges
is more prevalent during summer months when large areas
are broken up and the MIZ expands, whereas form drag due
to surface features peaks in late spring when its contribu-
tion is magnified from MYI regions north of the Canadian
Archipelago and Greenland.

While it is beyond the scope this study, we propose the
possibility of extending ICESat-2-based analysis to also es-
timate form drag due to floe edges from satellite measure-
ments rather than using a constant as mentioned in Sect. 3.6.
We encourage the open-water drag component to be derived
from a parameterization that takes into account wind speed
and therefore wave height that might cause additional form
drag across water surfaces. We propose the use of lead and
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melt pond data to account for additional sources of drag not
included in our study, e.g., lead and melt pond edges.

Appendix A: Supporting figures

Using our methods, we obtain a sufficient amount of data to
mostly fill a polar stereographic 25 km grid via bucket re-
sampling for each month to produce a pan-Arctic monthly
total neutral atmospheric drag coefficient analysis. On ac-
count of ICESat-2’s near-polar orbit, the data density is high-
est around the pole hole and wanes at lower latitudes (see
Fig. A1A). As a result, the regional drag coefficient estimates
at higher latitudes are more representative of the time periods
shown in Figs. 3, 5, A5 and A6, whereas those at lower lat-
itudes are computed with fewer height measurements (often
just a few select days). In other words, rather than a tempo-
ral mean of surface topography, it is a dataset that is sewn
together with the best representation of the temporal mean
near the pole hole. However, keep in mind that we do not
see any discontinuities due to variable sampling in the final
atmosphere–ice drag maps. In Fig. A1B one can observe the
typical spacing between ATL07 height estimates, which is
typically around ∼ 11–13 m but can be higher due to dark
surfaces, over which up to 200 m might be needed to collect
the sufficient signal photons Kwok et al. (2021a). Similarly,
clouds can also increase the spacing as no measurements are
retrieved beneath them.

Figure A1. The data distribution for the April 2019 drag coefficient map given as the number of 10 km segments from all strong beams per
25 km2 grid cell (a). The average point spacing within each 10 km segment per 25 km2 grid cell (b).

For a comparison between different beams, all of which
we combine in our final data product, we refer the reader
to Fig. A2. Inter-beam variability due to different range bi-
ases is present and was reported on by the ICESat-2 Project
Science Office (PSO) in their preliminary analysis (e.g., Bag-
nardi et al., 2021). In addition, there is the 3.3 km inter-beam
spacing, which suggests ridges and snow features captured
by one beam might not be captured by the rest. At first glace
Fig. A2d, the inter-beam standard deviation, suggests more
variability in the MYI rough ice areas, but this is because the
OIB ATM scaling factor applied to all data scales up all drag
coefficients linearly, and hence the variability is increased in
those areas as well.

Though it is not the subject of this study, we also briefly
looked at the relation between the parameters extracted from
ICESat-2 ATL07 which were used in Eq. (3) with respect to
each other and the form drag due to obstacles derived from
them. We corroborate Brenner et al. (2021), who looked at
the keels instead of sails or ridges, that obstacle height and
spacing indeed exhibit a negative correlation. Though not al-
ways associated with each other (Tin et al., 2003), sails and
keels are predominantly spatially coincident and are there-
fore expected to exhibit proportional heights and depths and
similar spacing. When looking at the nonlinear cutoff at
200 m for ridge spacing that can be seen in Fig. A3b and
c, it is important to once again consider the “smoothing” and
low obstacle detection rates (Ricker et al., 2023) of ICESat-2
ATL07 that are likely the cause of average obstacle spacing
not being any lower than what is observed.

Here (Fig. A4) we also show the sensitivity studies done
with different coefficient of resistance cw formulations.
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Figure A2. Comparison between drag coefficient estimates (sea ice form drag plus skin drag) computed from the first (a) second (b) and
third (c) strong beams and the standard deviation between them (d). All three examples have the OIB ATM scaling factor applied.

Figure A3. Scatterplots between (a) obstacle height and form drag coefficient, (b) obstacle height and obstacle spacing, and (c) obstacle
spacing and form drag coefficient. All values are taken from Fig. 6, such that blue dots represent the monthly pan-Arctic averages, orange
dots represent monthly MYI averages and green dots represent monthly FYI averages.
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Figure A4. Obstacle form drag coefficient monthly maps for April 2019 subdivided into columns labeled by the coefficient of resistance
formulation used. Panel (a) uses cw = 0.05+ 0.14He (Banke and Smith, 1975; Garbrecht et al., 2002), panel (b) uses cw = 0.22ln(He/0.2)
as suggested by Garbrecht et al. (1999) with allHe values below 0.5 set to 0.2 to avoid very low and negative values, and panel (c) uses cw =
0.05+0.35He from Ropers (2013) with an adjusted aerodynamic roughness length of z0 = 10×10−7 m. The second row shows the absolute
difference between drag coefficients for each of these cw formulations as compared to the one used in this study, i.e., cw = 0.185+0.147He,
with the modified coefficients from Garbrecht et al. (2002).
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Figure A5. The same as Fig. 5 but for 2020. Obstacle spacing (xe); drag coefficient as a sum of sea ice skin drag and form drag due to
obstacles (Cn

d,10,o+C
n
d,10,s); and total drag coefficient as a sum of the sea ice skin drag, form drag due to obstacles and floe edges, and

open-water drag (Cn
d,10,T).
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Figure A6. The same as Fig. 5 but for 2021. Obstacle spacing (xe); drag coefficient as a sum of sea ice skin drag and form drag due to
obstacles (Cn

d,10,o+C
n
d,10,s); and total drag coefficient as a sum of the sea ice skin drag, form drag due to obstacles and floe edges, and

open-water drag (Cn
d,10,T).

https://doi.org/10.5194/tc-17-4103-2023 The Cryosphere, 17, 4103–4131, 2023



4124 A. Mchedlishvili et al.: ICESat-2 pan-Arctic sea ice–atmosphere neutral drag coefficients

Figure A7. ASCAT-AMRSR2 multiyear ice concentration winter 3-month averages for the period January 2019–March 2022.

Figure A8. Above is a schematic showing the data processing steps. The dotted green line indicates the ATL07 sea ice height data. The
grey line shows 1 km increments, and the orange, pink and blue segments show typical 10 km windows over which the obstacle height and
spacing are averaged (the drag coefficient is then calculated using these according to Eq. (3), depicted in the schematic as segments turning
into dots). The resulting 10 km average drag coefficients are then gridded (e.g., the orange, pink and blue dots from the given ATL07 track
are projected onto a polar stereographic grid, along with other values from the same track and those from other tracks from the same month).
Finally, the values are bucket resampled to give a monthly 25 km gridded drag coefficient map (where an individual grid cell is highlighted
in light red in the schematic, which is not to scale).
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Figure A9. The components of the total drag coefficient given as percentages where the columns are obstacle form drag (Cn
d,10,o), sea ice

skin drag (Cn
d,10,s), floe edge form drag (Cn

d,10,e) and open-water skin drag (Cn
d,10,ow), respectively. These 3-monthly averages are from the

year 2019 and depict the contribution of the four components of the total drag coefficient Cn
d,10,T (rightmost column in Fig. 5).

https://doi.org/10.5194/tc-17-4103-2023 The Cryosphere, 17, 4103–4131, 2023



4126 A. Mchedlishvili et al.: ICESat-2 pan-Arctic sea ice–atmosphere neutral drag coefficients

Figure A10. The components of the total drag coefficient given as percentages where the columns are obstacle form drag (Cn
d,10,o), sea ice

skin drag (Cn
d,10,s), floe edge form drag (Cn

d,10,e) and open-water skin drag (Cn
d,10,ow), respectively. These 3-monthly averages are from the

year 2020 and depict the contribution of the four components of the total drag coefficient Cn
d,10,T (rightmost column in Fig. A5).
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Figure A11. The components of the total drag coefficient given as percentages where the columns are obstacle form drag (Cn
d,10,o), sea ice

skin drag (Cn
d,10,s), floe edge form drag (Cn

d,10,e) and open-water skin drag (Cn
d,10,ow), respectively. These 3-monthly averages are from the

year 2021 and depict the contribution of the four components of the total drag coefficient Cn
d,10,T (rightmost in Fig. A6).
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(Kwok et al., 2021b). The NASA OIB ATM L1B el-
evation data product (version 2) is obtained from
https://doi.org/10.5067/19SIM5TXKPGT (Studinger, 2013).

The processed data files used to produce the fig-
ures in this research can be found on PANGAEA
(https://doi.org/10.1594/PANGAEA.959728, Mchedlishvili
et al., 2022).

Author contributions. All authors contributed to the development
of the methods used, description of relevant information, and the
discussion and interpretation of the results. AM wrote most of the
paper and the main algorithm for the analysis. CL provided his ex-
pertise for the parts of the paper dealing with the parameterization
used and the general mathematical background behind the study. AP
was conferred with for all ICESat-2-related matters, contributed to
the programming behind the analysis and helped structure the paper.
MT contributed to the programming and acted as supervisor during
a brief research stay at University College London when this paper
was in the works. GS acted as main supervisor and helped guide the
development, analysis and writing stages of this study.

Competing interests. At least one of the (co-)authors is a member
of the editorial board of The Cryosphere. The peer-review process
was guided by an independent editor, and the authors also have no
other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank NASA for providing ICESAt-2 and
Operation IceBridge (OIB) data used in this study. We thank Mar-
cus Huntemann, Robert Ricker, Marco Bagnardi, Giulia Castellani,
Tom Johnson, Kyle Duncan and Sinead Farrell for their insightful
discussions that helped in the preparation of this study.

Financial support. This research was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
within the Transregional Collaborative Research Center TRR 172
“ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe
Processes, and Feedback Mechanisms (AC)3” (grant 268020496)
and by European Union’s Horizon 2020 research and innovation

programme via project CRiceS (grant 101003826).

The article processing charges for this open-access
publication were covered by the University of Bremen.

Review statement. This paper was edited by Yevgeny Aksenov and
reviewed by two anonymous referees.

References

Andreas, E. L. and Cash, B. A.: Convective heat transfer over
wintertime leads and polynyas, J. Geophys. Res.-Oceans, 104,
25721–25734, https://doi.org/10.1029/1999JC900241, 1999.

Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, P.
O. G., Fairall, C. W., Guest, P. S., and Jordan, R. E.:
Parametrizing turbulent exchange over summer sea ice and the
marginal ice zone, Q. J. Roy. Meteor. Soc., 136, 927–943,
https://doi.org/10.1002/qj.618, 2010.

Arya, S. P. S.: Contribution of form drag on pressure ridges to
the air stress on Arctic ice, J. Geophys. Res., 78, 7092–7099,
https://doi.org/10.1029/JC078i030p07092, 1973.

Arya, S. P. S.: A drag partition theory for determining
the large-scale roughness parameter and wind stress on
the Arctic pack ice, J. Geophys. Res., 80, 3447–3454,
https://doi.org/10.1029/JC080i024p03447, 1975.

Bagnardi, M., Kurtz, N. T., Petty, A. A., and Kwok, R.: Sea
Surface Height Anomalies of the Arctic Ocean From
ICESat-2: A First Examination and Comparisons With
CryoSat-2, Geophys. Res. Lett., 48, e2021GL093155,
https://doi.org/10.1029/2021GL093155, 2021.

Banke, E. and Smith, S.: Measurement of form drag on ice ridges,
Aidjex Bull., 28, 21–27, 1975.

Birnbaum, G. and Lüpkes, C.: A new parameterization of sur-
face drag in the marginal sea ice zone, Tellus A, 54, 107–123,
https://doi.org/10.3402/tellusa.v54i1.12121, 2002.

Bourke, R. H. and Garrett, R. P.: Sea ice thickness distribution
in the Arctic Ocean, Cold Reg. Sci. Technol., 13, 259–280,
https://doi.org/10.1016/0165-232X(87)90007-3, 1987.

Brenner, S., Rainville, L., Thomson, J., Cole, S., and Lee,
C.: Comparing Observations and Parameterizations of Ice-
Ocean Drag Through an Annual Cycle Across the Beau-
fort Sea, J. Geophys. Res.-Oceans, 126, e2020JC016977,
https://doi.org/10.1029/2020JC016977, 2021.

Castellani, G., Lüpkes, C., Hendricks, S., and Gerdes, R.: Vari-
ability of Arctic sea-ice topography and its impact on the atmo-
spheric surface drag, J. Geophys. Res.-Oceans, 119, 6743–6762,
https://doi.org/10.1002/2013JC009712, 2014.

Dammann, D. O., Eicken, H., Mahoney, A. R., Saiet, E., Meyer,
F. J., and George, J. C.: Traversing Sea Ice–Linking Surface
Roughness and Ice Trafficability Through SAR Polarimetry
and Interferometry, IEEE. J. Sel. Top. Appl., 11, 416–433,
https://doi.org/10.1109/JSTARS.2017.2764961, 2018.

Duncan, K. and Farrell, S. L.: Determining Variabil-
ity in Arctic Sea Ice Pressure Ridge Topography with
ICESat-2, Geophys. Res. Lett., 49, e2022GL100272,
https://doi.org/10.1029/2022GL100272, 2022.

The Cryosphere, 17, 4103–4131, 2023 https://doi.org/10.5194/tc-17-4103-2023

https://doi.org/10.1594/PANGAEA.898399
https://seaice.uni-bremen.de/data-archive/
https://doi.org/10.5067/ATLAS/ATL07.005
https://doi.org/10.5067/19SIM5TXKPGT
https://doi.org/10.1594/PANGAEA.959728
https://doi.org/10.1029/1999JC900241
https://doi.org/10.1002/qj.618
https://doi.org/10.1029/JC078i030p07092
https://doi.org/10.1029/JC080i024p03447
https://doi.org/10.1029/2021GL093155
https://doi.org/10.3402/tellusa.v54i1.12121
https://doi.org/10.1016/0165-232X(87)90007-3
https://doi.org/10.1029/2020JC016977
https://doi.org/10.1002/2013JC009712
https://doi.org/10.1109/JSTARS.2017.2764961
https://doi.org/10.1029/2022GL100272


A. Mchedlishvili et al.: ICESat-2 pan-Arctic sea ice–atmosphere neutral drag coefficients 4129

Elvidge, A. D., Renfrew, I. A., Weiss, A. I., Brooks, I. M., Lachlan-
Cope, T. A., and King, J. C.: Observations of surface momen-
tum exchange over the marginal ice zone and recommendations
for its parametrisation, Atmos. Chem. Phys., 16, 1545–1563,
https://doi.org/10.5194/acp-16-1545-2016, 2016.

Elvidge, A. D., Renfrew, I. A., Brooks, I. M., Srivastava,
P., Yelland, M. J., and Prytherch, J.: Surface Heat and
Moisture Exchange in the Marginal Ice Zone: Observations
and a New Parameterization Scheme for Weather and Cli-
mate Models, J. Geophys. Res.-Atmos., 126, e2021JD034827,
https://doi.org/10.1029/2021JD034827, 2021.

Garbrecht, T., Lüpkes, C., Augstein, E., and Wamser, C.: Influence
of a sea ice ridge on low-level airflow, J. Geophys. Res.-Atmos.,
104, 24499–24507, https://doi.org/10.1029/1999JD900488,
1999.

Garbrecht, T., Lüpkes, C., Hartmann, J., and Wolff, M.:
Atmospheric drag coefficients over sea ice–validation
of a parameterisation concept, Tellus A, 54, 205–219,
https://doi.org/10.3402/tellusa.v54i2.12129, 2002.

Garratt, J. R.: The atmospheric boundary layer,
Chap. 18, Cambridge University Press, p. 316,
https://doi.org/10.1002/qj.49712051919, 1992.

Gryanik, V. M. and Lüpkes, C.: An Efficient Non-iterative Bulk
Parametrization of Surface Fluxes for Stable Atmospheric Con-
ditions Over Polar Sea-Ice, Bound.-Lay. Meteorol., 166, 301–
325, https://doi.org/10.1007/s10546-017-0302-x, 2018.

Gryanik, V. M. and Lüpkes, C.: A Package of Momentum and Heat
Transfer Coefficients for the Stable Surface Layer Extended by
New Coefficients over Sea Ice, Bound.-Lay. Meteorol., 187, 41–
72, https://doi.org/10.1007/s10546-022-00730-9, 2023.

Hanssen-Bauer, I. and Gjessing, Y. T.: Observations and model
calculations of aerodynamic drag on sea ice in the Fram
Strait, Tellus A, 40A, 151–161, https://doi.org/10.1111/j.1600-
0870.1988.tb00413.x, 1988.

Hibler, W. D.: Characterization of Cold-Regions Terrain Us-
ing Airborne Laser Profilometry, J. Glaciol., 15, 329–347,
https://doi.org/10.3189/S0022143000034468, 1975.

Hopkins, M. A.: Four stages of pressure ridging, J. Geophys. Res.-
Oceans, 103, 21883–21891, https://doi.org/10.1029/98JC01257,
1998.

Huber, P. J. and Ronchetti, E. M.: Regression,
Chap. 7, John Wiley & Sons, Ltd, p. 172,
https://doi.org/10.1002/9780470434697.ch7, 2009.

Knowles, K. W.: A Mapping and Gridding
Primer: Points, Pixels, Grids, and Cells,
https://nsidc.org/data/user-resources/help-center/
mapping-and-gridding-primer-points-pixels-grids-and-cells
(last access: 15 October 2022), 1993.

Kwok, R., Kacimi, S., Markus, T., Kurtz, N. T., Studinger,
M., Sonntag, J. G., Manizade, S. S., Boisvert, L. N., and
Harbeck, J. P.: ICESat-2 Surface Height and Sea Ice Free-
board Assessed With ATM Lidar Acquisitions From Op-
eration IceBridge, Geophys. Res. Lett., 46, 11228–11236,
https://doi.org/10.1029/2019GL084976, 2019a.

Kwok, R., Markus, T., Kurtz, N. T., Petty, A. A., Neumann,
T. A., Farrell, S. L., Cunningham, G. F., Hancock, D. W.,
Ivanoff, A., and Wimert, J. T.: Surface Height and Sea Ice
Freeboard of the Arctic Ocean From ICESat-2: Characteristics

and Early Results, J. Geophys. Res.-Oceans, 124, 6942–6959,
https://doi.org/10.1029/2019JC015486, 2019b.

Kwok, R., Petty, A., Bagnardi, M., Wimert, J. T., Cunning-
ham, G. F., Hancock, D. W., Ivanoff, A., and Kurtz, N.:
ICESat-2 Algorithm Theoretical Basis Document for Sea
Ice Products (ATL07/ATL10), Release 005, Algorithm
theoretical basis document (atbd) for sea ice products,
National Aeronautics and Space Administration, God-
dard Space Flight Center, Greenbelt, Maryland 20771,
https://nsidc.org/sites/nsidc.org/files/technical-references/
ICESat2_ATL07_ATL10_ATL20_ATL21_ATBD_r005.pdf (last
access: 22 January 2023), 2021a.

Kwok, R., Petty, A. A., Cunningham, G., Markus, T., Han-
cock, D., Ivanoff, A., Wimert, J., Bagnardi, M., Kurtz,
N., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A
Sea Ice Height, Version 5, NASA National Snow and Ice
Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/ATLAS/ATL07.005, 2021b.

Landy, J. C., Ehn, J. K., and Barber, D. G.: Albedo feedback en-
hanced by smoother Arctic sea ice, Geophys. Res. Lett., 42,
10714–10720, https://doi.org/10.1002/2015GL066712, 2015.

Lüpkes, C. and Gryanik, V. M.: A stability-dependent parametriza-
tion of transfer coefficients for momentum and heat over polar
sea ice to be used in climate models, J. Geophys. Res.-Atmos.,
120, 552–581, https://doi.org/10.1002/2014JD022418, 2015.

Lüpkes, C., Gryanik, V. M., Hartmann, J., and Andreas, E. L.:
A parametrization, based on sea ice morphology, of the
neutral atmospheric drag coefficients for weather prediction
and climate models, J. Geophys. Res.-Atmos., 117, 205–219,
https://doi.org/10.3402/tellusa.v54i2.12129, 2012.

Lüpkes, C., Gryanik, V. M., Rösel, A., Birnbaum, G., and
Kaleschke, L.: Effect of sea ice morphology during
Arctic summer on atmospheric drag coefficients used
in climate models, Geophys. Res. Lett., 40, 446–451,
https://doi.org/10.1002/grl.50081, 2013.

MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Har-
beck, J. P., Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth,
E., Buckley, E. M., Christoffersen, M. S., Cochran, J. R.,
Csathó, B. M., De Marco, E. L., Dominguez, R. T., Fahne-
stock, M. A., Farrell, S. L., Gogineni, S. P., Greenbaum, J. S.,
Hansen, C. M., Hofton, M. A., Holt, J. W., Jezek, K. C., Koenig,
L. S., Kurtz, N. T., Kwok, R., Larsen, C. F., Leuschen, C. J.,
Locke, C. D., Manizade, S. S., Martin, S., Neumann, T. A.,
Nowicki, S. M., Paden, J. D., Richter-Menge, J. A., Rignot,
E. J., Rodríguez-Morales, F., Siegfried, M. R., Smith, B. E., Son-
ntag, J. G., Studinger, M., Tinto, K. J., Truffer, M., Wagner,
T. P., Woods, J. E., Young, D. A., and Yungel, J. K.: The Sci-
entific Legacy of NASA’s Operation IceBridge, Rev. Geophys.,
59, e2020RG000712, https://doi.org/10.1029/2020RG000712,
2021.

Magruder, L. A., Brunt, K. M., and Alonzo, M.: Early ICESat-
2 on-orbit Geolocation Validation Using Ground-Based Cor-
ner Cube Retro-Reflectors, Remote Sens.-Basel, 12, 3653,
https://doi.org/10.3390/rs12213653, 2020.

Magruder, L. A., Brunt, K. M., Neumann, T., Klotz, B., and
Alonzo, M.: Passive Ground-Based Optical Techniques for
Monitoring the On-Orbit ICESat-2 Altimeter Geolocation and
Footprint Diameter, Earth Space Sci., 8, e2020EA001414,
https://doi.org/10.1029/2020EA001414, 2021.

https://doi.org/10.5194/tc-17-4103-2023 The Cryosphere, 17, 4103–4131, 2023

https://doi.org/10.5194/acp-16-1545-2016
https://doi.org/10.1029/2021JD034827
https://doi.org/10.1029/1999JD900488
https://doi.org/10.3402/tellusa.v54i2.12129
https://doi.org/10.1002/qj.49712051919
https://doi.org/10.1007/s10546-017-0302-x
https://doi.org/10.1007/s10546-022-00730-9
https://doi.org/10.1111/j.1600-0870.1988.tb00413.x
https://doi.org/10.1111/j.1600-0870.1988.tb00413.x
https://doi.org/10.3189/S0022143000034468
https://doi.org/10.1029/98JC01257
https://doi.org/10.1002/9780470434697.ch7
https://nsidc.org/data/user-resources/help-center/mapping-and-gridding-primer-points-pixels-grids-and-cells
https://nsidc.org/data/user-resources/help-center/mapping-and-gridding-primer-points-pixels-grids-and-cells
https://doi.org/10.1029/2019GL084976
https://doi.org/10.1029/2019JC015486
https://nsidc.org/sites/nsidc.org/files/technical-references/ICESat2_ATL07_ATL10_ATL20_ATL21_ATBD_r005.pdf
https://nsidc.org/sites/nsidc.org/files/technical-references/ICESat2_ATL07_ATL10_ATL20_ATL21_ATBD_r005.pdf
https://doi.org/10.5067/ATLAS/ATL07.005
https://doi.org/10.1002/2015GL066712
https://doi.org/10.1002/2014JD022418
https://doi.org/10.3402/tellusa.v54i2.12129
https://doi.org/10.1002/grl.50081
https://doi.org/10.1029/2020RG000712
https://doi.org/10.3390/rs12213653
https://doi.org/10.1029/2020EA001414


4130 A. Mchedlishvili et al.: ICESat-2 pan-Arctic sea ice–atmosphere neutral drag coefficients

Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt,
K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Hard-
ing, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D.,
Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A.,
Palm, S., Popescu, S., Shum, C., Schutz, B. E., Smith, B.,
Yang, Y., and Zwally, J.: The Ice, Cloud, and land Elevation
Satellite-2 (ICESat-2), Remote Sens. Environ., 190, 260–273,
https://doi.org/10.1016/j.rse.2016.12.029, 2017.

Martin, C. F., Krabill, W. B., Manizade, S. S., Russell, R. L., Son-
ntag, J. G., Swift, R. N., and Yungel, J. K.: Airborne Topo-
graphic Mapper Calibration Procedures and Accuracy Assess-
ment, Tech. Rep. Technical Memorandum, 215891, National
Aeronautics and Space Administration, Greenbelt, Maryland
20771, Goddard Space Flight Center, https://ntrs.nasa.gov/api/
citations/20120008479/downloads/20120008479.pdf (last ac-
cess: 10 April 2022), 2012.

Martin, T., Tsamados, M., Schroeder, D., and Feltham, D. L.: The
impact of variable sea ice roughness on changes in Arctic Ocean
surface stress: A model study, J. Geophys. Res.-Oceans, 121,
1931–1952, https://doi.org/10.1002/2015JC011186, 2016.

Mchedlishvili, A., Spreen, G., Lüpkes, C., Tsamados, M.,
and Petty, A.: Gridded pan-Arctic total neutral atmo-
spheric 10-m drag coefficient estimates derived from
ICESat-2 ATL07 sea ice height data, PANGAEA [data
set], https://doi.org/10.1594/PANGAEA.959728, 2022.

Melsheimer, C. and Spreen, G.: AMSR2 ASI sea ice
concentration data, Arctic, version 5.4 (NetCDF)
(July 2012–December 2019), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.898399, 2019.

Melsheimer, C., Spreen, G., Ye, Y., and Shokr, M.: First results
of Antarctic sea ice type retrieval from active and passive mi-
crowave remote sensing data, The Cryosphere, 17, 105–126,
https://doi.org/10.5194/tc-17-105-2023, 2023.

Mock, S. J., Hartwell, A. D., and Hibler, W. D.: Spatial aspects
of pressure ridge statistics, J. Geophys. Res., 77, 5945–5953,
https://doi.org/10.1029/JC077i030p05945, 1972.

Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R.,
Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T.,
Hancock, D. W., Harbeck, K., Lee, J., Kurtz, N. T., Luers,
P. J., Luthcke, S. B., Magruder, L., Pennington, T. A., Ramos-
Izquierdo, L., Rebold, T., Skoog, J., and Thomas, T. C.: The Ice,
Cloud, and Land Elevation Satellite – 2 mission: A global geolo-
cated photon product derived from the Advanced Topographic
Laser Altimeter System, Remote Sens. Environ., 233, 111325,
https://doi.org/10.1016/j.rse.2019.111325, 2019.

Petty, A. A., Tsamados, M. C., Kurtz, N. T., Farrell, S. L., New-
man, T., Harbeck, J. P., Feltham, D. L., and Richter-Menge,
J. A.: Characterizing Arctic sea ice topography using high-
resolution IceBridge data, The Cryosphere, 10, 1161–1179,
https://doi.org/10.5194/tc-10-1161-2016, 2016.

Petty, A. A., Tsamados, M. C., and Kurtz, N. T.: Atmospheric form
drag coefficients over Arctic sea ice using remotely sensed ice to-
pography data, spring 2009–2015, J. Geophys. Res.-Earth., 122,
1472–1490, https://doi.org/10.1002/2017JF004209, 2017.

Remote Sensing for Polar Regions working group from the Remote
Sensing department at the Institute of Environmental Physics:
Sea Ice Remote Sensing at the University of Bremen, https:
//seaice.uni-bremen.de/data-archive/, last access: 30 June 2023.

Renfrew, I. A., Elvidge, A. D., and Edwards, J. M.: At-
mospheric sensitivity to marginal-ice-zone drag: Local and
global responses, Q. J. Roy. Meteor. Soc., 145, 1165–1179,
https://doi.org/10.1002/qj.3486, 2019.

Ricker, R., Fons, S., Jutila, A., Hutter, N., Duncan, K., Far-
rell, S. L., Kurtz, N. T., and Fredensborg Hansen, R. M.:
Linking scales of sea ice surface topography: evaluation
of ICESat-2 measurements with coincident helicopter laser
scanning during MOSAiC, The Cryosphere, 17, 1411–1429,
https://doi.org/10.5194/tc-17-1411-2023, 2023.

Ropers, M.: Die Auswirkung variabler Meereisrauigkeit auf die at-
mosphaerische Grenzschicht, Phd thesis, University of Bremen,
hdl:10013/epic.42983, 2013.

Schneider, T., Lüpkes, C., Dorn, W., Chechin, D., Handorf, D.,
Khosravi, S., Gryanik, V. M., Makhotina, I., and Rinke, A.: Sen-
sitivity to changes in the surface-layer turbulence parameteriza-
tion for stable conditions in winter: A case study with a regional
climate model over the Arctic, Atmos. Sci. Lett., 23, e1066,
https://doi.org/10.1002/asl.1066, 2022.

Serreze, M. C. and Barry, R. G.: Processes and impacts of Arctic
amplification: A research synthesis, Global Planet. Change, 77,
85–96, https://doi.org/10.1016/j.gloplacha.2011.03.004, 2011.

Shokr, M., Lambe, A., and Agnew, T.: A New Algorithm
(ECICE) to Estimate Ice Concentration From Remote Sens-
ing Observations: An Application to 85-GHz Passive Mi-
crowave Data, IEEE T. Geosci. Remote, 46, 4104–4121,
https://doi.org/110.1109/TGRS.2008.2000624, 2008.

Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing
using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113,
C02S03, https://doi.org/10.1029/2005JC003384, 2008.

Srivastava, P., Brooks, I. M., Prytherch, J., Salisbury, D. J., Elvidge,
A. D., Renfrew, I. A., and Yelland, M. J.: Ship-based estimates
of momentum transfer coefficient over sea ice and recommen-
dations for its parameterization, Atmos. Chem. Phys., 22, 4763–
4778, https://doi.org/10.5194/acp-22-4763-2022, 2022.

Steele, M., Zhang, J., Rothrock, D., and Stern, H.: The force
balance of sea ice in a numerical model of the Arc-
tic Ocean, J. Geophys. Res.-Oceans, 102, 21061–21079,
https://doi.org/10.1029/97JC01454, 1997.

Steiner, N., Harder, M., and Lemke, P.: Sea-ice rough-
ness and drag coefficients in a dynamic–thermodynamic
sea-ice model for the Arctic, Tellus A, 51, 964–978,
https://doi.org/10.3402/tellusa.v51i5.14505, 1999.

Stroeve, J., Serreze, M., Holland, M., Kay, J., Malanik, J., and Bar-
rett, A.: Atmospheric drag coefficients over sea ice–validation of
a parameterisation concept, Climatic Change, 110, 1005–1027,
https://doi.org/10.1007/s10584-011-0101-1, 2012.

Studinger, M.: IceBridge ATM L1B Elevation and Return Strength,
Version 2, National Snow and Ice Data Center [data set],
https://doi.org/10.5067/19SIM5TXKPGT, 2013.

Studinger, M.: IceBridge ATM L1B Elevation and Return Strength,
Version 2, Tech. rep., National Aeronautics and Space Admin-
istration, Boulder, Colorado USA, NASA National Snow and
Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/19SIM5TXKPGT, 2013, updated 2020.

Studinger, M., Manizade, S. S., Linkswiler, M. A., and Yungel, J.
K.: High-resolution imaging of supraglacial hydrological fea-
tures on the Greenland Ice Sheet with NASA’s Airborne Topo-

The Cryosphere, 17, 4103–4131, 2023 https://doi.org/10.5194/tc-17-4103-2023

https://doi.org/10.1016/j.rse.2016.12.029
https://ntrs.nasa.gov/api/citations/20120008479/downloads/20120008479.pdf
https://ntrs.nasa.gov/api/citations/20120008479/downloads/20120008479.pdf
https://doi.org/10.1002/2015JC011186
https://doi.org/10.1594/PANGAEA.959728
https://doi.org/10.1594/PANGAEA.898399
https://doi.org/10.5194/tc-17-105-2023
https://doi.org/10.1029/JC077i030p05945
https://doi.org/10.1016/j.rse.2019.111325
https://doi.org/10.5194/tc-10-1161-2016
https://doi.org/10.1002/2017JF004209
https://seaice.uni-bremen.de/data-archive/
https://seaice.uni-bremen.de/data-archive/
https://doi.org/10.1002/qj.3486
https://doi.org/10.5194/tc-17-1411-2023
https://doi.org/10.1002/asl.1066
https://doi.org/10.1016/j.gloplacha.2011.03.004
https://doi.org/110.1109/TGRS.2008.2000624
https://doi.org/10.1029/2005JC003384
https://doi.org/10.5194/acp-22-4763-2022
https://doi.org/10.1029/97JC01454
https://doi.org/10.3402/tellusa.v51i5.14505
https://doi.org/10.1007/s10584-011-0101-1
https://doi.org/10.5067/19SIM5TXKPGT
https://doi.org/10.5067/19SIM5TXKPGT


A. Mchedlishvili et al.: ICESat-2 pan-Arctic sea ice–atmosphere neutral drag coefficients 4131

graphic Mapper (ATM) instrument suite, The Cryosphere, 16,
3649–3668, https://doi.org/10.5194/tc-16-3649-2022, 2022.

Thorndike, A. S. and Colony, R.: Sea ice motion in response to
geostrophic winds, J. Geophys. Res.-Oceans, 87, 5845–5852,
https://doi.org/10.1029/JC087iC08p05845, 1982.

Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R.:
The thickness distribution of sea ice, J. Geophys. Res., 80, 4501–
4513, https://doi.org/10.1029/JC080i033p04501, 1975.

Tilling, R., Kurtz, N. T., Bagnardi, M., Petty, A. A., and Kwok,
R.: Detection of Melt Ponds on Arctic Summer Sea Ice
From ICESat-2, Geophys. Res. Lett., 47, e2020GL090644,
https://doi.org/10.1029/2020GL090644, 2020.

Timco, G. W. and Burden, R. P.: An analysis of the shapes
of sea ice ridges, Cold Reg. Sci. Technol., 25, 65–77,
https://doi.org/10.1016/S0165-232X(96)00017-1, 1997.

Tin, T., Jeffries, M. O., Lensu, M., and Tuhkuri, J.: Es-
timating the thickness of ridged sea ice from ship ob-
servations in the Ross Sea, Antarctic Sci., 15, 47–54,
https://doi.org/10.1017/S0954102003001056, 2003.

Tremblay, L.-B. and Mysak, L. A.: Modeling Sea Ice as
a Granular Material, Including the Dilatancy Effect, J.
Phys. Oceanogr., 27, 2342–2360, https://doi.org/10.1175/1520-
0485(1997)027<2342:MSIAAG>2.0.CO;2, 1977.

Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Far-
rell, S. L., Kurtz, N., Laxon, S. W., and Bacon, S.: Impact
of Variable Atmospheric and Oceanic Form Drag on Simula-
tions of Arctic Sea Ice, J. Phys. Oceanogr., 44, 1329–1353,
https://doi.org/10.1175/JPO-D-13-0215.1, 2014.

Tsamados, M., Feltham, D., Petty, A., Schroeder, D., and Flocco,
D.: Processes controlling surface, bottom and lateral melt of Arc-
tic sea ice in a state of the art sea ice model, Philos. T. R. Soc. A,
373, 20140167, https://doi.org/10.1098/rsta.2014.0167, 2016.

Vihma, T., Hartmann, J., and Lüpkes, C.: A Case Study
Of An On-Ice Air Flow Over The Arctic Marginal
Sea-Ice Zone, Bound.-Lay. Meteorol., 107, 189–217,
https://doi.org/10.1023/A:1021599601948, 2003.

Wadhams, P. and Davy, T.: On the spacing and draft distributions
for pressure ridge keels, J. Geophys. Res.-Oceans, 91, 10697–
10708, https://doi.org/10.1029/JC091iC09p10697, 1986.

Ye, Y., Heygster, G., and Shokr, M.: Improving Multi-
year Ice Concentration Estimates With Reanalysis Air
Temperatures, IEEE T. Geosci. Remote, 54, 2602–2614,
https://doi.org/10.1109/TGRS.2015.2503884, 2016a.

Ye, Y., Shokr, M., Heygster, G., and Spreen, G.: Improving Multi-
year Sea Ice Concentration Estimates with Sea Ice Drift, Remote
Sens.-Basel, 8, 397, https://doi.org/10.3390/rs8050397, 2016b.

Yu, X., Rinke, A., Dorn, W., Spreen, G., Lüpkes, C., Sumata,
H., and Gryanik, V. M.: Evaluation of Arctic sea ice drift and
its dependency on near-surface wind and sea ice conditions in
the coupled regional climate model HIRHAM–NAOSIM, The
Cryosphere, 14, 1727–1746, https://doi.org/10.5194/tc-14-1727-
2020, 2020.

https://doi.org/10.5194/tc-17-4103-2023 The Cryosphere, 17, 4103–4131, 2023

https://doi.org/10.5194/tc-16-3649-2022
https://doi.org/10.1029/JC087iC08p05845
https://doi.org/10.1029/JC080i033p04501
https://doi.org/10.1029/2020GL090644
https://doi.org/10.1016/S0165-232X(96)00017-1
https://doi.org/10.1017/S0954102003001056
https://doi.org/10.1175/1520-0485(1997)027<2342:MSIAAG>2.0.CO;2
https://doi.org/10.1175/1520-0485(1997)027<2342:MSIAAG>2.0.CO;2
https://doi.org/10.1175/JPO-D-13-0215.1
https://doi.org/10.1098/rsta.2014.0167
https://doi.org/10.1023/A:1021599601948
https://doi.org/10.1029/JC091iC09p10697
https://doi.org/10.1109/TGRS.2015.2503884
https://doi.org/10.3390/rs8050397
https://doi.org/10.5194/tc-14-1727-2020
https://doi.org/10.5194/tc-14-1727-2020

	Abstract
	Introduction
	Data and methods
	ATLAS on ICESat-2
	ATM lidar on Operation IceBridge airplanes
	Extracting sea ice feature data
	Calculating neutral form drag coefficient
	Calculating total neutral drag coefficient

	Results and discussion
	Drag coefficient regression with airborne lidar measurements
	Evaluation study
	Interannual drag coefficient estimates
	Spatial and temporal variability
	Uncertainty due to sampling
	Discussion and concluding remarks
	Significance and novelty of the analysis

	Summary and outlook
	Appendix A: Supporting figures
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

