Articles | Volume 17, issue 4
https://doi.org/10.5194/tc-17-1775-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-1775-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Subglacial lake activity beneath the ablation zone of the Greenland Ice Sheet
Yubin Fan
Jiangsu Provincial Key Laboratory of Geographic Information Science
and Technology, Key Laboratory for Land Satellite Remote Sensing
Applications of Ministry of Natural Resources, School of Geography and Ocean
Science, Nanjing University, Nanjing, 210023, China
Collaborative Innovation Center of Novel Software Technology and
Industrialization, Nanjing, 210023, China
Collaborative Innovation Center of South China Sea Studies, Nanjing,
210023, China
Chang-Qing Ke
CORRESPONDING AUTHOR
Jiangsu Provincial Key Laboratory of Geographic Information Science
and Technology, Key Laboratory for Land Satellite Remote Sensing
Applications of Ministry of Natural Resources, School of Geography and Ocean
Science, Nanjing University, Nanjing, 210023, China
Collaborative Innovation Center of Novel Software Technology and
Industrialization, Nanjing, 210023, China
Collaborative Innovation Center of South China Sea Studies, Nanjing,
210023, China
Xiaoyi Shen
Jiangsu Provincial Key Laboratory of Geographic Information Science
and Technology, Key Laboratory for Land Satellite Remote Sensing
Applications of Ministry of Natural Resources, School of Geography and Ocean
Science, Nanjing University, Nanjing, 210023, China
Collaborative Innovation Center of Novel Software Technology and
Industrialization, Nanjing, 210023, China
Collaborative Innovation Center of South China Sea Studies, Nanjing,
210023, China
Yao Xiao
Jiangsu Provincial Key Laboratory of Geographic Information Science
and Technology, Key Laboratory for Land Satellite Remote Sensing
Applications of Ministry of Natural Resources, School of Geography and Ocean
Science, Nanjing University, Nanjing, 210023, China
Collaborative Innovation Center of Novel Software Technology and
Industrialization, Nanjing, 210023, China
Collaborative Innovation Center of South China Sea Studies, Nanjing,
210023, China
Stephen J. Livingstone
Department of Geography, University of Sheffield, Sheffield, S10
2TN, UK
Andrew J. Sole
Department of Geography, University of Sheffield, Sheffield, S10
2TN, UK
Related authors
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022, https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Short summary
A new digital elevation model of Greenland was provided based on the ICESat-2 observations acquired from November 2018 to November 2019. A model fit method was applied within the grid cells at different spatial resolutions to estimate the surface elevations with a modal resolution of 500 m. We estimated the uncertainty with a median difference of −0.48 m for all of Greenland, which can benefit studies of elevation change and mass balance in Greenland.
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-204, https://doi.org/10.5194/tc-2021-204, 2021
Manuscript not accepted for further review
Short summary
Short summary
Obtaining the detailed surface topography in Antarctica is essential for human fieldwork planning, ice surface height changes and mass balance estimations. A definite time-stamped and fine-scale DEM for Antarctica with a modal resolution of 250 m is presented based on the surface height measurements from ICESat-2 by using a model fitting method, which is more valuable for further scientific applications, e.g., land ice height and mass balance estimations.
Xi Lu, Liming Jiang, Daan Li, Yi Liu, Andrew Sole, and Stephen John Livingstone
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-304, https://doi.org/10.5194/essd-2025-304, 2025
Preprint under review for ESSD
Short summary
Short summary
To support generalized automated monitoring and modeling of Greenland’s outlet glaciers, this study presents a benchmark dataset of over 12,000 manually delineated calving front positions from 2002 to 2021. With high spatial accuracy and wide coverage, it enables evaluation of automated detection methods, improves model boundary conditions, and supports long-term studies of glacier change and sea-level rise.
Izabela Szuman, Jakub Z. Kalita, Christiaan R. Diemont, Stephen J. Livingstone, Chris D. Clark, and Martin Margold
The Cryosphere, 18, 2407–2428, https://doi.org/10.5194/tc-18-2407-2024, https://doi.org/10.5194/tc-18-2407-2024, 2024
Short summary
Short summary
A Baltic-wide glacial landform-based map is presented, filling in a geographical gap in the record that has been speculated about by palaeoglaciologists for over a century. Here we used newly available bathymetric data and provide landform evidence of corridors of fast ice flow that we interpret as ice streams. Where previous ice-sheet-scale investigations inferred a single ice source, our mapping identifies flow and ice margin geometries from both Swedish and Bothnian sources.
Yu Cai, Jingjing Wang, Yao Xiao, Zifei Wang, Xiaoyi Shen, Haili Li, and Chang-Qing Ke
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-441, https://doi.org/10.5194/essd-2023-441, 2024
Revised manuscript not accepted
Short summary
Short summary
In this study, we re-explored the potential of passive microwaves in extracting lake ice freeze-thaw events. Brightness temperature and air temperature data were used to extract freeze-up and break-up records of 194 lakes on the Tibetan Plateau, providing complete lake ice records for a large number of small and medium-sized lakes for the first time. The dataset will provide valuable data for users interested in lake ice cover on the Tibetan Plateau over the last decade.
Lauren D. Rawlins, David M. Rippin, Andrew J. Sole, Stephen J. Livingstone, and Kang Yang
The Cryosphere, 17, 4729–4750, https://doi.org/10.5194/tc-17-4729-2023, https://doi.org/10.5194/tc-17-4729-2023, 2023
Short summary
Short summary
We map and quantify surface rivers and lakes at Humboldt Glacier to examine seasonal evolution and provide new insights of network configuration and behaviour. A widespread supraglacial drainage network exists, expanding up the glacier as seasonal runoff increases. Large interannual variability affects the areal extent of this network, controlled by high- vs. low-melt years, with late summer network persistence likely preconditioning the surface for earlier drainage activity the following year.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
Yu Cai, Claude R. Duguay, and Chang-Qing Ke
Earth Syst. Sci. Data, 14, 3329–3347, https://doi.org/10.5194/essd-14-3329-2022, https://doi.org/10.5194/essd-14-3329-2022, 2022
Short summary
Short summary
Seasonal ice cover is one of the important attributes of lakes in middle- and high-latitude regions. This study used passive microwave brightness temperature measurements to extract the ice phenology for 56 lakes across the Northern Hemisphere from 1979 to 2019. A threshold algorithm was applied according to the differences in brightness temperature between lake ice and open water. The dataset will provide valuable information about the changing ice cover of lakes over the last 4 decades.
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
Earth Syst. Sci. Data, 14, 3075–3089, https://doi.org/10.5194/essd-14-3075-2022, https://doi.org/10.5194/essd-14-3075-2022, 2022
Short summary
Short summary
Obtaining the detailed surface topography in Antarctica is essential for fieldwork planning, surface height change and mass balance estimations. A new and reliable DEM for Antarctica with a modal resolution of 500 m is presented based on the surface height measurements from ICESat-2 by using a model fitting method. The high accuracy of elevations and the possibility for annual updates make the ICESat-2 DEM an addition to the existing Antarctic DEM groups.
Benjamin Joseph Davison, Tom Cowton, Andrew Sole, Finlo Cottier, and Pete Nienow
The Cryosphere, 16, 1181–1196, https://doi.org/10.5194/tc-16-1181-2022, https://doi.org/10.5194/tc-16-1181-2022, 2022
Short summary
Short summary
The ocean is an important driver of Greenland glacier retreat. Icebergs influence ocean temperature in the vicinity of glaciers, which will affect glacier retreat rates, but the effect of icebergs on water temperature is poorly understood. In this study, we use a model to show that icebergs cause large changes to water properties next to Greenland's glaciers, which could influence ocean-driven glacier retreat around Greenland.
Yubin Fan, Chang-Qing Ke, and Xiaoyi Shen
Earth Syst. Sci. Data, 14, 781–794, https://doi.org/10.5194/essd-14-781-2022, https://doi.org/10.5194/essd-14-781-2022, 2022
Short summary
Short summary
A new digital elevation model of Greenland was provided based on the ICESat-2 observations acquired from November 2018 to November 2019. A model fit method was applied within the grid cells at different spatial resolutions to estimate the surface elevations with a modal resolution of 500 m. We estimated the uncertainty with a median difference of −0.48 m for all of Greenland, which can benefit studies of elevation change and mass balance in Greenland.
Xiaoyi Shen, Chang-Qing Ke, and Haili Li
Earth Syst. Sci. Data, 14, 619–636, https://doi.org/10.5194/essd-14-619-2022, https://doi.org/10.5194/essd-14-619-2022, 2022
Short summary
Short summary
Snow over Antarctic sea ice controls energy budgets and thus has essential effects on the climate. Here, we estimated snow depth using microwave radiometers and a newly constructed, robust method by incorporating lower frequencies, which have been available from AMSR-E and AMSR-2. Comparing the new retrieval with in situ and shipborne snow depth measurements showed that this method outperformed the previously available method.
Peter A. Tuckett, Jeremy C. Ely, Andrew J. Sole, James M. Lea, Stephen J. Livingstone, Julie M. Jones, and J. Melchior van Wessem
The Cryosphere, 15, 5785–5804, https://doi.org/10.5194/tc-15-5785-2021, https://doi.org/10.5194/tc-15-5785-2021, 2021
Short summary
Short summary
Lakes form on the surface of the Antarctic Ice Sheet during the summer. These lakes can generate further melt, break up floating ice shelves and alter ice dynamics. Here, we describe a new automated method for mapping surface lakes and apply our technique to the Amery Ice Shelf between 2005 and 2020. Lake area is highly variable between years, driven by large-scale climate patterns. This technique will help us understand the role of Antarctic surface lakes in our warming world.
Izabela Szuman, Jakub Z. Kalita, Marek W. Ewertowski, Chris D. Clark, Stephen J. Livingstone, and Leszek Kasprzak
Earth Syst. Sci. Data, 13, 4635–4651, https://doi.org/10.5194/essd-13-4635-2021, https://doi.org/10.5194/essd-13-4635-2021, 2021
Short summary
Short summary
The Baltic Ice Stream Complex was the most prominent ice stream of the last Scandinavian Ice Sheet, controlling ice sheet drainage and collapse. Our mapping effort, based on a lidar DEM, resulted in a dataset containing 5461 landforms over an area of 65 000 km2, which allows for reconstruction of the last Scandinavian Ice Sheet extent and dynamics from the Middle Weichselian ice sheet advance, 50–30 ka, through the Last Glacial Maximum, 25–21 ka, and Young Baltic advances, 18–15 ka.
Haili Li, Chang-Qing Ke, Qinghui Zhu, and Xiaoyi Shen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-271, https://doi.org/10.5194/tc-2021-271, 2021
Revised manuscript not accepted
Short summary
Short summary
Here, we employ particle filter assimilation to combine snow depth values retrieved from remote sensing with those obtained from reanalysis reconstructions, and INESOSIM-PF is proposed. The results indicate that the proposed method improves the modeled snow depth, and the monthly and seasonal changes in the snow depth are consistent with those in the snow depth determined with two existing snow depth algorithms.
Xiaoyi Shen, Chang-Qing Ke, Yubin Fan, and Lhakpa Drolma
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-204, https://doi.org/10.5194/tc-2021-204, 2021
Manuscript not accepted for further review
Short summary
Short summary
Obtaining the detailed surface topography in Antarctica is essential for human fieldwork planning, ice surface height changes and mass balance estimations. A definite time-stamped and fine-scale DEM for Antarctica with a modal resolution of 250 m is presented based on the surface height measurements from ICESat-2 by using a model fitting method, which is more valuable for further scientific applications, e.g., land ice height and mass balance estimations.
Emma L. M. Lewington, Stephen J. Livingstone, Chris D. Clark, Andrew J. Sole, and Robert D. Storrar
The Cryosphere, 14, 2949–2976, https://doi.org/10.5194/tc-14-2949-2020, https://doi.org/10.5194/tc-14-2949-2020, 2020
Short summary
Short summary
We map visible traces of subglacial meltwater flow across Keewatin, Canada. Eskers are commonly observed to form within meltwater corridors up to a few kilometres wide, and we interpret different traces to have formed as part of the same integrated drainage system. In our proposed model, we suggest that eskers record the imprint of a central conduit while meltwater corridors represent the interaction with the surrounding distributed drainage system.
Cited articles
Bessette, J. T., Schroeder, D. M., Jordan, T. M., and MacGregor, J. A.:
Radar-sounding characterization of the subglacial groundwater table beneath
Hiawatha Glacier, Greenland, Geophys. Res. Lett., 48, e2020GL091432,
https://doi.org/10.1029/2020GL091432, 2021.
Bowling, J. S., Livingstone, S. J., Sole, A. J., and Chu, W.: Distribution and
dynamics of Greenland subglacial lakes, Nat. Commun., 10, 2810,
https://doi.org/10.1038/s41467-019-10821-w, 2019.
Brunt, K., Smith, B., Sutterly, T., Kurtz, N., and Neumann, T: Comparisons
of Satellite and Airborne Altimetry With Ground-Based Data From the Interior
of the Antarctic Ice Sheet, Geophys. Res. Lett., 48, e2020GL090572,
https://doi.org/10.1029/2020GL090572, 2021.
Datta, R. T. and Wouters, B.: Supraglacial lake bathymetry automatically derived from ICESat-2 constraining lake depth estimates from multi-source satellite imagery, The Cryosphere, 15, 5115–5132, https://doi.org/10.5194/tc-15-5115-2021, 2021.
Fair, Z., Flanner, M., Brunt, K. M., Fricker, H. A., and Gardner, A.: Using ICESat-2 and Operation IceBridge altimetry for supraglacial lake depth retrievals, The Cryosphere, 14, 4253–4263, https://doi.org/10.5194/tc-14-4253-2020, 2020.
Fan, Y., Ke, C., Shen, X., and Xiao, Y.: Subglacial lake dataset of Greenland (2019–2020), National Tibetan Plateau/Third Pole Environment Data Center [data set], https://doi.org/10.11888/Cryos.tpdc.273022, 2022.
Fettweis, X., Hofer, S., Séférian, R., Amory, C., Delhasse, A., Doutreloup, S., Kittel, C., Lang, C., Van Bever, J., Veillon, F., and Irvine, P.: Brief communication: Reduction in the future Greenland ice sheet surface melt with the help of solar geoengineering, The Cryosphere, 15, 3013–3019, https://doi.org/10.5194/tc-15-3013-2021, 2021.
Fricker, H. A., Scambos, T., Bindschadler, R., and Padman, L.: An active
subglacial water system in West Antarctica mapped from space, Science,
315, 1544–1548, https://doi.org/10.1126/science.1136897, 2007.
Fricker, H. A., Arndt, P., Brunt, K. M., Datta., R. T., Fair, Z., and
Jasinski, M. F.: ICESat-2 Meltwater Depth Estimates: Application to Surface
Melt on Amery Ice Shelf, East Antarctica, Geophys. Res. Lett., 48,
e2020GL090550, https://doi.org/10.1029/2020GL090550, 2020.
Gray, L., Joughin, I., Tulaczyk, S., and Spikes, V. B.: Evidence for
subglacial water transport in the West Antarctic Ice Sheet through
three-dimensional satellite radar interferometry, Geophys. Res. Lett., 32,
L03501, https://doi.org/10.1029/2004GL021387, 2005.
Hampel, F. R.: The Influence Curve and Its Role in Robust Estimation, J. Am.
Stat. Assoc., 69, 383–393,
https://doi.org/10.1080/01621459.1974.10482962, 1974.
Howat, I. M., Porter, C., Noh, M. J., Smith, B. E., and Jeong, S.: Brief Communication: Sudden drainage of a subglacial lake beneath the Greenland Ice Sheet, The Cryosphere, 9, 103–108, https://doi.org/10.5194/tc-9-103-2015, 2015.
Khan, S.A., Bamber, J.L., Rignot, E., Helm, V., Aschwanden, A., Holland,
D.M., Broeke, M., King, M., Noël, B., Truffer, M., Humbert, A., Colgan,
W., Vijay, S., and Munneke, P.: Greenland mass trends from airborne and
satellite altimetry during 2011–2020, J. Geophys. Res.-Ea. Surf.,
127, e2021JF006505, https://doi.org/10.1029/2021JF006505, 2022.
Li, Y., Shi, H., Lu, Y., Zhang, Z., and Xi, H.: Subglacial discharge weakens
the stability of the Ross Ice Shelf around the grounding line, Polar Res.,
40, 3377, https://doi.org/10.33265/polar.v40.3377, 2021.
Liang, Q., Xiao, W., Howat, I., Cheng, X., Hui, F., Chen, Z., Jiang, M., and Zheng, L.: Filling and drainage of a subglacial lake beneath the Flade Isblink ice cap, northeast Greenland, The Cryosphere, 16, 2671–2681, https://doi.org/10.5194/tc-16-2671-2022, 2022.
Livingstone, S. J., Clark, C. D., Woodward, J., and Kingslake, J.: Potential subglacial lake locations and meltwater drainage pathways beneath the Antarctic and Greenland ice sheets, The Cryosphere, 7, 1721–1740, https://doi.org/10.5194/tc-7-1721-2013, 2013.
Livingstone, S. J., Sole, A. J., Storrar, R. D., Harrison, D., Ross, N., and Bowling, J.: Brief communication: Subglacial lake drainage beneath Isunguata Sermia, West Greenland: geomorphic and ice dynamic effects, The Cryosphere, 13, 2789–2796, https://doi.org/10.5194/tc-13-2789-2019, 2019.
Livingstone, S. J., Li, Y., Rutishauser, A., Sanderson, R. J., Winter, K.,
Mikucki, J. A., Björnsson, H., Bowling, J., Chu, W., Dow, C., Fricker,
H., McMillan, M., Ng, F., Ross. N., Siegert, M., Siegfried, M., and Sole,
A.: Subglacial lakes and their changing role in a warming climate, Nat. Rev.
Earth Environ., 19, 106–124, https://doi.org/10.1038/s43017-021-00246-9, 2022.
MacFerrin, M., Machguth, H., van As, D., Charalampidis, C., Stevens, C. M.,
Heilig, A., Vandecrux, B., Langen, P. L., Mottram, R., Fettweis, X., Broeke,
M., Pfeffer, W. T., Moussavi, M. S., and Abdalati, W.: Rapid expansion of
Greenland's low- permeability ice slabs, Nature, 573, 403–407,
https://doi.org/10.1038/s41586-019-1550-3, 2019.
MacGregor, J. A., Chu, W., Colgan, W. T., Fahnestock, M. A., Felikson, D., Karlsson, N. B., Nowicki, S. M. J., and Studinger, M.: GBaTSv2: a revised synthesis of the likely basal thermal state of the Greenland Ice Sheet, The Cryosphere, 16, 3033–3049, https://doi.org/10.5194/tc-16-3033-2022, 2022.
Magruder, L. A., Brunt, K. M., Neumann, T., Klotz, B., and Alonzo, M.:
Passive ground-based optical techniques for monitoring the on-orbit ICESat-2
altimeter geolocation and footprint diameter, Earth Space Sci., 8, e2020EA001414,
https://doi.org/10.1002/essoar.10504571.1, 2020.
Maguire, R., Schmerr, N., Pettit, E., Riverman, K., Gardner, C., DellaGiustina, D. N., Avenson, B., Wagner, N., Marusiak, A. G., Habib, N., Broadbeck, J. I., Bray, V. J., and Bailey, S. H.: Geophysical constraints on the properties of a subglacial lake in northwest Greenland, The Cryosphere, 15, 3279–3291, https://doi.org/10.5194/tc-15-3279-2021, 2021.
Malczyk, G., Gourmelen, N., Goldberg, D., Wuite, J., and Nagler, T.: Repeat
subglacial lake drainage and filling beneath Thwaites Glacier, Geophys. Res.
Lett., 47, e2020GL089658, https://doi.org/10.1029/2020GL089658, 2020.
Mouginot, J. and Rignot, E.: Glacier catchments/basins for the Greenland Ice
Sheet, UC Irvine Dash [data set], https://doi.org/10.7280/D1WT11, 2019.
Neumann, T. A., Martino, A. J., Markus, T., Bae, S., Bock, M. R., Brenner, A. C., Brunt, K. M., Cavanaugh, J., Fernandes, S. T., and Hancock, D. W.: The Ice, Cloud, and Land Elevation Satellite-2 Mission: A global geolocated photon product derived from the advanced topographic laser altimeter system, Remote Sens. Environ., 233, 111325, https://doi.org/10.1016/j.rse.2019.111325, 2019.
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., Lhermitte, S., Kuipers Munneke, P., Smeets, C. J. P. P., van Ulft, L. H., van de Wal, R. S. W., and van den Broeke, M. R.: Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016), The Cryosphere, 12, 811–831, https://doi.org/10.5194/tc-12-811-2018, 2018.
Noh, M. J. and Howat, I. M.: Automated stereo-photogrammetric DEM generation
at high latitudes: Surface extraction with TIN-based search-space
minimization (SETSM) validation and demonstration over glaciated regions,
GISci Remote Sens., 52, 198–217,
https://doi.org/10.1080/15481603.2015.1008621, 2015.
Palmer, S., Mcmillan, M., and Morlighem, M.: Subglacial lake drainage
detected beneath the Greenland ice sheet, Nat. Commun., 6, 8408,
https://doi.org/10.1038/ncomms9408, 2015.
Palmer, S. J., Dowdeswell, J. A., Christoffersen, P., Young, D. A.,
Blankenship, D. D., Greenbaum, J. S., Benham, T., Bamber, J., and Siegert,
M. J.: Greenland subglacial lakes detected by radar, Geophys. Res. Lett.,
40, 6154–6159, https://doi.org/10.1002/2013GL058383, 2013.
Porter, C., Morin, P., Howat, I., Noh, M. J., Bates, B., Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier, M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, M. J., Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P., Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.: ArcticDEM, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018.
Sandberg Sørensen, L., Bahbah, R., Simonsen, S. B., Havelund Andersen, N., Bowling, J., Gourmelen, N., Horton, A., Karlsson, N. B., Leeson, A., Maddalena, J., McMillan, M., Solgaard, A. M., and Wessel, B.: Improved Monitoring of Subglacial Lake Activity in Greenland, The Cryosphere Discuss. [preprint], https://doi.org/10.5194/tc-2022-263, in review, 2023.
Selmes, N., Murray, T., and James, T. D.: Fast draining lakes on the
Greenland Ice Sheet, Geophys. Res. Lett., 38, L15501,
https://doi.org/10.1029/2011gl047872, 2011.
Sergienko, O. V.: Glaciological twins: basally controlled subglacial and
supraglacial lakes, J. Glaciol., 59, 213,
https://doi.org/10.3189/2013JoG12J040, 2013.
Siegert, M. J., Ross, N., Corr, H., Smith, B., Jordan, T., Bingham, R. G., Ferraccioli, F., Rippin, D. M., and Le Brocq, A.: Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet, The Cryosphere, 8, 15–24, https://doi.org/10.5194/tc-8-15-2014, 2014.
Siegfried, M. R. and Fricker, H. A.: Thirteen years of subglacial lake
activity in Antarctica from multi-mission satellite altimetry, Ann.
Glaciol., 59, 42–55, https://doi.org/10.1017/aog.2017.36, 2018.
Siegfried, M. R. and Fricker, H. A.: Illuminating active subglacial lake
processes with ICESat-2 laser altimetry, Geophys. Res. Lett., 48,
e2020GL091089, https://doi.org/10.1029/2020GL091089, 2021.
Smith, B., Fricker, H., Joughin, I., and Tulaczyk, S.: An inventory of
active subglacial lakes in Antarctica detected by ICESat (2003–2008), J.
Glaciol., 55, 573–595, https://doi.org/10.3189/002214309789470879,
2009.
Smith, B., Dickinson, S., Jelley, B. P., Neumann, T. A., Hancock, D., Lee, J., and Harbeck, K.: ATLAS/ICESat-2 L3B Annual Land Ice Height, Version 3, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/ATLAS/ATL11.003, 2021.
Smith, B. E., Gourmelen, N., Huth, A., and Joughin, I.: Connected subglacial lake drainage beneath Thwaites Glacier, West Antarctica, The Cryosphere, 11, 451–467, https://doi.org/10.5194/tc-11-451-2017, 2017.
Studinger, M., Bell, R. E., and Tikku, A. A.: Estimating the depth and shape
of subglacial Lake Vostok's water cavity from aerogravity data, Geophys.
Res. Lett., 31, L12401, https://doi.org/10.1029/2004GL019801, 2004.
Vick-Majors, T. J., Michaud, A. B., Skidmore, M. L., Turetta, C., Barbante,
C., Christner, B. C., Dore, J. E., Christianson, K., Mitchell, A. C.,
Achberger, A. M., Mikucki, J. A., and Pris, J. C.: Biogeochemical
connectivity between freshwater ecosystems beneath the West Antarctic ice
sheet and the sub-ice marine environment, Global Biogeochem. Cy., 34,
e2019GB006446, https://doi.org/10.1029/2019GB006446, 2020.
Willis, M. J., Herried, B. G., Bevis, M. G., and Bell, R. E.: Recharge of a
subglacial lake by surface meltwater in northeast Greenland, Nature,
518, 223-U165, https://doi.org/10.1038/nature14116, 2015.
Wright, A. P. and Siegert, M.: A fourth inventory of Antarctic subglacial
lakes, Antarct. Sci., 24, 659–664,
https://doi.org/10.1017/S095410201200048X, 2012.
Yan, S., Blankenship, D. D., Greenbaum, J. S., Young, D. A., Li, L.,
Rutishauser, A., Guo, J., Roberts, J. L., van Ommen, T. D., Siegert, M. J., and
Sun, B.: A newly discovered subglacial lake in East Antarctica likely hosts
a valuable sedimentary record of ice and climate change, Geology, 50,
949–953, https://doi.org/10.1130/G50009.1, 2022.
Short summary
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in unprecedented spatiotemporal detail. We created a new inventory of 18 active subglacial lakes as well as their elevation and volume changes during 2019–2020, which provides an improved understanding of how the Greenland subglacial water system operates and how these lakes are fed by water from the ice surface.
We used the new-generation ICESat-2 altimeter to detect and monitor active subglacial lakes in...