Articles | Volume 17, issue 1
https://doi.org/10.5194/tc-17-15-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-17-15-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated ArcticDEM iceberg detection tool: insights into area and volume distributions, and their potential application to satellite imagery and modelling of glacier–iceberg–ocean systems
Connor J. Shiggins
CORRESPONDING AUTHOR
Department of Geography and Planning, School of Environmental
Sciences, University of Liverpool, Liverpool, L69 7ZT, United Kingdom
James M. Lea
Department of Geography and Planning, School of Environmental
Sciences, University of Liverpool, Liverpool, L69 7ZT, United Kingdom
Stephen Brough
Department of Geography and Planning, School of Environmental
Sciences, University of Liverpool, Liverpool, L69 7ZT, United Kingdom
Related authors
No articles found.
An Li, Michelle Koutnik, Stephen Brough, Matteo Spagnolo, and Iestyn Barr
EGUsphere, https://doi.org/10.5194/egusphere-2023-2568, https://doi.org/10.5194/egusphere-2023-2568, 2024
Short summary
Short summary
On Earth, glacial cirques are a type of landform eroded by wet-based glaciers, which are glaciers with liquid water at the base of a glacier. While select alcoves have been interpreted as glacial cirques on Mars, we map and assess a large-scale population of ~2000 alcoves as potential cirques in the northern mid-latitudes of Mars. From physical measurements and characteristics, we find 386 cirque-like alcoves. This extends our knowledge of the extent and type of glaciation in the region.
Prateek Gantayat, Alison F. Banwell, Amber A. Leeson, James M. Lea, Dorthe Petersen, Noel Gourmelen, and Xavier Fettweis
Geosci. Model Dev., 16, 5803–5823, https://doi.org/10.5194/gmd-16-5803-2023, https://doi.org/10.5194/gmd-16-5803-2023, 2023
Short summary
Short summary
We developed a new supraglacial hydrology model for the Greenland Ice Sheet. This model simulates surface meltwater routing, meltwater drainage, supraglacial lake (SGL) overflow, and formation of lake ice. The model was able to reproduce 80 % of observed lake locations and provides a good match between the observed and modelled temporal evolution of SGLs.
Timo Schmid, Valentina Radić, Andrew Tedstone, James M. Lea, Stephen Brough, and Mauro Hermann
The Cryosphere, 17, 3933–3954, https://doi.org/10.5194/tc-17-3933-2023, https://doi.org/10.5194/tc-17-3933-2023, 2023
Short summary
Short summary
The Greenland Ice Sheet contributes strongly to sea level rise in the warming climate. One process that can affect the ice sheet's mass balance is short-term ice speed-up events. These can be caused by high melting or rainfall as the water flows underneath the glacier and allows for faster sliding. In this study we found three main weather patterns that cause such ice speed-up events on the Russell Glacier in southwest Greenland and analyzed how they induce local melting and ice accelerations.
Sophie Goliber, Taryn Black, Ginny Catania, James M. Lea, Helene Olsen, Daniel Cheng, Suzanne Bevan, Anders Bjørk, Charlie Bunce, Stephen Brough, J. Rachel Carr, Tom Cowton, Alex Gardner, Dominik Fahrner, Emily Hill, Ian Joughin, Niels J. Korsgaard, Adrian Luckman, Twila Moon, Tavi Murray, Andrew Sole, Michael Wood, and Enze Zhang
The Cryosphere, 16, 3215–3233, https://doi.org/10.5194/tc-16-3215-2022, https://doi.org/10.5194/tc-16-3215-2022, 2022
Short summary
Short summary
Terminus traces have been used to understand how Greenland's glaciers have changed over time; however, manual digitization is time-intensive, and a lack of coordination leads to duplication of efforts. We have compiled a dataset of over 39 000 terminus traces for 278 glaciers for scientific and machine learning applications. We also provide an overview of an updated version of the Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for the Greenland Ice Sheet.
David W. Ashmore, Douglas W. F. Mair, Jonathan E. Higham, Stephen Brough, James M. Lea, and Isabel J. Nias
The Cryosphere, 16, 219–236, https://doi.org/10.5194/tc-16-219-2022, https://doi.org/10.5194/tc-16-219-2022, 2022
Short summary
Short summary
In this paper we explore the use of a transferrable and flexible statistical technique to try and untangle the multiple influences on marine-terminating glacier dynamics, as measured from space. We decompose a satellite-derived ice velocity record into ranked sets of static maps and temporal coefficients. We present evidence that the approach can identify velocity variability mainly driven by changes in terminus position and velocity variation mainly driven by subglacial hydrological processes.
Rachel K. Smedley, David Small, Richard S. Jones, Stephen Brough, Jennifer Bradley, and Geraint T. H. Jenkins
Geochronology, 3, 525–543, https://doi.org/10.5194/gchron-3-525-2021, https://doi.org/10.5194/gchron-3-525-2021, 2021
Short summary
Short summary
We apply new rock luminescence techniques to a well-constrained scenario of the Beinn Alligin rock avalanche, NW Scotland. We measure accurate erosion rates consistent with independently derived rates and reveal a transient state of erosion over the last ~4000 years in the wet, temperate climate of NW Scotland. This study shows that the new luminescence erosion-meter has huge potential for inferring erosion rates on sub-millennial scales, which is currently impossible with existing techniques.
William D. Smith, Stuart A. Dunning, Stephen Brough, Neil Ross, and Jon Telling
Earth Surf. Dynam., 8, 1053–1065, https://doi.org/10.5194/esurf-8-1053-2020, https://doi.org/10.5194/esurf-8-1053-2020, 2020
Short summary
Short summary
Glacial landslides are difficult to detect and likely underestimated due to rapid covering or dispersal. Without improved detection rates we cannot constrain their impact on glacial dynamics or their potential climatically driven increases in occurrence. Here we present a new open-access tool (GERALDINE) that helps a user detect 92 % of these events over the past 38 years on a global scale. We demonstrate its ability by identifying two new, large glacial landslides in the Hayes Range, Alaska.
Cited articles
Alstott, J., Bullmore, E., and Plenz, D.: powerlaw: a Python package for
analysis of heavy-tailed distributions, PloS one, 9, e85777,
https://doi.org/10.1371/journal.pone.0095816, 2014.
Amundson, J. M., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M. P., and
Motyka, R. J.: Ice mélange dynamics and implications for terminus
stability, Jakobshavn Isbræ, Greenland, J. Geophys. Res.-Earth,
115, F01005,
https://doi.org/10.1029/2009JF001405, 2010.
Åström, J., Cook, S., Enderlin, E. M., Sutherland, D. A., Mazur, A.,
and Glasser, N.: Fragmentation theory reveals processes controlling iceberg
size distributions, J. Glaciol., 67, 1–10,
https://doi.org/10.1017/jog.2021.14, 2021.
Bartholomaus, T. C., Stearns, L. A., Sutherland, D. A., Shroyer, E. L., Nash,
J. D., Walker, R. T., Catania, G., Felikson, D., Carroll, D., Fried, M. J., and
Noël, B. P.: Contrasts in the response of adjacent fjords and glaciers to
ice-sheet surface melt in West Greenland, Ann. Glaciol., 57, 25–38,
https://doi.org/10.1017/aog.2016.19, 2016.
Bigg, G. R.: Icebergs: their science and links to global change, Cambridge
University Press, https://doi.org/10.1017/CBO978110758927, 2015.
Bigg, G. R., Wei, H. L., Wilton, D. J., Zhao, Y., Billings, S. A., Hanna, E., and
Kadirkamanathan, V.: A century of variation in the dependence of Greenland
iceberg calving on ice sheet surface mass balance and regional climate
change, Proc. R. Soc. A, 470, 20130662,
https://doi.org/10.1098/rspa.2013.0662, 2014.
Bunce, C., Nienow, P., Sole, A., Cowton, T., and Davison, B.: Influence of
glacier runoff and near-terminus subglacial hydrology on frontal ablation at
a large Greenlandic tidewater glacier, J. Glaciol., 67, 343–352,
https://doi.org/10.1017/jog.2020.109, 2021.
Carroll, D., Sutherland, D. A., Hudson, B., Moon, T., Catania, G. A., Shroyer,
E. L., Nash, J. D., Bartholomaus, T. C., Felikson, D., Stearns, L. A., and Noel,
B. P.: The impact of glacier geometry on meltwater plume structure and
submarine melt in Greenland fjords, Geophys. Res. Lett, 43, 9739–9748,
https://doi.org/10.1002/2016GL070170, 2016.
Cassotto, R. K., Burton, J. C., Amundson, J. M., Fahnestock, M. A., and Truffer,
M.: Granular decoherence precedes ice mélange failure and glacier
calving at Jakobshavn Isbræ, Nat. Geosci., 14, 417–422,
https://doi.org/10.1038/s41561-021-00754-9, 2021.
Choi, Y., Morlighem, M., Rignot, E., and Wood, M.: Ice dynamics will remain a
primary driver of Greenland ice sheet mass loss over the next century,
Commun. Earth Environ., 2, 1–9, https://doi.org/10.1038/s43247-021-00092-z,
2021.
Cook, S. J., Christoffersen, P., Truffer, M., Chudley, T. R., and Abellan, A.:
Calving of a large Greenlandic tidewater glacier has complex links to
meltwater plumes and mélange, Geophys. Res.-Earth, 126, e2020JF006051,
https://doi.org/10.1029/2020JF006051, 2021.
Crawford, A., Crocker, G., Mueller, D., Desjardins, L., Saper, R., and
Carrieres, T.: The Canadian ice island drift, deterioration and detection
(CI2D3) database, J. Glaciol., 64, 517–521,
https://doi.org/10.1017/jog.2018.36, 2018.
Davison, B. J., Cowton, T. R., Cottier, F. R., and Sole, A. J.: Iceberg melting
substantially modifies oceanic heat flux towards a major Greenlandic
tidewater glacier, Nat. Commun., 11, 1–13,
https://doi.org/10.1038/s41467-020-19805-7, 2020a.
Davison, B. J., Sole, A. J., Cowton, T. R., Lea, J. M., Slater, D. A., Fahrner,
D., and Nienow, P. W.: Subglacial drainage evolution modulates seasonal ice
flow variability of three tidewater glaciers in southwest Greenland, J.
Geophys. Res.-Earth, 125, e2019JF005492,
https://doi.org/10.1029/2019JF005492, 2020b.
Eik, K. and Gudmestad, O. T.: Iceberg management and impact on design of
offshore structures, Cold Reg. Sci. Technol., 63, 15–28,
https://doi.org/10.1016/j.coldregions.2010.04.008, 2010.
Enderlin, E. M., Hamilton, G. S., Straneo, F., and Sutherland, D. A.: Iceberg
meltwater fluxes dominate the freshwater budget in Greenland's
iceberg-congested glacial fjords, Geophys. Res. Lett., 43, 11–287,
https://doi.org/10.1002/2016GL070718, 2016.
England, M. R., Wagner, T. J. W., and Eisenman, I.: Modeling the breakup of
tabular icebergs, Sci. Adv., 6, eabd1273,
https://doi.org/10.1126/sciadv.abd1273, 2020.
Fahrner, D., Lea, J. M., Brough, S., Mair, D. W., and Abermann, J.: Linear
response of the Greenland ice sheet's tidewater glacier terminus positions
to climate, J. Glaciol., 67, 193–203, https://doi.org/10.1017/jog.2021.13,
2021.
Fried, M. J., Catania, G. A., Stearns, L. A., Sutherland, D. A., Bartholomaus,
T. C., Shroyer, E., and Nash, J.: Reconciling drivers of seasonal terminus
advance and retreat at 13 Central West Greenland tidewater glaciers, J.
Geophys. Res.-Earth, 123, 1590–1607,
https://doi.org/10.1029/2018JF004628, 2018.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031,
2017.
Khazendar, A., Fenty, I. G., Carroll, D., Gardner, A., Lee, C. M., Fukumori,
I., Wang, O., Zhang, H., Seroussi, H., Moller, D., and Noël, B. P:.
Interruption of two decades of Jakobshavn Isbrae acceleration and thinning
as regional ocean cools, Nat. Geosci., 12, 277–283,
https://doi.org/10.1038/s41561-019-0329-3, 2019.
Kirkham, J. D., Rosser, N. J., Wainwright, J., Jones, E. C. V., Dunning, S. A.,
Lane, V. S., Hawthorn, D. E., Strzelecki, M. C., and Szczuciński, W.:
Drift-dependent changes in iceberg size-frequency distributions, Sci. Rep., 7,
1–10, https://doi.org/10.1038/s41598-017-14863-2, 2017.
Laidre, K. L. and Stirling, I.: Grounded icebergs as maternity denning
habitat for polar bears (Ursus maritimus) in North and Northeast Greenland,
Polar Biol., 43, 937–943, https://doi.org/10.1007/s00300-020-02695-2, 2020.
Lea, J. M., Mair, D. W., Nick, F. M., Rea, B. R., Weidick, A., Kjaer, K. H.,
Morlighem, M., Van As, D., and Schofield, J. E.: Terminus-driven retreat of a
major southwest Greenland tidewater glacier during the early 19th century:
insights from glacier reconstructions and numerical modelling, J. Glaciol.,
60, 333–344, https://doi.org/10.3189/2014JoG13J163, 2014a.
Lea, J. M., Mair, D. W. F., Nick, F. M., Rea, B. R., van As, D., Morlighem, M., Nienow, P. W., and Weidick, A.: Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing: observations and modelling of Kangiata Nunaata Sermia, 1859–present, The Cryosphere, 8, 2031–2045, https://doi.org/10.5194/tc-8-2031-2014, 2014b.
Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Khan, S. A., and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through March 2020, Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020, 2020.
Moon, T., Sutherland, D. A., Carroll, D., Felikson, D., Kehrl, L., and
Straneo, F.: Subsurface iceberg melt key to Greenland fjord freshwater
budget, Nat. Geosci., 11, 49–54, https://doi.org/10.1038/s41561-017-0018-z,
2018.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty, I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M., Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B., O'Cofaigh, C., Palmer, S. J., Rysgaard,
S., Seroussi, H., Siegert, M. J., Slabon, P., Straneo, F., van den Broeke, M. R.,
Weinrebe, W., Wood, M., and Zinglersen, K.: BedMachine v3: Complete bed
topography and ocean bathymetry mapping of Greenland from multi-beam echo
sounding combined with mass conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Mouginot, J., Rignot, E., Bjørk, A. A., Van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci. USA, 116, 9239–9244,
https://doi.org/10.1073/pnas.1904242116, 2019.
Moyer, A. N., Sutherland, D. A., Nienow, P. W., and Sole, A. J.: Seasonal
variations in iceberg freshwater flux in Sermilik Fjord, southeast Greenland
from Sentinel-2 imagery, Geophys. Res. Lett., 46, 8903–8912,
https://doi.org/10.1029/2019GL082309, 2019.
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B.,
Peterman, K., Keesey, S., Schlenk, M., Gardiner, J., Tomko,
K., Willis, M., Kelleher, C., Cloutier, M., Husby, E.,
Foga, S., Nakamura, H., Platson, M., Wethington Jr., M.,
Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer,
W., Becker, P., Doshi, A., D'Souza, C., Cummens, P.,
Laurier, F., and Bojesen, M.: ArcticDEM, Version 3, Harvard Dataverse V1 [data set], https://doi.org/10.7910/DVN/OHHUKH,
2018.
Rezvanbehbahani, S., Stearns, L. A., Keramati, R., Shankar, S., and van der
Veen, C. J.: Significant contribution of small icebergs to the freshwater
budget in Greenland fjords, Commun. Earth Environ, 1, 1–7,
https://doi.org/10.1038/s43247-020-00032-3, 2020.
Scheick, J., Enderlin, E. M., and Hamilton, G.: Semi-automated open water
iceberg detection from Landsat applied to Disko Bay, West Greenland, J.
Glaciol., 65, 468–480, https://doi.org/10.1017/jog.2019.23, 2019.
Schild, K. M., Sutherland, D. A., Elosegui, P., and Duncan, D.: Measurements of
iceberg melt rates using high-resolution GPS and iceberg surface scans,
Geophys. Res. Lett., 48, e2020GL089765,
https://doi.org/10.1029/2020GL089765, 2021.
Shiggins, C.: ConnorShiggins/Google-Earth-Engine-and-icebergs: V2_icebergs (V2_icebergs), Zenodo [code], https://doi.org/10.5281/zenodo.7500735, 2023.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman, K.:
Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change, 10,
939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Soldal, I. H., Dierking, W., Korosov, A., and Marino, A.: Automatic detection
of small icebergs in fast ice using satellite wide-swath SAR images, Remote
Sens., 11, 806,
https://doi.org/10.3390/rs11070806, 2019.
Sulak, D. J., Sutherland, D. A., Enderlin, E. M., Stearns, L. A., and Hamilton,
G. S.: Iceberg properties and distributions in three Greenlandic fjords using
satellite imagery, Ann. Glaciol., 58, 92–106,
https://doi.org/10.1017/aog.2017.5, 2017.
Tournadre, J., Bouhier, N., Girard-Ardhuin, F., and Rémy, F.: Antarctic
icebergs distributions 1992–2014, J. Geophys. Res.-Oceans, 121, 327–349,
https://doi.org/10.1002/2015JC011178, 2016.
Walter, F., Amundson, J. M., O'Neel, S., Truffer, M., Fahnestock, M., and
Fricker, H. A.: Analysis of low-frequency seismic signals generated during a
multiple-iceberg calving event at Jakobshavn Isbræ, Greenland, J.
Geophys. Res.-Earth, 117, F01036,
https://doi.org/10.1029/2011JF002132, 2012.
Short summary
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study presents a new, accessible workflow to automatically detect icebergs from timestamped ArcticDEM strip data. The workflow successfully produces comparable output to manual digitisation, with results revealing new iceberg area-to-volume conversion equations that can be widely applied to datasets where only iceberg outlines can be extracted (e.g. optical and SAR imagery).
Iceberg detection is spatially and temporally limited around the Greenland Ice Sheet. This study...