Articles | Volume 16, issue 11
https://doi.org/10.5194/tc-16-4617-2022
https://doi.org/10.5194/tc-16-4617-2022
Research article
 | 
03 Nov 2022
Research article |  | 03 Nov 2022

Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment

John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson

Related authors

Benchmark seasonal prediction skill estimates based on regional indices
John E. Walsh, J. Scott Stewart, and Florence Fetterer
The Cryosphere, 13, 1073–1088, https://doi.org/10.5194/tc-13-1073-2019,https://doi.org/10.5194/tc-13-1073-2019, 2019
Short summary
Impacts of a lengthening open water season on Alaskan coastal communities: deriving locally relevant indices from large-scale datasets and community observations
Rebecca J. Rolph, Andrew R. Mahoney, John Walsh, and Philip A. Loring
The Cryosphere, 12, 1779–1790, https://doi.org/10.5194/tc-12-1779-2018,https://doi.org/10.5194/tc-12-1779-2018, 2018
Short summary
Past, present and future biomes in Beringia: Comparison between simulations and pollen analysis
Kazuyuki Saito, Amy Hendricks, John Walsh, and Nancy Bigelow
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-29,https://doi.org/10.5194/cp-2018-29, 2018
Preprint withdrawn
Short summary
Northern Hemisphere storminess in the Norwegian Earth System Model (NorESM1-M)
Erlend M. Knudsen and John E. Walsh
Geosci. Model Dev., 9, 2335–2355, https://doi.org/10.5194/gmd-9-2335-2016,https://doi.org/10.5194/gmd-9-2335-2016, 2016
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Rapid sea ice changes in the future Barents Sea
Ole Rieke, Marius Årthun, and Jakob Simon Dörr
The Cryosphere, 17, 1445–1456, https://doi.org/10.5194/tc-17-1445-2023,https://doi.org/10.5194/tc-17-1445-2023, 2023
Short summary
Causes and evolution of winter polynyas north of Greenland
Younjoo J. Lee, Wieslaw Maslowski, John J. Cassano, Jaclyn Clement Kinney, Anthony P. Craig, Samy Kamal, Robert Osinski, Mark W. Seefeldt, Julienne Stroeve, and Hailong Wang
The Cryosphere, 17, 233–253, https://doi.org/10.5194/tc-17-233-2023,https://doi.org/10.5194/tc-17-233-2023, 2023
Short summary
Winter Arctic sea ice thickness from ICESat-2: upgrades to freeboard and snow loading estimates and an assessment of the first three winters of data collection
Alek A. Petty, Nicole Keeney, Alex Cabaj, Paul Kushner, and Marco Bagnardi
The Cryosphere, 17, 127–156, https://doi.org/10.5194/tc-17-127-2023,https://doi.org/10.5194/tc-17-127-2023, 2023
Short summary
Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248, https://doi.org/10.5194/tc-16-3235-2022,https://doi.org/10.5194/tc-16-3235-2022, 2022
Short summary
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844, https://doi.org/10.5194/tc-16-1821-2022,https://doi.org/10.5194/tc-16-1821-2022, 2022
Short summary

Cited articles

AMAP: Snow, water, ice and permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, xiv + 269 pp., https://www.amap.no/documents/download/2987/inline (last access: 21 October 2022), 2017. 
AMAP: Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. xvi + 354 pp., https://oaarchive.arctic-council.org/handle/11374/2166, (last access: 18 October 2022), 2018. 
Bliss, A. C. and Anderson, M. R.: Arctic sea ice melt onset and timing from passive microwave- and surface air temperature-based methods, J. Geophys. Res., 123, 9063–9080, https://doi.org/10.1029/2018JD028676, 2018. 
Bliss, A. C., Steele, M., Peng, G., Meier, W. M., and Dickinson, S.: Regional variability of Arctic sea ice seasonal climate change indicators from a passive microwave climate data record, Environ. Res. Lett., 14, 045003, https://doi.org/10.1088/1748-9326/aafb84, 2019. 
Download
Short summary
Indicators for the start and end of annual breakup and freeze-up of sea ice at various coastal locations around the Arctic are developed. Relative to broader offshore areas, some of the coastal indicators show an earlier freeze-up and later breakup, especially at locations where landfast ice is prominent. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in synthesized metrics of the coastal breakup/freeze-up indicators.