Articles | Volume 16, issue 6
https://doi.org/10.5194/tc-16-2595-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-2595-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Towards accurate quantification of ice content in permafrost of the Central Andes – Part 2: An upscaling strategy of geophysical measurements to the catchment scale at two study sites
Tamara Mathys
CORRESPONDING AUTHOR
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Christin Hilbich
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Lukas U. Arenson
BGC Engineering Inc., Vancouver, BC, Canada
Pablo A. Wainstein
BGC Engineering Inc., Calgary, AB, Canada
Christian Hauck
Department of Geosciences, University of Fribourg, Fribourg, Switzerland
Related authors
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
The Cryosphere, 18, 5939–5963, https://doi.org/10.5194/tc-18-5939-2024, https://doi.org/10.5194/tc-18-5939-2024, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multi-disciplinary approach to better understand the influence of the internal structure of the Gruben glacier-forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Alexandru Onaca, Flavius Sîrbu, Valentin Poncoş, Christin Hilbich, Tazio Strozzi, Petru Urdea, Răzvan Popescu, Oana Berzescu, Bernd Etzelmüller, Alfred Vespremeanu-Stroe, Mirela Vasile, Delia Teleagă, Dan Birtaş, Iosif Lopătiţă, Simon Filhol, Alexandru Hegyi, and Florina Ardelean
Earth Surf. Dynam., 13, 981–1001, https://doi.org/10.5194/esurf-13-981-2025, https://doi.org/10.5194/esurf-13-981-2025, 2025
Short summary
Short summary
This study establishes a methodology for the study of slow-moving rock glaciers in marginal permafrost and provides the basic knowledge for understanding rock glaciers in South East Europe. By using a combination of different methods (remote sensing, geophysical survey, thermal measurements), we found out that, on the transitional rock glaciers, low ground ice content (i.e. below 20 %) produces horizontal displacements of up to 3 cm per year.
Mehriban Aliyeva, Michael Angelopoulos, Julia Boike, Moritz Langer, Frederieke Miesner, Scott Dallimore, Dustin Whalen, Lukas U. Arenson, and Pier Paul Overduin
EGUsphere, https://doi.org/10.5194/egusphere-2025-2675, https://doi.org/10.5194/egusphere-2025-2675, 2025
Short summary
Short summary
In this study, we investigate the ongoing transformation of terrestrial permafrost into subsea permafrost on a rapidly eroding Arctic island using electrical resistivity tomography and numerical modelling. We draw on 60 years of shoreline data to support our findings. This work is important for understanding permafrost loss in Arctic coastal areas and for guiding future efforts to protect vulnerable shorelines.
Cassandra E. M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
The Cryosphere, 19, 2653–2676, https://doi.org/10.5194/tc-19-2653-2025, https://doi.org/10.5194/tc-19-2653-2025, 2025
Short summary
Short summary
This study presents the first regional compilation of borehole temperature data from high-altitude permafrost sites in the Andes, providing a baseline of ground thermal conditions. Data from 53 boreholes show thermal characteristics similar to other mountain permafrost areas, but uniquely shaped by Andean topo-climatic conditions. The study emphasizes the need for ongoing monitoring and is a notable collaboration between industry, academia, and regulators in advancing climate change research.
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
The Cryosphere, 19, 143–171, https://doi.org/10.5194/tc-19-143-2025, https://doi.org/10.5194/tc-19-143-2025, 2025
Short summary
Short summary
We use electrical conductivity and induced polarization in an imaging framework to quantify hydrogeological parameters in the active Gran Sometta rock glacier. The results show high spatial variability in the hydrogeological parameters across the rock glacier and are validated by saltwater tracer tests coupled with 3D electrical conductivity imaging. Hydrogeological information was linked to kinematic data to further investigate its role in rock glacier movement.
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
The Cryosphere, 18, 5939–5963, https://doi.org/10.5194/tc-18-5939-2024, https://doi.org/10.5194/tc-18-5939-2024, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multi-disciplinary approach to better understand the influence of the internal structure of the Gruben glacier-forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Léo C. P. Martin, Sebastian Westermann, Michele Magni, Fanny Brun, Joel Fiddes, Yanbin Lei, Philip Kraaijenbrink, Tamara Mathys, Moritz Langer, Simon Allen, and Walter W. Immerzeel
Hydrol. Earth Syst. Sci., 27, 4409–4436, https://doi.org/10.5194/hess-27-4409-2023, https://doi.org/10.5194/hess-27-4409-2023, 2023
Short summary
Short summary
Across the Tibetan Plateau, many large lakes have been changing level during the last decades as a response to climate change. In high-mountain environments, water fluxes from the land to the lakes are linked to the ground temperature of the land and to the energy fluxes between the ground and the atmosphere, which are modified by climate change. With a numerical model, we test how these water and energy fluxes have changed over the last decades and how they influence the lake level variations.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Karianne S. Lilleøren, Bernd Etzelmüller, Line Rouyet, Trond Eiken, Gaute Slinde, and Christin Hilbich
Earth Surf. Dynam., 10, 975–996, https://doi.org/10.5194/esurf-10-975-2022, https://doi.org/10.5194/esurf-10-975-2022, 2022
Short summary
Short summary
In northern Norway we have observed several rock glaciers at sea level. Rock glaciers are landforms that only form under the influence of permafrost, which is frozen ground. Our investigations show that the rock glaciers are probably not active under the current climate but most likely were active in the recent past. This shows how the Arctic now changes due to climate changes and also how similar areas in currently colder climates will change in the future.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022, https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Short summary
In view of water scarcity in the Andes, the significance of permafrost as a future water resource is often debated focusing on satellite-detected features such as rock glaciers. We present data from > 50 geophysical surveys in Chile and Argentina to quantify the ground ice volume stored in various permafrost landforms, showing that not only rock glacier but also non-rock-glacier permafrost contains significant ground ice volumes and is relevant when assessing the hydrological role of permafrost.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Cited articles
Baldis, C. T. and Liaudat, D. T.: Permafrost model in coarse-blocky deposits
for the Dry Andes, Argentina (28∘–33∘ S), Geogr.
Res. Lett., 46, 33–58, https://doi.org/10.18172/cig.3802, 2020. a
Bodin, X., Rojas, F., and Brenning, A.: Status and evolution of the cryosphere
in the Andes of Santiago (Chile, 33.5∘ S), Geomorphology, 118,
453–464, https://doi.org/10.1016/j.geomorph.2010.02.016, 2010. a, b, c
Buchli, T., Kos, A., Limpach, P., Merz, K., Zhou, X., and Springman, S. M.:
Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland,
Permafrost Periglac. Process., 29, 3–20, https://doi.org/10.1002/ppp.1968,
2018. a
Bucki, A. K., Echelmeyer, K. A., and MacInnes, S.: The thickness and internal
structure of Fireweed rock glacier, Alaska, U.S.A., as determined by
geophysical methods, J. Glaciol., 50, 67–75,
https://doi.org/10.3189/172756504781830196, 2004. a
Croce, F. A. and Milana, J. P.: Internal structure and behaviour of a rock
glacier in the Arid Andes of Argentina, Permafrost Periglac. Process., 13, 289–299, https://doi.org/10.1002/ppp.431, 2002. a, b
Dafflon, B., Oktem, R., Peterson, J., Ulrich, C., Tran, A. P., Romanovsky, V.,
and Hubbard, S. S.: Coincident aboveground and belowground autonomous
monitoring to quantify covariability in permafrost, soil, and vegetation
properties in Arctic tundra, J. Geophys. Res.-Biogeo., 122, 1321–1342, https://doi.org/10.1002/2016JG003724, 2017. a, b
de Pasquale, G., Valois, R., Schaffer, N., and MacDonell, S.: Contrasting geophysical signatures of a relict and an intact Andean rock glacier, The Cryosphere, 16, 1579–1596, https://doi.org/10.5194/tc-16-1579-2022, 2022. a
Duguay, M., Edmunds, A., Arenson, L. U., and Wainstein, P.: Quantifying the
significance of the hydrological contribution of a rock glacier – A
review, GEOQuébec 2015, 68th Canadian Geotechnical Conferene, 7th
Canadian Permafrost Conference,
https://www.researchgate.net/publication/282402787_Quantifying_the_significance_of_the_hydrological_contribution_of_a_rock_glacier_-_A_review (last access: 1 May 2022),
2015. a, b, c
Esper Angillieri, M. Y.: A preliminary inventory of rock glaciers at
30∘ S latitude, Cordillera Frontal of San Juan, Argentina,
Quaternary Int., 195, 151–157, https://doi.org/10.1016/j.quaint.2008.06.001,
2009. a
Esper Angillieri, M. Y.: Permafrost distribution map of San Juan Dry Andes
(Argentina) based on rock glacier sites, J. S. Am. Earth
Sci., 73, 42–49, https://doi.org/10.1016/j.jsames.2016.12.002, 2017. a, b
García, A., Ulloa, C., Amigo, G., Milana, J. P., and Medina, C.: An
inventory of cryospheric landforms in the arid diagonal of South America
(high Central Andes, Atacama region, Chile), Quaternary Int., 438,
4–19, https://doi.org/10.1016/j.quaint.2017.04.033, 2017. a, b, c
Gruber, S.: Derivation and analysis of a high-resolution estimate of global permafrost zonation, The Cryosphere, 6, 221–233, https://doi.org/10.5194/tc-6-221-2012, 2012. a, b, c
Gruber, S. and Hoelzle, M.: Statistical modelling of mountain permafrost
distribution: Local calibration and incorporation of remotely sensed data,
Permafrost Periglac. Process., 12, 69–77, https://doi.org/10.1002/ppp.374,
2001. a
Gubler, S., Endrizzi, S., Gruber, S., and Purves, R. S.: Sensitivities and uncertainties of modeled ground temperatures in mountain environments, Geosci. Model Dev., 6, 1319–1336, https://doi.org/10.5194/gmd-6-1319-2013, 2013. a
Gude, M., Dietrich, S., Mäusbacher, R., Hauck, C., Molenda, R., Ruzicka,
V., and Zacharda, M.: Permafrost conditions in non-alpine scree slopes in
central Europe, in: Permafrost, edited by: Phillips, M., Springman, S. M., and Arenson, L. U., Swets & Zeitlinger,
331–336, 2003. a
Halla, C., Blöthe, J. H., Tapia Baldis, C., Trombotto Liaudat, D., Hilbich, C., Hauck, C., and Schrott, L.: Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina, The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, 2021. a, b, c, d, e, f
Hauck, C. and Kneisel, C.: Applied geophysics in periglacial environments,
Cambridge University Press, https://doi.org/10.1017/CBO9780511535628,
2008a. a
Hauck, C. and Kneisel, C.: Quantifying the ice content in low-altitude scree
slopes using geophysical methods, in:
Applied Geophysics in Periglacial Environments, edited by: Hauck, C. and Kneisel, C., Cambridge
University Press, 153–164, 2008b. a
Hauck, C., Böttcher, M., and Maurer, H.: A new model for estimating subsurface ice content based on combined electrical and seismic data sets, The Cryosphere, 5, 453–468, https://doi.org/10.5194/tc-5-453-2011, 2011. a, b
Hauck, C., Hilbich, C., and Mollaret, C.: A Time-lapse geophysical model for
detecting changes in ground ice content based on electrical and seismic
mixing rules, in: 23rd European Meeting of Environmental and Engineering
Geophysics, Malmö, 3–7 September 2017, https://doi.org/10.3997/2214-4609.201702024,
2017. a, b, c
Hausmann, H., Krainer, K., Brückl, E., and Mostler, W.: Internal
structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria)
assessed by geophysical investigations, Permafrost Periglac. Process., 18, 351–367, https://doi.org/10.1002/ppp.601, 2007. a
Hilbich, C., Marescot, L., Hauck, C., Loke, M. H., and Mausbacher, R.:
Applicability of electrical resistivity tomography monitoring to coarse
blocky and ice-rich permafrost landforms, Tech. Rep. 3,
https://doi.org/10.1002/ppp.652, 2009. a
Hilbich, C., Fuss, C., and Hauck, C.: Automated time-lapse ERT for improved
process analysis and monitoring of frozen ground, Permafrost Periglac.
Process., 22, 306–319, https://doi.org/10.1002/ppp.732, 2011. a
Hilbich, C., Hauck, C., Mollaret, C., Wainstein, P., and Arenson, L. U.: Towards accurate quantification of ice content in permafrost of the Central Andes – Part 1: Geophysics-based estimates from three different regions, The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022, 2022a. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y
Hilbich, C., Hauck, C., Mollaret, C., Wainstein, P., and Arenson, L. U.: Towards accurate quantification of ice content in permafrost of the Central Andes, part I: geophysics-based estimates from three different regions, Zenodo [data set], https://doi.org/10.5281/zenodo.6543493, 2022b. a
Hoelzle, M.: Permafrost und Gletscher im Oberengadin, Grundlagen und
Anwendungsbeispiele für automatisierte Schätzverfahren, edited by: Vischer, C., VAW
Mitteilungen, ETH Zürch, https://doi.org/10.3929/ethz-a-000943725, 1994. a, b, c, d
Hoelzle, M., Scherler, M., and Hauck, C.: Permafrost ice as an important water
resource for the future?,
https://www.openaccessgovernment.org/permafrost-ice-an-important-water-resource-future/39774/ (last access: 1 May 2022),
2017. a
Hoelzle, M., Barandun, M., Bolch, T., Fiddes, J., Gafurov, A., Muccione, V.,
Saks, T., and Shahgedanova, M.: The status and role of the alpine cryosphere
in Central Asia, in: The Aral Sea Basin, Routledge, 100–121,
https://doi.org/10.4324/9780429436475-8, 2019. a
Hubbard, S. S., Gangodagamage, C., Dafflon, B., Wainwright, H., Peterson, J.,
Gusmeroli, A., Ulrich, C., Wu, Y., Wilson, C., Rowland, J., Tweedie, C., and
Wullschleger, S. D.: Quantifying and relating land-surface and subsurface
variability in permafrost environments using LiDAR and surface geophysical
datasets, Hydrogeol. J., 21, 149–169,
https://doi.org/10.1007/s10040-012-0939-y, 2013. a
IPCC: Special Report on the Ocean and Cryosphere in a Changing Climate
(SROCC), Tech. rep., https://www.ipcc.ch/srocc/ (last access: 1 May 2022), 2019. a
Jones, D. B., Harrison, S., Anderson, K., and Betts, R. A.: Mountain rock
glaciers contain globally significant water stores, Sci. Rep.-UK, 8,
1–10, https://doi.org/10.1038/s41598-018-21244-w, 2018a. a, b
Jones, D. B., Harrison, S., Anderson, K., Selley, H. L., Wood, J. L., and
Betts, R. A.: The distribution and hydrological significance of rock
glaciers in the Nepalese Himalaya, Global Planet. Change, 160, 123–142,
https://doi.org/10.1016/j.gloplacha.2017.11.005, 2018b. a
Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H., and Phillips, M.: Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps, The Cryosphere, 13, 1925–1941, https://doi.org/10.5194/tc-13-1925-2019, 2019. a
Koenig, C., Hilbich, C., Hauck, C., and Arenson, L.: Ground Temperature within
Mountain Permafrost Zones of the Central Andes, in: Swiss Geoscience Meeting
(SGM), 23 November 2019, Fribourg, https://geoscience-meeting.ch/sgm2019/wp-content/uploads/abstract_volumes/SGM_2019_Symposium_11.pdf (last access: 27 June 2022), 2019. a
Liaudat, D. T., Sileo, N., and Dapeña, C.: Periglacial water paths
within a rock glacier-dominated catchment in the Stepanek area, Central
Andes, Mendoza, Argentina, Permafrost Periglac. Process., 31, 311–323,
https://doi.org/10.1002/ppp.2044, 2020. a
Masiokas, M., Rabatel, A., Rivera, A., Ruiz, L., Pitte, P., Ceballos, J. L.,
Barcaza, G., Soruco, A., and Bown, F.: A review of the current state and
recent changes of the Andean cryosphere, Front. Earth Sci., 8, 99,
https://doi.org/10.3389/FEART.2020.00099, 2020. a
Maurer, H. and Hauck, C.: Instruments and methods: Geophysical imaging of
alpine rock glaciers, J. Glaciol., 53, 110–120,
https://doi.org/10.3189/172756507781833893, 2007. a
Mewes, B., Hilbich, C., Delaloye, R., and Hauck, C.: Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes, The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, 2017. a, b
Minsley, B. J., Abraham, J. D., Smith, B. D., Cannia, J. C., Voss, C. I.,
Jorgenson, M. T., Walvoord, M. A., Wylie, B. K., Anderson, L., Ball, L. B.,
Deszcz-Pan, M., Wellman, T. P., and Ager, T. A.: Airborne electromagnetic
imaging of discontinuous permafrost, Geophys. Res. Lett., 39, 2503,
https://doi.org/10.1029/2011GL050079, 2012. a
Mollaret, C., Hilbich, C., Pellet, C., Flores-Orozco, A., Delaloye, R., and Hauck, C.: Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites, The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, 2019. a, b
Mollaret, C., Wagner, F. M., Hilbich, C., Scapozza, C., and Hauck, C.:
Petrophysical Joint Inversion Applied to Alpine Permafrost Field Sites to
Image Subsurface Ice, Water, Air, and Rock Contents, Front. Earth Sci., 8, 85, https://doi.org/10.3389/feart.2020.00085, 2020. a, b, c, d
Paterson, W.: The Physics of Glaciers, Elsevier,
https://doi.org/10.1016/c2009-0-14802-x, 1994. a
Pellet, C., Hilbich, C., Marmy, A., and Hauck, C.: Soil moisture data for the
validation of permafrost models using direct and indirect measurement
approaches at three alpine sites, Front. Earth Sci., 3, 91,
https://doi.org/10.3389/feart.2015.00091, 2016.
a, b, c
Salzmann, N., Huggel, C., Rohrer, M., Silverio, W., Mark, B. G., Burns, P., and Portocarrero, C.: Glacier changes and climate trends derived from multiple sources in the data scarce Cordillera Vilcanota region, southern Peruvian Andes, The Cryosphere, 7, 103–118, https://doi.org/10.5194/tc-7-103-2013, 2013. a
Schaffer, N., MacDonell, S., Réveillet, M., Yáñez, E., and
Valois, R.: Rock glaciers as a water resource in a changing climate in the
semiarid Chilean Andes, Reg. Environ. Change, 19, 1263–1279,
https://doi.org/10.1007/s10113-018-01459-3, 2019. a, b, c, d
Schneider, S., Hoelzle, M., and Hauck, C.: Influence of surface and subsurface heterogeneity on observed borehole temperatures at a mountain permafrost site in the Upper Engadine, Swiss Alps, The Cryosphere, 6, 517–531, https://doi.org/10.5194/tc-6-517-2012, 2012. a
Staub, B.: The evolution of mountain permafrost in the context of climate
change – towards a comprehensive analysis of permafrost monitoring data from
the Swiss Alps, Tech. rep., 2015. a
Tapia, J., Townley, B., Córdova, L., Poblete, F., and Arriagada, C.:
Hydrothermal alteration and its effects on the magnetic properties of Los
Pelambres, a large multistage porphyry copper deposit, J. Appl.
Geophys., 132, 125–136, https://doi.org/10.1016/J.JAPPGEO.2016.07.005, 2016. a
Urrutia, R. and Vuille, M.: Climate change projections for the tropical Andes
using a regional climate model: Temperature and precipitation simulations for
the end of the 21st century, J. Geophys. Res., 114, D02108,
https://doi.org/10.1029/2008JD011021, 2009. a
Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., and Hauck, C.: Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data, Geophys. J. Int., 219, 1866–1875, https://doi.org/10.1093/gji/ggz402, 2019. a
Wicky, J. and Hauck, C.: Numerical modelling of convective heat transport by air flow in permafrost talus slopes, The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, 2017. a
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
With ongoing climate change, there is a pressing need to understand how much water is stored as...