Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1941-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-16-1941-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic
Qingkai Wang
State Key Laboratory of Coastal and Offshore Engineering, Dalian
University of Technology, Dalian 116024, China
Zhaoquan Li
State Key Laboratory of Coastal and Offshore Engineering, Dalian
University of Technology, Dalian 116024, China
Peng Lu
State Key Laboratory of Coastal and Offshore Engineering, Dalian
University of Technology, Dalian 116024, China
Yigang Xu
Marine Design and Research Institute of China, Shanghai 200011,
China
Zhijun Li
CORRESPONDING AUTHOR
State Key Laboratory of Coastal and Offshore Engineering, Dalian
University of Technology, Dalian 116024, China
Related authors
Miao Yu, Peng Lu, Hang Zhang, Fei Xie, Lei Wang, Qingkai Wang, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2155, https://doi.org/10.5194/egusphere-2024-2155, 2024
Preprint archived
Short summary
Short summary
The ice microstructure was observed by continuous sampling and a imaging system. The newly formed bubbles in the middle ice layer were partly thermally driven. Gas bubbles of the ice surface are significantly affected by net shortwave radiation. Variation in the inclusion size distribution was attributed to the merging process.
Puzhen Huo, Peng Lu, Bin Cheng, Miao Yu, Qingkai Wang, Xuewei Li, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-849, https://doi.org/10.5194/egusphere-2024-849, 2024
Short summary
Short summary
We developed a new method to retrieve lake ice phenology for the lake with a complex surface cover. The method is particularly useful for mixed-pixel satellite data. We implement this method on Lake Ulansu, a lake characterized by complex shorelines and rich aquatic plants in Northwest China. In connection with a random forest model, we reconstructed the longest lake ice phenology in China.
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024, https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Short summary
Variations in Arctic sea ice are related not only to its macroscale properties but also to its microstructure. Arctic ice cores in the summers of 2008 to 2016 were used to analyze variations in the ice inherent optical properties related to changes in the ice microstructure. The results reveal changing ice microstructure greatly increased the amount of solar radiation transmitted to the upper ocean even when a constant ice thickness was assumed, especially in marginal ice zones.
Hang Zhang, Miao Yu, Peng Lu, Jiaru Zhou, Qingkai Wang, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-1758, https://doi.org/10.5194/egusphere-2023-1758, 2023
Preprint archived
Short summary
Short summary
The Monte Carlo (MC) model is employed to investigate the influence of the melt pond and floe size on the apparent optical properties. The ratio of albedo Kα and transmittance KT of linear combination to MC model are proposed to determine the accuracy of the linear combination. New parameterization results for Kα and KT of different latitude and melting stage are provided. The results can be used correct the in situ data got by linear combination with floe size smaller than 20 m.
Qingkai Wang, Yubo Liu, Peng Lu, and Zhijun Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-31, https://doi.org/10.5194/tc-2023-31, 2023
Revised manuscript not accepted
Short summary
Short summary
We intended to bring a new sight for the Arctic sea ice change by updating the knowledge of mechanical properties of summer Arctic sea ice. We find the flexural strength of summer Arctic sea ice was dependent on sea ice porosity rather than brine volume fraction, which unified the physical parameter affecting sea ice mechanical properties to sea ice porosity. Arctic sea ice strength has been weakening in recent summers by evaluating the strength using the previously published sea ice porosities.
Miao Yu, Peng Lu, Hang Zhang, Fei Xie, Lei Wang, Qingkai Wang, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-2155, https://doi.org/10.5194/egusphere-2024-2155, 2024
Preprint archived
Short summary
Short summary
The ice microstructure was observed by continuous sampling and a imaging system. The newly formed bubbles in the middle ice layer were partly thermally driven. Gas bubbles of the ice surface are significantly affected by net shortwave radiation. Variation in the inclusion size distribution was attributed to the merging process.
Puzhen Huo, Peng Lu, Bin Cheng, Miao Yu, Qingkai Wang, Xuewei Li, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-849, https://doi.org/10.5194/egusphere-2024-849, 2024
Short summary
Short summary
We developed a new method to retrieve lake ice phenology for the lake with a complex surface cover. The method is particularly useful for mixed-pixel satellite data. We implement this method on Lake Ulansu, a lake characterized by complex shorelines and rich aquatic plants in Northwest China. In connection with a random forest model, we reconstructed the longest lake ice phenology in China.
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024, https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Short summary
Variations in Arctic sea ice are related not only to its macroscale properties but also to its microstructure. Arctic ice cores in the summers of 2008 to 2016 were used to analyze variations in the ice inherent optical properties related to changes in the ice microstructure. The results reveal changing ice microstructure greatly increased the amount of solar radiation transmitted to the upper ocean even when a constant ice thickness was assumed, especially in marginal ice zones.
Hang Zhang, Miao Yu, Peng Lu, Jiaru Zhou, Qingkai Wang, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-1758, https://doi.org/10.5194/egusphere-2023-1758, 2023
Preprint archived
Short summary
Short summary
The Monte Carlo (MC) model is employed to investigate the influence of the melt pond and floe size on the apparent optical properties. The ratio of albedo Kα and transmittance KT of linear combination to MC model are proposed to determine the accuracy of the linear combination. New parameterization results for Kα and KT of different latitude and melting stage are provided. The results can be used correct the in situ data got by linear combination with floe size smaller than 20 m.
Yaodan Zhang, Marta Fregona, John Loehr, Joonatan Ala-Könni, Shuang Song, Matti Leppäranta, and Zhijun Li
The Cryosphere, 17, 2045–2058, https://doi.org/10.5194/tc-17-2045-2023, https://doi.org/10.5194/tc-17-2045-2023, 2023
Short summary
Short summary
There are few detailed studies during the ice decay period, primarily because in situ observations during decay stages face enormous challenges due to safety issues. In the present work, ice monitoring was based on foot, hydrocopter, and boat to get a full time series of the evolution of ice structure and geochemical properties. We argue that the rapid changes in physical and geochemical properties of ice have an important influence on regional climate and the ecological environment under ice.
Qian Yang, Xiaoguang Shi, Weibang Li, Kaishan Song, Zhijun Li, Xiaohua Hao, Fei Xie, Nan Lin, Zhidan Wen, Chong Fang, and Ge Liu
The Cryosphere, 17, 959–975, https://doi.org/10.5194/tc-17-959-2023, https://doi.org/10.5194/tc-17-959-2023, 2023
Short summary
Short summary
A large-scale linear structure has repeatedly appeared on satellite images of Chagan Lake in winter, which was further verified as being ice ridges in the field investigation. We extracted the length and the angle of the ice ridges from multi-source remote sensing images. The average length was 21 141.57 ± 68.36 m. The average azimuth angle was 335.48° 141.57 ± 0.23°. The evolution of surface morphology is closely associated with air temperature, wind, and shoreline geometry.
Qingkai Wang, Yubo Liu, Peng Lu, and Zhijun Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-31, https://doi.org/10.5194/tc-2023-31, 2023
Revised manuscript not accepted
Short summary
Short summary
We intended to bring a new sight for the Arctic sea ice change by updating the knowledge of mechanical properties of summer Arctic sea ice. We find the flexural strength of summer Arctic sea ice was dependent on sea ice porosity rather than brine volume fraction, which unified the physical parameter affecting sea ice mechanical properties to sea ice porosity. Arctic sea ice strength has been weakening in recent summers by evaluating the strength using the previously published sea ice porosities.
Wenfeng Huang, Wen Zhao, Cheng Zhang, Matti Leppäranta, Zhijun Li, Rui Li, and Zhanjun Lin
The Cryosphere, 16, 1793–1806, https://doi.org/10.5194/tc-16-1793-2022, https://doi.org/10.5194/tc-16-1793-2022, 2022
Short summary
Short summary
Thermal regimes of seasonally ice-covered lakes in an arid region like Central Asia are not well constrained despite the unique climate. We observed annual and seasonal dynamics of thermal stratification and energetics in a shallow arid-region lake. Strong penetrated solar radiation and high water-to-ice heat flux are the predominant components in water heat balance. The under-ice stratification and convection are jointly governed by the radiative penetration and salt rejection during freezing.
Wenfeng Huang, Bin Cheng, Jinrong Zhang, Zheng Zhang, Timo Vihma, Zhijun Li, and Fujun Niu
Hydrol. Earth Syst. Sci., 23, 2173–2186, https://doi.org/10.5194/hess-23-2173-2019, https://doi.org/10.5194/hess-23-2173-2019, 2019
Short summary
Short summary
Up to now, little has been known on ice thermodynamics and lake–atmosphere interaction over the Tibetan Plateau during ice-covered seasons due to a lack of field data. Here, model experiments on ice thermodynamics were conducted in a shallow lake using HIGHTSI. Water–ice heat flux was a major source of uncertainty for lake ice thickness. Heat and mass budgets were estimated within the vertical air–ice–water system. Strong ice sublimation occurred and was responsible for water loss during winter.
Peng Lu, Matti Leppäranta, Bin Cheng, Zhijun Li, Larysa Istomina, and Georg Heygster
The Cryosphere, 12, 1331–1345, https://doi.org/10.5194/tc-12-1331-2018, https://doi.org/10.5194/tc-12-1331-2018, 2018
Short summary
Short summary
It is the first time that the color of melt ponds on Arctic sea ice was quantitatively and thoroughly investigated. We answer the question of why the color of melt ponds can change and what the physical and optical reasons are that lead to such changes. More importantly, melt-pond color was provided as potential data in determining ice thickness, especially under the summer conditions when other methods such as remote sensing are unavailable.
Related subject area
Discipline: Sea ice | Subject: Antarctic
Quantifying the influence of snow over sea ice morphology on L-band passive microwave satellite observations in the Southern Ocean
The role of atmospheric conditions in the Antarctic sea ice extent summer minima
Sources of low-frequency variability in observed Antarctic sea ice
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Brief Communication: Antarctic sea ice loss brings observed trends into agreement with climate models
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Signature of the stratosphere–troposphere coupling on recent record-breaking Antarctic sea-ice anomalies
Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model
A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting
Annual evolution of the ice–ocean interaction beneath landfast ice in Prydz Bay, East Antarctica
The response of sea ice and high-salinity shelf water in the Ross Ice Shelf Polynya to cyclonic atmosphere circulations
Antarctic sea ice regime shift associated with decreasing zonal symmetry in the Southern Annular Mode
Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016–2021
Modulation of the seasonal cycle of the Antarctic sea ice extent by sea ice processes and feedbacks with the ocean and the atmosphere
Ice Sheet and Sea Ice Ultrawideband Microwave radiometric Airborne eXperiment (ISSIUMAX) in Antarctica: first results from Terra Nova Bay
Influence of fast ice on future ice shelf melting in the Totten Glacier area, East Antarctica
A comparison between Envisat and ICESat sea ice thickness in the Southern Ocean
An indicator of sea ice variability for the Antarctic marginal ice zone
Physical and mechanical properties of winter first-year ice in the Antarctic marginal ice zone along the Good Hope Line
Altimetric observation of wave attenuation through the Antarctic marginal ice zone using ICESat-2
The sensitivity of landfast sea ice to atmospheric forcing in single-column model simulations: a case study at Zhongshan Station, Antarctica
An evaluation of Antarctic sea-ice thickness from the Global Ice-Ocean Modeling and Assimilation System based on in situ and satellite observations
Rectification and validation of a daily satellite-derived Antarctic sea ice velocity product
Weddell Sea polynya analysis using SMOS–SMAP apparent sea ice thickness retrieval
Eighteen-year record of circum-Antarctic landfast-sea-ice distribution allows detailed baseline characterisation and reveals trends and variability
Brief communication: The anomalous winter 2019 sea-ice conditions in McMurdo Sound, Antarctica
Southern Ocean polynyas in CMIP6 models
Airborne mapping of the sub-ice platelet layer under fast ice in McMurdo Sound, Antarctica
Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea
The Antarctic sea ice cover from ICESat-2 and CryoSat-2: freeboard, snow depth, and ice thickness
Seasonal and interannual variability of landfast sea ice in Atka Bay, Weddell Sea, Antarctica
Influence of sea-ice anomalies on Antarctic precipitation using source attribution in the Community Earth System Model
Retrieval of snow freeboard of Antarctic sea ice using waveform fitting of CryoSat-2 returns
Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2
Lu Zhou, Julienne Stroeve, Vishnu Nandan, Rosemary Willatt, Shiming Xu, Weixin Zhu, Sahra Kacimi, Stefanie Arndt, and Zifan Yang
The Cryosphere, 18, 4399–4434, https://doi.org/10.5194/tc-18-4399-2024, https://doi.org/10.5194/tc-18-4399-2024, 2024
Short summary
Short summary
Snow over Antarctic sea ice, influenced by highly variable meteorological conditions and heavy snowfall, has a complex stratigraphy and profound impact on the microwave signature. We employ advanced radiation transfer models to analyse the effects of complex snow properties on brightness temperatures over the sea ice in the Southern Ocean. Great potential lies in the understanding of snow processes and the application to satellite retrievals.
Bianca Mezzina, Hugues Goosse, François Klein, Antoine Barthélemy, and François Massonnet
The Cryosphere, 18, 3825–3839, https://doi.org/10.5194/tc-18-3825-2024, https://doi.org/10.5194/tc-18-3825-2024, 2024
Short summary
Short summary
We analyze years with extraordinarily low sea ice extent in Antarctica during summer, until the striking record in 2022. We highlight common aspects among these events, such as the fact that the exceptional melting usually occurs in two key regions and that it is related to winds with a similar direction. We also investigate whether the summer conditions are preceded by an unusual state of the sea ice during the previous winter, as well as the physical processes involved.
David B. Bonan, Jakob Dörr, Robert C. J. Wills, Andrew F. Thompson, and Marius Årthun
The Cryosphere, 18, 2141–2159, https://doi.org/10.5194/tc-18-2141-2024, https://doi.org/10.5194/tc-18-2141-2024, 2024
Short summary
Short summary
Antarctic sea ice has exhibited variability over satellite records, including a period of gradual expansion and a period of sudden decline. We use a novel statistical method to identify sources of variability in observed Antarctic sea ice changes. We find that the gradual increase in sea ice is likely related to large-scale temperature trends, and periods of abrupt sea ice decline are related to specific flavors of equatorial tropical variability known as the El Niño–Southern Oscillation.
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024, https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Short summary
Synoptic events have a significant influence on the evolution of Antarctic sea ice. Our current understanding of the interactions between cyclones and sea ice remains limited. Using two ensembles of buoys, deployed in the north-eastern Weddell Sea region during winter and spring of 2019, we show how the evolution and spatial pattern of sea ice drift and deformation in the Antarctic marginal ice zone were affected by the balance between atmospheric and oceanic forcing and the local ice.
Caroline R. Holmes, Thomas J. Bracegirdle, Paul R. Holland, Julienne Stroeve, and Jeremy Wilkinson
EGUsphere, https://doi.org/10.5194/egusphere-2023-2881, https://doi.org/10.5194/egusphere-2023-2881, 2023
Short summary
Short summary
Until recently, observed Antarctic sea ice was increasing, while in contrast numerical climate models simulated a decrease over the same period (1979–2014). This apparent mismatch was one reason for low confidence in model projections of large 21st century sea ice loss and related aspects of Southern Hemisphere climate. Here we show that, with the inclusion of several low Antarctic sea ice years (notably 2017, 2022 and 2023), we can no longer conclude that modelled and observed trends differ.
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023, https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary
Short summary
Antarctic sea ice extent shows multidecadal variations with its decrease in the 1980s and increase after the 2000s until 2015. Here we show that our climate model can predict the sea ice decrease by deep convection in the Southern Ocean and the sea ice increase by the surface wind variability. These results suggest that accurate simulation and prediction of subsurface ocean and atmosphere conditions are important for those of Antarctic sea ice variability on a multidecadal timescale.
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere, 17, 4995–5006, https://doi.org/10.5194/tc-17-4995-2023, https://doi.org/10.5194/tc-17-4995-2023, 2023
Short summary
Short summary
We investigate the response of Antarctic sea ice to year-to-year changes in the tropospheric–stratospheric dynamics. Our findings suggest that, by affecting the tropospheric westerlies, the strength of the stratospheric polar vortex has played a major role in recent record-breaking anomalies in Antarctic sea ice.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Steven Fons, Nathan Kurtz, and Marco Bagnardi
The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023, https://doi.org/10.5194/tc-17-2487-2023, 2023
Short summary
Short summary
Antarctic sea ice thickness is an important quantity in the Earth system. Due to the thick and complex snow cover on Antarctic sea ice, estimating the thickness of the ice pack is difficult using traditional methods in radar altimetry. In this work, we use a waveform model to estimate the freeboard and snow depth of Antarctic sea ice from CryoSat-2 and use these values to calculate sea ice thickness and volume between 2010 and 2021 and showcase how the sea ice pack has changed over this time.
Haihan Hu, Jiechen Zhao, Petra Heil, Zhiliang Qin, Jingkai Ma, Fengming Hui, and Xiao Cheng
The Cryosphere, 17, 2231–2244, https://doi.org/10.5194/tc-17-2231-2023, https://doi.org/10.5194/tc-17-2231-2023, 2023
Short summary
Short summary
The oceanic characteristics beneath sea ice significantly affect ice growth and melting. The high-frequency and long-term observations of oceanic variables allow us to deeply investigate their diurnal and seasonal variation and evaluate their influences on sea ice evolution. The large-scale sea ice distribution and ocean circulation contributed to the seasonal variation of ocean variables, revealing the important relationship between large-scale and local phenomena.
Xiaoqiao Wang, Zhaoru Zhang, Michael S. Dinniman, Petteri Uotila, Xichen Li, and Meng Zhou
The Cryosphere, 17, 1107–1126, https://doi.org/10.5194/tc-17-1107-2023, https://doi.org/10.5194/tc-17-1107-2023, 2023
Short summary
Short summary
The bottom water of the global ocean originates from high-salinity water formed in polynyas in the Southern Ocean where sea ice coverage is low. This study reveals the impacts of cyclones on sea ice and water mass formation in the Ross Ice Shelf Polynya using numerical simulations. Sea ice production is rapidly increased caused by enhancement in offshore wind, promoting high-salinity water formation in the polynya. Cyclones also modulate the transport of this water mass by wind-driven currents.
Serena Schroeter, Terence J. O'Kane, and Paul A. Sandery
The Cryosphere, 17, 701–717, https://doi.org/10.5194/tc-17-701-2023, https://doi.org/10.5194/tc-17-701-2023, 2023
Short summary
Short summary
Antarctic sea ice has increased over much of the satellite record, but we show that the early, strongly opposing regional trends diminish and reverse over time, leading to overall negative trends in recent decades. The dominant pattern of atmospheric flow has changed from strongly east–west to more wave-like with enhanced north–south winds. Sea surface temperatures have also changed from circumpolar cooling to regional warming, suggesting recent record low sea ice will not rapidly recover.
Grant J. Macdonald, Stephen F. Ackley, Alberto M. Mestas-Nuñez, and Adrià Blanco-Cabanillas
The Cryosphere, 17, 457–476, https://doi.org/10.5194/tc-17-457-2023, https://doi.org/10.5194/tc-17-457-2023, 2023
Short summary
Short summary
Polynyas are key sites of sea ice production, biological activity, and carbon sequestration. The Amundsen Sea Polynya is of particular interest due to its size and location. By analyzing radar imagery and climate and sea ice data products, we evaluate variations in the dynamics, area, and ice production of the Amundsen Sea Polynya. In particular, we find the local seafloor topography and associated grounded icebergs play an important role in the polynya dynamics, influencing ice production.
Hugues Goosse, Sofia Allende Contador, Cecilia M. Bitz, Edward Blanchard-Wrigglesworth, Clare Eayrs, Thierry Fichefet, Kenza Himmich, Pierre-Vincent Huot, François Klein, Sylvain Marchi, François Massonnet, Bianca Mezzina, Charles Pelletier, Lettie Roach, Martin Vancoppenolle, and Nicole P. M. van Lipzig
The Cryosphere, 17, 407–425, https://doi.org/10.5194/tc-17-407-2023, https://doi.org/10.5194/tc-17-407-2023, 2023
Short summary
Short summary
Using idealized sensitivity experiments with a regional atmosphere–ocean–sea ice model, we show that sea ice advance is constrained by initial conditions in March and the retreat season is influenced by the magnitude of several physical processes, in particular by the ice–albedo feedback and ice transport. Atmospheric feedbacks amplify the response of the winter ice extent to perturbations, while some negative feedbacks related to heat conduction fluxes act on the ice volume.
Marco Brogioni, Mark J. Andrews, Stefano Urbini, Kenneth C. Jezek, Joel T. Johnson, Marion Leduc-Leballeur, Giovanni Macelloni, Stephen F. Ackley, Alexandra Bringer, Ludovic Brucker, Oguz Demir, Giacomo Fontanelli, Caglar Yardim, Lars Kaleschke, Francesco Montomoli, Leung Tsang, Silvia Becagli, and Massimo Frezzotti
The Cryosphere, 17, 255–278, https://doi.org/10.5194/tc-17-255-2023, https://doi.org/10.5194/tc-17-255-2023, 2023
Short summary
Short summary
In 2018 the first Antarctic campaign of UWBRAD was carried out. UWBRAD is a new radiometer able to collect microwave spectral signatures over 0.5–2 GHz, thus outperforming existing similar sensors. It allows us to probe thicker sea ice and ice sheet down to the bedrock. In this work we tried to assess the UWBRAD potentials for sea ice, glaciers, ice shelves and buried lakes. We also highlighted the wider range of information the spectral signature can provide to glaciological studies.
Guillian Van Achter, Thierry Fichefet, Hugues Goosse, and Eduardo Moreno-Chamarro
The Cryosphere, 16, 4745–4761, https://doi.org/10.5194/tc-16-4745-2022, https://doi.org/10.5194/tc-16-4745-2022, 2022
Short summary
Short summary
We investigate the changes in ocean–ice interactions in the Totten Glacier area between the last decades (1995–2014) and the end of the 21st century (2081–2100) under warmer climate conditions. By the end of the 21st century, the sea ice is strongly reduced, and the ocean circulation close to the coast is accelerated. Our research highlights the importance of including representations of fast ice to simulate realistic ice shelf melt rate increase in East Antarctica under warming conditions.
Jinfei Wang, Chao Min, Robert Ricker, Qian Shi, Bo Han, Stefan Hendricks, Renhao Wu, and Qinghua Yang
The Cryosphere, 16, 4473–4490, https://doi.org/10.5194/tc-16-4473-2022, https://doi.org/10.5194/tc-16-4473-2022, 2022
Short summary
Short summary
The differences between Envisat and ICESat sea ice thickness (SIT) reveal significant temporal and spatial variations. Our findings suggest that both overestimation of Envisat sea ice freeboard, potentially caused by radar backscatter originating from inside the snow layer, and the AMSR-E snow depth biases and sea ice density uncertainties can possibly account for the differences between Envisat and ICESat SIT.
Marcello Vichi
The Cryosphere, 16, 4087–4106, https://doi.org/10.5194/tc-16-4087-2022, https://doi.org/10.5194/tc-16-4087-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ) in the Antarctic is the largest in the world ocean. Antarctic sea ice has large year-to-year changes, and the MIZ represents its most variable component. Processes typical of the MIZ have also been observed in fully ice-covered ocean and are not captured by existing diagnostics. A new statistical method has been shown to address previous limitations in assessing the seasonal cycle of MIZ extent and to provide a probability map of sea ice state in the Southern Ocean.
Sebastian Skatulla, Riesna R. Audh, Andrea Cook, Ehlke Hepworth, Siobhan Johnson, Doru C. Lupascu, Keith MacHutchon, Rutger Marquart, Tommy Mielke, Emmanuel Omatuku, Felix Paul, Tokoloho Rampai, Jörg Schröder, Carina Schwarz, and Marcello Vichi
The Cryosphere, 16, 2899–2925, https://doi.org/10.5194/tc-16-2899-2022, https://doi.org/10.5194/tc-16-2899-2022, 2022
Short summary
Short summary
First-year sea ice has been sampled at the advancing outer edge of the Antarctic marginal ice zone (MIZ) along the Good Hope Line. Ice cores were extracted from five pancake ice floes and subsequently analysed for their physical and mechanical properties. Of particular interest was elucidating the transition of ice composition within the MIZ in terms of differences in mechanical stiffness and strength properties as linked to physical and textural characteristics at early-stage ice formation.
Jill Brouwer, Alexander D. Fraser, Damian J. Murphy, Pat Wongpan, Alberto Alberello, Alison Kohout, Christopher Horvat, Simon Wotherspoon, Robert A. Massom, Jessica Cartwright, and Guy D. Williams
The Cryosphere, 16, 2325–2353, https://doi.org/10.5194/tc-16-2325-2022, https://doi.org/10.5194/tc-16-2325-2022, 2022
Short summary
Short summary
The marginal ice zone is the region where ocean waves interact with sea ice. Although this important region influences many sea ice, ocean and biological processes, it has been difficult to accurately measure on a large scale from satellite instruments. We present new techniques for measuring wave attenuation using the NASA ICESat-2 laser altimeter. By measuring how waves attenuate within the sea ice, we show that the marginal ice zone may be far wider than previously realised.
Fengguan Gu, Qinghua Yang, Frank Kauker, Changwei Liu, Guanghua Hao, Chao-Yuan Yang, Jiping Liu, Petra Heil, Xuewei Li, and Bo Han
The Cryosphere, 16, 1873–1887, https://doi.org/10.5194/tc-16-1873-2022, https://doi.org/10.5194/tc-16-1873-2022, 2022
Short summary
Short summary
The sea ice thickness was simulated by a single-column model and compared with in situ observations obtained off Zhongshan Station in the Antarctic. It is shown that the unrealistic precipitation in the atmospheric forcing data leads to the largest bias in sea ice thickness and snow depth modeling. In addition, the increasing snow depth gradually inhibits the growth of sea ice associated with thermal blanketing by the snow.
Sutao Liao, Hao Luo, Jinfei Wang, Qian Shi, Jinlun Zhang, and Qinghua Yang
The Cryosphere, 16, 1807–1819, https://doi.org/10.5194/tc-16-1807-2022, https://doi.org/10.5194/tc-16-1807-2022, 2022
Short summary
Short summary
The Global Ice-Ocean Modeling and Assimilation System (GIOMAS) can basically reproduce the observed variability in Antarctic sea-ice volume and its changes in the trend before and after 2013, and it underestimates Antarctic sea-ice thickness (SIT) especially in deformed ice zones. Assimilating additional sea-ice observations with advanced assimilation methods may result in a more accurate estimation of Antarctic SIT.
Tian R. Tian, Alexander D. Fraser, Noriaki Kimura, Chen Zhao, and Petra Heil
The Cryosphere, 16, 1299–1314, https://doi.org/10.5194/tc-16-1299-2022, https://doi.org/10.5194/tc-16-1299-2022, 2022
Short summary
Short summary
This study presents a comprehensive validation of a satellite observational sea ice motion product in Antarctica by using drifting buoys. Two problems existing in this sea ice motion product have been noticed. After rectifying problems, we use it to investigate the impacts of satellite observational configuration and timescale on Antarctic sea ice kinematics and suggest the future improvement of satellite missions specifically designed for retrieval of sea ice motion.
Alexander Mchedlishvili, Gunnar Spreen, Christian Melsheimer, and Marcus Huntemann
The Cryosphere, 16, 471–487, https://doi.org/10.5194/tc-16-471-2022, https://doi.org/10.5194/tc-16-471-2022, 2022
Short summary
Short summary
In this paper we show that the activity leading to the open-ocean polynyas near the Maud Rise seamount that have occurred repeatedly from 1974–1976 as well as 2016–2017 does not simply stop for polynya-free years. Using apparent sea ice thickness retrieval, we have identified anomalies where there is thinning of sea ice on a scale that is comparable to that of the polynya events of 2016–2017. These anomalies took place in 2010, 2013, 2014 and 2018.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Greg H. Leonard, Kate E. Turner, Maren E. Richter, Maddy S. Whittaker, and Inga J. Smith
The Cryosphere, 15, 4999–5006, https://doi.org/10.5194/tc-15-4999-2021, https://doi.org/10.5194/tc-15-4999-2021, 2021
Short summary
Short summary
McMurdo Sound sea ice can generally be partitioned into two regimes: a stable fast-ice cover forming south of approximately 77.6° S and a more dynamic region north of 77.6° S that is regularly impacted by polynyas. In 2019, a stable fast-ice cover formed unusually late due to repeated break-out events. This subsequently affected sea-ice operations in the 2019/20 field season. We analysed the 2019 sea-ice conditions and found a strong correlation with unusually large southerly wind events.
Martin Mohrmann, Céline Heuzé, and Sebastiaan Swart
The Cryosphere, 15, 4281–4313, https://doi.org/10.5194/tc-15-4281-2021, https://doi.org/10.5194/tc-15-4281-2021, 2021
Short summary
Short summary
Polynyas are large open-water areas within the sea ice. We developed a method to estimate their area, distribution and frequency for the Southern Ocean in climate models and observations. All models have polynyas along the coast but few do so in the open ocean, in contrast to observations. We examine potential atmospheric and oceanic drivers of open-water polynyas and discuss recently implemented schemes that may have improved some models' polynya representation.
Christian Haas, Patricia J. Langhorne, Wolfgang Rack, Greg H. Leonard, Gemma M. Brett, Daniel Price, Justin F. Beckers, and Alex J. Gough
The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021, https://doi.org/10.5194/tc-15-247-2021, 2021
Short summary
Short summary
We developed a method to remotely detect proxy signals of Antarctic ice shelf melt under adjacent sea ice. It is based on aircraft surveys with electromagnetic induction sounding. We found year-to-year variability of the ice shelf melt proxy in McMurdo Sound and spatial fine structure that support assumptions about the melt of the McMurdo Ice Shelf. With this method it will be possible to map and detect locations of intense ice shelf melt along the coast of Antarctica.
Qian Shi, Qinghua Yang, Longjiang Mu, Jinfei Wang, François Massonnet, and Matthew R. Mazloff
The Cryosphere, 15, 31–47, https://doi.org/10.5194/tc-15-31-2021, https://doi.org/10.5194/tc-15-31-2021, 2021
Short summary
Short summary
The ice thickness from four state-of-the-art reanalyses (GECCO2, SOSE, NEMO-EnKF and GIOMAS) are evaluated against that from remote sensing and in situ observations in the Weddell Sea, Antarctica. Most of the reanalyses can reproduce ice thickness in the central and eastern Weddell Sea but failed to capture the thick and deformed ice in the western Weddell Sea. These results demonstrate the possibilities and limitations of using current sea-ice reanalysis in Antarctic climate research.
Sahra Kacimi and Ron Kwok
The Cryosphere, 14, 4453–4474, https://doi.org/10.5194/tc-14-4453-2020, https://doi.org/10.5194/tc-14-4453-2020, 2020
Short summary
Short summary
Our current understanding of Antarctic ice cover is largely informed by ice extent measurements from passive microwave sensors. These records, while useful, provide a limited picture of how the ice is responding to climate change. In this paper, we combine measurements from ICESat-2 and CryoSat-2 missions to assess snow depth and ice thickness of the Antarctic ice cover over an 8-month period (April through November 2019). The potential impact of salinity in the snow layer is discussed.
Stefanie Arndt, Mario Hoppmann, Holger Schmithüsen, Alexander D. Fraser, and Marcel Nicolaus
The Cryosphere, 14, 2775–2793, https://doi.org/10.5194/tc-14-2775-2020, https://doi.org/10.5194/tc-14-2775-2020, 2020
Hailong Wang, Jeremy G. Fyke, Jan T. M. Lenaerts, Jesse M. Nusbaumer, Hansi Singh, David Noone, Philip J. Rasch, and Rudong Zhang
The Cryosphere, 14, 429–444, https://doi.org/10.5194/tc-14-429-2020, https://doi.org/10.5194/tc-14-429-2020, 2020
Short summary
Short summary
Using a climate model with unique water source tagging, we found that sea-ice anomalies in the Southern Ocean and accompanying SST changes have a significant influence on Antarctic precipitation and its source attribution through their direct impact on moisture sources and indirect impact on moisture transport. This study also highlights the importance of atmospheric dynamics in affecting the thermodynamic impact of sea-ice anomalies on regional Antarctic precipitation.
Steven W. Fons and Nathan T. Kurtz
The Cryosphere, 13, 861–878, https://doi.org/10.5194/tc-13-861-2019, https://doi.org/10.5194/tc-13-861-2019, 2019
Short summary
Short summary
A method to measure the snow freeboard of Antarctic sea ice from CryoSat-2 data is developed. Through comparisons with data from airborne campaigns and another satellite mission, we find that this method can reasonably retrieve snow freeboard across the Antarctic and shows promise in retrieving snow depth in certain locations. Snow freeboard data from CryoSat-2 are important because they enable the calculation of sea ice thickness and help to better understand snow depth on Antarctic sea ice.
Ron Kwok and Sahra Kacimi
The Cryosphere, 12, 2789–2801, https://doi.org/10.5194/tc-12-2789-2018, https://doi.org/10.5194/tc-12-2789-2018, 2018
Short summary
Short summary
The variability of snow depth and ice thickness in three years of repeat surveys of an IceBridge (OIB) transect across the Weddell Sea is examined. Retrieved thicknesses suggest a highly variable but broadly thicker ice cover compared to that inferred from drilling and ship-based measurements. The use of lidar and radar altimeters to estimate snow depth for thickness calculations is analyzed, and the need for better characterization of biases due to radar penetration effects is highlighted.
Cited articles
Arakawa, M. and Maeno, N.: Mechanical strength of polycrystalline ice under
uniaxial compression, Cold Reg. Sci. Technol., 26, 215–226,
https://doi.org/10.1016/S0165-232X(97)00018-9, 1997.
Arctic Council: Arctic Marine Shipping Assessment 2009 Report, second printing, Arctic Council, https://oaarchive.arctic-council.org/handle/11374/54 (last access: 18 May 2022), 2009.
Bonath, V., Edeskär, T., Lintzén, N., Fransson, L., and Cwirzen, A.:
Properties of ice from first-year ridges in the Barents Sea and Fram Strait,
Cold Reg. Sci. Technol., 168, 102890,
https://doi.org/10.1016/j.coldregions.2019.102890, 2019.
Carnat, G., Papakyriakou, T., Geilfus, N. X., Brabant, F., Delille, B.,
Vancoppenolle, M., Gilson, G., Zhou, J., and Tison, J.: Investigations on
physical and textural properties of Arctic first-year sea ice in the
Amundsen Gulf, Canada, November 2007–June 2008 (IPY-CFL system study), J.
Glaciol., 59, 819–837, https://doi.org/10.3189/2013JoG12J148, 2013.
Clem, K. R., Fogt, R. L., Turner, J., Lintner, B. R., Marshall, G. J.,
Miller, J. R., and Renwick, J. A.: Record warming at the South Pole during
the past three decades, Nat. Clim. Change, 10, 762–770,
https://doi.org/10.1038/s41558-020-0815-z, 2020.
Cox, G. F. N. and Weeks, W. F.: Equations for determining the gas and brine
volumes in sea ice samples, J. Glaciol., 29, 306–316,
https://doi.org/10.1017/S0022143000008364, 1983.
Frantz, C. M., Light, B., Farley, S. M., Carpenter, S., Lieblappen, R., Courville, Z., Orellana, M. V., and Junge, K.: Physical and optical characteristics of heavily melted “rotten” Arctic sea ice, The Cryosphere, 13, 775–793, https://doi.org/10.5194/tc-13-775-2019, 2019.
Gold, L.: Statistical characteristics for the type and length of
deformation-induced cracks in columnar-grain ice, J. Glaciol., 43, 311–320,
https://doi.org/10.3189/S0022143000003269, 1997.
Han, H., Jia, Q., Huang, W., and Li, Z.: Flexural strength and effective
modulus of large columnar-grained freshwater ice, J. Cold Reg. Eng., 30,
04015005, https://doi.org/10.1061/(ASCE)CR.1943-5495.0000098, 2016.
Hobbs, W. R., Massom, R., Stammerjohn, S., Reid, P., Williams, G., and
Meier, W.: A review of recent changes in Southern Ocean sea ice, their
drivers and forcings, Glob. Planet. Change, 143, 228–250,
https://doi.org/10.1016/j.gloplacha.2016.06.008, 2016.
Høyland, K. V.: Morphology and small-scale strength of ridges in the
North-western Barents Sea, Cold Reg. Sci. Technol., 48, 169–187,
https://doi.org/10.1016/j.coldregions.2007.01.006, 2007.
Hui, F., Zhao, T., Li, X., Shokr, M., Heil, P., Zhao J., Zhang L., and Cheng
X.: Satellite-based sea ice navigation for Prydz Bay, East Antarctica,
Remote Sens., 9, 518, https://doi.org/10.3390/rs9060518, 2017.
ISO19906: Petroleum and Natural Gas Industries – Arctic Offshore Structures, ISO, Geneva, Switzerland, https://www.iso.org/standard/65477.html (last access: 18 May 2022),
2019.
Jeffries, M. O., Krouse, H. R., Hurst-Cushing, B., and Maksym, T.: Snow-ice
accretion and snow-cover depletion on Antarctic first-year sea-ice floes,
Ann. Glaciol., 33, 51–60, https://doi.org/10.3189/172756401781818266, 2001.
Ji, S., Wang, A., Su, J., and Yue, Q.: Experimental studies on elastic
modulus and flexural strength of sea ice in the Bohai Sea, J. Cold Reg.
Eng., 25, 182–195, https://doi.org/10.1061/(ASCE)CR.1943-5495.0000035,
2011.
Ji, S., Chen, X., and Wang, A.: Influence of the loading direction on the
uniaxial compressive strength of sea ice based on field measurements, Ann.
Glaciol., 61, 86–96, https://doi.org/10.1017/aog.2020.14, 2020.
Karulina, M., Marchenko, A., Karulin, E., Sodhi, D., Sakharov, A., and
Chistyakov, P.: Full-scale flexural strength of sea ice and freshwater ice
in Spitsbergen Fjords and North-West Barents Sea, Appl. Ocean Res., 90,
101853, https://doi.org/10.1016/j.apor.2019.101853, 2019.
Kermani, M., Farzaneh, M., and Gagnon, R.: Bending strength and effective
modulus of atmospheric ice, Cold Reg. Sci. Technol., 53, 162–169,
https://doi.org/10.1016/j.coldregions.2007.08.006, 2008.
Kerr, A. D. and Palmer, W. T.: The deformations and stresses in floating ice
plates, Acta Mech., 15, 57–72, https://doi.org/10.1007/BF01177286, 1972.
Kovacs, A.: Estimating the full-scale flexural and compressive strength of
first-year sea ice, J. Geophys. Res.-Oceans, 102, 8681–8689,
https://doi.org/10.1029/96JC02738, 1997.
Kuehn, G. and Schulson, E.: The mechanical properties of saline ice under
uniaxial compression, Ann. Glaciol., 19, 39–48,
https://doi.org/10.3189/1994AoG19-1-39-48, 1994.
Masterson, D. M.: State of the art of ice bearing capacity and ice
construction, Cold Reg. Sci. Technol., 58, 99–112,
https://doi.org/10.1016/j.coldregions.2009.04.002, 2009.
Matear, R. J., O'Kane, T. J., Risbey, J. S., and Chamberlain, M.: Sources of
heterogeneous variability and trends in Antarctic sea-ice, Nat. Commun., 6,
8656, https://doi.org/10.1038/ncomms9656, 2015.
Mayewski, P. A., Frezzotti, M., Bertler, N., Vanommen, T., Hamilton, G.,
Jacka, T. H., Welch, B., Frey, M., Qin, D., Ren, J., Simões, J., Fily,
M., Oerter, H., Nishio, F., Isaksson, E., Mulvaney, R., Holmund, P.,
Lipenkov, V., and Goodwin, I.: The international trans-Antarctic scientific
expedition (ITASE): an overview, Ann. Glaciol., 41, 180–185,
https://doi.org/10.3189/172756405781813159, 2005.
Moslet, P. O.: Field testing of uniaxial compression strength of columnar
sea ice, Cold Reg. Sci. Technol., 48, 1–14,
https://doi.org/10.1016/j.coldregions.2006.08.025, 2007.
Sanderson, T. J. O.: Ice Mechanics: Risks to Offshore
Structures, first edn., edited by: Ling, H., Graham and Trotman, London, ISBN 0-86010-785-X, 1988.
Schulson, E. M.: Brittle failure of ice, Eng. Fract. Mech., 68, 1839–1887,
https://doi.org/10.1016/S0013-7944(01)00037-6, 2001.
Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in
recent Arctic temperature amplification, Nature, 464, 1334–1337,
https://doi.org/10.1038/nature09051, 2010.
Sinha, N. K.: Crack-enhanced creep in polycrystalline material: strain-rate
sensitive strength and deformation of ice, J. Mater. Sci., 23, 4415–4428,
https://doi.org/10.1007/BF00551940, 1988.
Sinha, N. K. and Frederking, R. M. W.: Effect of test system stiffness on
strength of ice, in: Proceedings of the 5th International Conference on Port
and Ocean Engineering under Arctic Conditions, Norway, 13–18 August 1979,
708–717, 1979.
Sinsabvarodom, C., Chai, W., Leira, B. J., Høyland, K. V., and Naess, A.:
Uncertainty assessments of structural loading due to first year ice based on
the ISO standard by using Monte-Carlo simulation, Ocean Eng., 198, 106935,
https://doi.org/10.1016/j.oceaneng.2020.106935, 2020.
Schwarz, J., Frederking, R., Gavrillo, V., Petrov, I. G., Hirayama, K. I.,
Mellor, M., Tryde, P., and Vaudery, K. D.: Standardized testing methods for
measuring mechanical properties of ice, Cold Reg. Sci. Technol., 4,
245–253, https://doi.org/10.1016/0165-232X(81)90007-0, 1981.
Strub-Klein, L. and Høyland, K. V.: Spatial and temporal distributions of
level ice properties: Experiments and thermo-mechanical analysis, Cold Reg.
Sci. Technol., 71, 11–22, https://doi.org/10.1016/j.coldregions.2011.10.001, 2012.
Su, B., Riska, K., and Moan, T.: A numerical method for the prediction of
ship performance in level ice, Cold Reg. Sci. Technol., 60, 177–188,
https://doi.org/10.1016/j.coldregions.2009.11.006, 2010.
Timco, G. W. and Frederking, R. M. W.: A procedure to account for machine
stiffness in uniaxial compression tests, in: Proceedings of the 7th IAHR
International Symposium on Ice, Germany, 27–31 August 1984, 39–47, 1984.
Timco, G. W. and Frederking, R. M. W.: Compressive strength of sea ice
sheets, Cold Reg. Sci. Technol., 17, 227–240,
https://doi.org/10.1016/S0165-232X(05)80003-5, 1990.
Timco, G. W. and Frederking, R. M. W.: A review of sea ice density, Cold
Reg. Sci. Technol., 24, 1–6, https://doi.org/10.1016/0165-232X(95)00007-X,
1996.
Timco, G. W. and O'Brien, S.: Flexural strength equation for sea ice, Cold
Reg. Sci. Technol., 22, 285–298,
https://doi.org/10.1016/0165-232X(94)90006-X, 1994.
Timco, G. W. and Weeks, W. F.: A review of the engineering properties of sea
ice, Cold Reg. Sci. Technol., 60, 107–129,
https://doi.org/10.1016/j.coldregions.2009.10.003, 2010.
Wang, Q., Lu, P., Leppäranta, M., Cheng, B., Zhang, G., and Li, Z.:
Physical properties of summer sea ice in the Pacific sector of the Arctic
during 2008–2018, J. Geophys. Res.-Oceans, 125, e2020JC016371,
https://doi.org/10.1029/2020JC016371, 2020.
Wang, Q., Li, Z., Lu, P., and Li, Z.: Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic, Zenodo [data set], https://doi.org/10.5281/zenodo.5787915, 2021.
Zhao, J., Cheng, B., Vihma, T., Heil, P., Hui, F., Shu, Q., Zhang, L., and
Yang, Q.: Fast Ice Prediction System (FIPS) for land-fast sea ice at Prydz
Bay, East Antarctica: an operational service for CHINARE, Ann. Glaciol., 61, 271–283, https://doi.org/10.1017/aog.2020.46, 2020.
Short summary
A large area of landfast sea ice exists in the Prydz Bay, and it is always a safety concern to transport cargos on ice to the research stations. Knowing the mechanical properties of sea ice is helpful to solve the issue; however, these data are rarely reported in this region. We explore the effects of sea ice physical properties on the flexural strength, effective elastic modulus, and uniaxial compressive strength, which gives new insights into assessing the bearing capacity of landfast sea ice.
A large area of landfast sea ice exists in the Prydz Bay, and it is always a safety concern to...