Articles | Volume 16, issue 5
https://doi.org/10.5194/tc-16-1941-2022
https://doi.org/10.5194/tc-16-1941-2022
Research article
 | 
20 May 2022
Research article |  | 20 May 2022

Flexural and compressive strength of the landfast sea ice in the Prydz Bay, East Antarctic

Qingkai Wang, Zhaoquan Li, Peng Lu, Yigang Xu, and Zhijun Li

Related authors

Reconstructing ice phenology of lake with complex surface cover: A case study of Lake Ulansu during 1941–2023
Puzhen Huo, Peng Lu, Bin Cheng, Miao Yu, Qingkai Wang, Xuewei Li, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-849,https://doi.org/10.5194/egusphere-2024-849, 2024
Short summary
Modeled variations in the inherent optical properties of summer Arctic ice and their effects on the radiation budget: a case based on ice cores from 2008 to 2016
Miao Yu, Peng Lu, Matti Leppäranta, Bin Cheng, Ruibo Lei, Bingrui Li, Qingkai Wang, and Zhijun Li
The Cryosphere, 18, 273–288, https://doi.org/10.5194/tc-18-273-2024,https://doi.org/10.5194/tc-18-273-2024, 2024
Short summary
Impact of melt pond and floe size on the optical properties of Arctic sea ice
Hang Zhang, Miao Yu, Peng Lu, Jiaru Zhou, Qingkai Wang, and Zhijun Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-1758,https://doi.org/10.5194/egusphere-2023-1758, 2023
Preprint archived
Short summary
The porosity effect on the mechanical properties of summer sea ice in the Arctic
Qingkai Wang, Yubo Liu, Peng Lu, and Zhijun Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-31,https://doi.org/10.5194/tc-2023-31, 2023
Revised manuscript not accepted
Short summary

Related subject area

Discipline: Sea ice | Subject: Antarctic
A contrast in sea ice drift and deformation between winter and spring of 2019 in the Antarctic marginal ice zone
Ashleigh Womack, Alberto Alberello, Marc de Vos, Alessandro Toffoli, Robyn Verrinder, and Marcello Vichi
The Cryosphere, 18, 205–229, https://doi.org/10.5194/tc-18-205-2024,https://doi.org/10.5194/tc-18-205-2024, 2024
Short summary
Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model
Yushi Morioka, Liping Zhang, Thomas L. Delworth, Xiaosong Yang, Fanrong Zeng, Masami Nonaka, and Swadhin K. Behera
The Cryosphere, 17, 5219–5240, https://doi.org/10.5194/tc-17-5219-2023,https://doi.org/10.5194/tc-17-5219-2023, 2023
Short summary
Signature of the stratosphere–troposphere coupling on recent record-breaking Antarctic sea-ice anomalies
Raúl R. Cordero, Sarah Feron, Alessandro Damiani, Pedro J. Llanillo, Jorge Carrasco, Alia L. Khan, Richard Bintanja, Zutao Ouyang, and Gino Casassa
The Cryosphere, 17, 4995–5006, https://doi.org/10.5194/tc-17-4995-2023,https://doi.org/10.5194/tc-17-4995-2023, 2023
Short summary
Southern Ocean polynyas and dense water formation in a high-resolution, coupled Earth system model
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023,https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting
Steven Fons, Nathan Kurtz, and Marco Bagnardi
The Cryosphere, 17, 2487–2508, https://doi.org/10.5194/tc-17-2487-2023,https://doi.org/10.5194/tc-17-2487-2023, 2023
Short summary

Cited articles

Arakawa, M. and Maeno, N.: Mechanical strength of polycrystalline ice under uniaxial compression, Cold Reg. Sci. Technol., 26, 215–226, https://doi.org/10.1016/S0165-232X(97)00018-9, 1997. 
Arctic Council: Arctic Marine Shipping Assessment 2009 Report, second printing, Arctic Council, https://oaarchive.arctic-council.org/handle/11374/54 (last access: 18 May 2022​​​​​​​), 2009. 
Bonath, V., Edeskär, T., Lintzén, N., Fransson, L., and Cwirzen, A.: Properties of ice from first-year ridges in the Barents Sea and Fram Strait, Cold Reg. Sci. Technol., 168, 102890, https://doi.org/10.1016/j.coldregions.2019.102890, 2019. 
Carnat, G., Papakyriakou, T., Geilfus, N. X., Brabant, F., Delille, B., Vancoppenolle, M., Gilson, G., Zhou, J., and Tison, J.: Investigations on physical and textural properties of Arctic first-year sea ice in the Amundsen Gulf, Canada, November 2007–June 2008 (IPY-CFL system study), J. Glaciol., 59, 819–837, https://doi.org/10.3189/2013JoG12J148, 2013. 
Clem, K. R., Fogt, R. L., Turner, J., Lintner, B. R., Marshall, G. J., Miller, J. R., and Renwick, J. A.: Record warming at the South Pole during the past three decades, Nat. Clim. Change, 10, 762–770, https://doi.org/10.1038/s41558-020-0815-z, 2020. 
Download
Short summary
A large area of landfast sea ice exists in the Prydz Bay, and it is always a safety concern to transport cargos on ice to the research stations. Knowing the mechanical properties of sea ice is helpful to solve the issue; however, these data are rarely reported in this region. We explore the effects of sea ice physical properties on the flexural strength, effective elastic modulus, and uniaxial compressive strength, which gives new insights into assessing the bearing capacity of landfast sea ice.