Research article
05 May 2022
Research article
| 05 May 2022
Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya
Stefan Fugger et al.
Related authors
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-81, https://doi.org/10.5194/tc-2022-81, 2022
Preprint under review for TC
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behavior and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-143, https://doi.org/10.5194/nhess-2022-143, 2022
Preprint under review for NHESS
Short summary
Short summary
Floods from glacial lakes (GLOFs) attracted increased research attention recently. In this contribution, we review GLOF research papers published between 2017 and 2021 and compliment the analysis with research community insights gained from the 2021 Global GLOF conference we organized. Transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Loris Compagno, Matthias Huss, Evan Stewart Miles, Michael James McCarthy, Harry Zekollari, Amaury Dehecq, Francesca Pellicciotti, and Daniel Farinotti
The Cryosphere, 16, 1697–1718, https://doi.org/10.5194/tc-16-1697-2022, https://doi.org/10.5194/tc-16-1697-2022, 2022
Short summary
Short summary
We present a new approach for modelling debris area and thickness evolution. We implement the module into a combined mass-balance ice-flow model, and we apply it using different climate scenarios to project the future evolution of all glaciers in High Mountain Asia. We show that glacier geometry, volume, and flow velocity evolve differently when modelling explicitly debris cover compared to glacier evolution without the debris-cover module, demonstrating the importance of accounting for debris.
Marin Kneib, Evan S. Miles, Pascal Buri, Stefan Fugger, Michael McCarthy, Thomas E. Shaw, Zhao Chuanxi, Martin Truffer, Matthew J. Westoby, Wei Yang, and Francesca Pellicciotti
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-81, https://doi.org/10.5194/tc-2022-81, 2022
Preprint under review for TC
Short summary
Short summary
Ice cliffs are believed to be important contributors to the melt of debris-covered glaciers but this has rarely been quantified as the cliffs can disappear or rapidly expand within a few weeks. We used photogrammetry techniques to quantify the weekly evolution and melt of four cliffs. We found that their behavior and melt during the monsoon is strongly controlled by supraglacial debris, streams and ponds, thus providing valuable insights on the melt and evolution of debris-covered glaciers.
Chuanxi Zhao, Wei Yang, Matthew Westoby, Baosheng An, Guangjian Wu, Weicai Wang, Zhongyan Wang, Yongjie Wang, and Stuart Dunning
The Cryosphere, 16, 1333–1340, https://doi.org/10.5194/tc-16-1333-2022, https://doi.org/10.5194/tc-16-1333-2022, 2022
Short summary
Short summary
On 22 March 2021, a ~ 50 Mm 3 ice-rock avalanche occurred from 6500 m a.s.l. in the Sedongpu basin, southeastern Tibet. It caused temporary blockage of the Yarlung Tsangpo river, a major tributary of the Brahmaputra. We utilize field investigations, high-resolution satellite imagery, seismic records, and meteorological data to analyse the evolution of the 2021 event and its impact, discuss potential drivers, and briefly reflect on implications for the sustainable development of the region.
Wouter J. Smolenaars, Sanita Dhaubanjar, Muhammad K. Jamil, Arthur Lutz, Walter Immerzeel, Fulco Ludwig, and Hester Biemans
Hydrol. Earth Syst. Sci., 26, 861–883, https://doi.org/10.5194/hess-26-861-2022, https://doi.org/10.5194/hess-26-861-2022, 2022
Short summary
Short summary
The arid plains of the lower Indus Basin rely heavily on the water provided by the mountainous upper Indus. Rapid population growth in the upper Indus is expected to increase the water that is consumed there. This will subsequently reduce the water that is available for the downstream plains, where the population and water demand are also expected to grow. In future, this may aggravate tensions over the division of water between the countries that share the Indus Basin.
Stefano Manzoni, Simone Fatichi, Xue Feng, Gabriel G. Katul, Danielle Way, and Giulia Vico
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-36, https://doi.org/10.5194/bg-2022-36, 2022
Revised manuscript under review for BG
Short summary
Short summary
Increasing atmospheric carbon dioxide (CO2) causes leaves to close their stomata (through which water evaporates), but also promote leaf growth. Even if individual leaves save water, how much will be consumed by a whole plant with possibly more leaves? Using two different mathematical models, we show that plant stands that are not very dense and can grow more leaves will benefit from higher CO2 by photosynthesizing more, while adjusting their stomata to consume similar amounts of water.
Arindan Mandal, Thupstan Angchuk, Mohd Farooq Azam, Alagappan Ramanathan, Patrick Wagnon, Mohd Soheb, and Chetan Singh
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-386, https://doi.org/10.5194/tc-2021-386, 2022
Preprint under review for TC
Short summary
Short summary
Snow sublimation is an important component of glacier surface mass balance; however, seldom studied in detail in the Himalayan region owing to data scarcity. We present an 11-year long wintertime snow surface energy balance and sublimation characteristics at the Chhota Shigri Glacier moraine site at 4863 m a.s.l. The estimated winter sublimation is 16–42 % of the winter snowfall at the study site, which signifies how sublimation is important in the Himalayan region.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Xiaowen Wang, Lin Liu, Yan Hu, Tonghua Wu, Lin Zhao, Qiao Liu, Rui Zhang, Bo Zhang, and Guoxiang Liu
Nat. Hazards Earth Syst. Sci., 21, 2791–2810, https://doi.org/10.5194/nhess-21-2791-2021, https://doi.org/10.5194/nhess-21-2791-2021, 2021
Short summary
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
Maurice van Tiggelen, Paul C. J. P. Smeets, Carleen H. Reijmer, Bert Wouters, Jakob F. Steiner, Emile J. Nieuwstraten, Walter W. Immerzeel, and Michiel R. van den Broeke
The Cryosphere, 15, 2601–2621, https://doi.org/10.5194/tc-15-2601-2021, https://doi.org/10.5194/tc-15-2601-2021, 2021
Short summary
Short summary
We developed a method to estimate the aerodynamic properties of the Greenland Ice Sheet surface using either UAV or ICESat-2 elevation data. We show that this new method is able to reproduce the important spatiotemporal variability in surface aerodynamic roughness, measured by the field observations. The new maps of surface roughness can be used in atmospheric models to improve simulations of surface turbulent heat fluxes and therefore surface energy and mass balance over rough ice worldwide.
Martina Botter, Matthias Zeeman, Paolo Burlando, and Simone Fatichi
Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, https://doi.org/10.5194/bg-18-1917-2021, 2021
Thomas E. Shaw, Wei Yang, Álvaro Ayala, Claudio Bravo, Chuanxi Zhao, and Francesca Pellicciotti
The Cryosphere, 15, 595–614, https://doi.org/10.5194/tc-15-595-2021, https://doi.org/10.5194/tc-15-595-2021, 2021
Short summary
Short summary
Near surface air temperature (Ta) is important for simulating the melting of glaciers, though its variability in space and time on mountain glaciers is still poorly understood. We combine new Ta observations on glacier in Tibet with several glacier datasets around the world to explore the applicability of an existing method to estimate glacier Ta based upon glacier flow distance. We make a first step at generalising a method and highlight the remaining unknowns for this field of research.
Yanbin Lei, Tandong Yao, Lide Tian, Yongwei Sheng, Lazhu, Jingjuan Liao, Huabiao Zhao, Wei Yang, Kun Yang, Etienne Berthier, Fanny Brun, Yang Gao, Meilin Zhu, and Guangjian Wu
The Cryosphere, 15, 199–214, https://doi.org/10.5194/tc-15-199-2021, https://doi.org/10.5194/tc-15-199-2021, 2021
Short summary
Short summary
Two glaciers in the Aru range, western Tibetan Plateau (TP), collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The impact of the glacier collapses on the two downstream lakes (i.e., Aru Co and Memar Co) is investigated in terms of lake morphology, water level and water temperature. Our results provide a baseline in understanding the future lake response to glacier melting on the TP under a warming climate.
Lianyu Yu, Simone Fatichi, Yijian Zeng, and Zhongbo Su
The Cryosphere, 14, 4653–4673, https://doi.org/10.5194/tc-14-4653-2020, https://doi.org/10.5194/tc-14-4653-2020, 2020
Short summary
Short summary
The role of soil water and heat transfer physics in portraying the function of a cold region ecosystem was investigated. We found that explicitly considering the frozen soil physics and coupled water and heat transfer is important in mimicking soil hydrothermal dynamics. The presence of soil ice can alter the vegetation leaf onset date and deep leakage. Different complexity in representing vadose zone physics does not considerably affect interannual energy, water, and carbon fluxes.
Remco J. de Kok, Philip D. A. Kraaijenbrink, Obbe A. Tuinenburg, Pleun N. J. Bonekamp, and Walter W. Immerzeel
The Cryosphere, 14, 3215–3234, https://doi.org/10.5194/tc-14-3215-2020, https://doi.org/10.5194/tc-14-3215-2020, 2020
Short summary
Short summary
Glaciers worldwide are shrinking, yet glaciers in parts of High Mountain Asia are growing. Using models of the regional climate and glacier growth, we reproduce the observed patterns of glacier growth and shrinkage in High Mountain Asia of the last decades. Increases in snow, in part from water that comes from lowland agriculture, have probably been more important than changes in temperature to explain the growing glaciers. We now better understand changes in the crucial mountain water cycle.
Álvaro Ayala, David Farías-Barahona, Matthias Huss, Francesca Pellicciotti, James McPhee, and Daniel Farinotti
The Cryosphere, 14, 2005–2027, https://doi.org/10.5194/tc-14-2005-2020, https://doi.org/10.5194/tc-14-2005-2020, 2020
Short summary
Short summary
We reconstruct past glacier changes (1955–2016) and estimate the committed ice loss in the Maipo River basin (semi-arid Andes of Chile), with a focus on glacier runoff. We found that glacier volume has decreased by one-fifth since 1955 and that glacier runoff shows a sequence of decreasing maxima starting in a severe drought in 1968. As meltwater originating from the Andes plays a key role in this dry region, our results can be useful for developing adaptation or mitigation strategies.
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020, https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Short summary
Drivers controlling melt of debris-covered glaciers are largely unknown. With a 3D turbulence-resolving model the impact of surface properties of debris on micrometeorological variables and the conductive heat flux is shown. Also, we show ice cliffs are local melt hot spots and that turbulent fluxes and local heat advection amplify spatial heterogeneity on the surface.This work is important for glacier mass balance modelling and for the understanding of the evolution of debris-covered glaciers.
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
Short summary
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be dry or filled to varying extents with liquid water and ice; whether debris is dry, wet, and/or icy affects how efficiently heat is conducted through debris from its surface to the ice interface. Our paper presents a new energy balance model that simulates moisture phase, evolution, and location in debris. ISBA-DEB is applied to West Changri Nup glacier in Nepal to reveal important physical processes.
Naika Meili, Gabriele Manoli, Paolo Burlando, Elie Bou-Zeid, Winston T. L. Chow, Andrew M. Coutts, Edoardo Daly, Kerry A. Nice, Matthias Roth, Nigel J. Tapper, Erik Velasco, Enrique R. Vivoni, and Simone Fatichi
Geosci. Model Dev., 13, 335–362, https://doi.org/10.5194/gmd-13-335-2020, https://doi.org/10.5194/gmd-13-335-2020, 2020
Short summary
Short summary
We developed a novel urban ecohydrological model (UT&C v1.0) that is able to account for the effects of different plant types on the urban climate and hydrology, as well as the effects of the urban environment on plant well-being and performance. UT&C performs well when compared against energy flux measurements in three cities in different climates (Singapore, Melbourne, Phoenix) and can be used to assess urban climate mitigation strategies that aim at increasing or changing urban green cover.
Nadav Peleg, Chris Skinner, Simone Fatichi, and Peter Molnar
Earth Surf. Dynam., 8, 17–36, https://doi.org/10.5194/esurf-8-17-2020, https://doi.org/10.5194/esurf-8-17-2020, 2020
Short summary
Short summary
Extreme rainfall is expected to intensify with increasing temperatures, which will likely affect rainfall spatial structure. The spatial variability of rainfall can affect streamflow and sediment transport volumes and peaks. The sensitivity of the hydro-morphological response to changes in the structure of heavy rainfall was investigated. It was found that the morphological components are more sensitive to changes in rainfall spatial structure in comparison to the hydrological components.
Louise Mimeau, Michel Esteves, Isabella Zin, Hans-Werner Jacobi, Fanny Brun, Patrick Wagnon, Devesh Koirala, and Yves Arnaud
Hydrol. Earth Syst. Sci., 23, 3969–3996, https://doi.org/10.5194/hess-23-3969-2019, https://doi.org/10.5194/hess-23-3969-2019, 2019
Short summary
Short summary
In a context of climate change, the quantification of the contributions of glacier melt, snowmelt, and rain to the river streamflow is a key issue for assessing the current and future water resource availability. This study discusses the representation of the snow and glacier processes in hydrological models and its impact on the estimated flow components, and also addresses the issue of defining the glacier contribution to the river streamflow.
Alexandra Giese, Steven Arcone, Robert Hawley, Gabriel Lewis, and Patrick Wagnon
The Cryosphere Discuss., https://doi.org/10.5194/tc-2019-60, https://doi.org/10.5194/tc-2019-60, 2019
Preprint withdrawn
Short summary
Short summary
This manuscript defines a novel method of determining the depth of debris on a debris-covered glacier using 960 MHz Ground-Penetrating Radar, under circumstances which prevent the detection of a coherent reflection at the debris-ice interface. Our method was verified using full-scale debris-analog experiments and uses internal scattering within the debris layer. We use this method to measure debris thickness on Changri Nup Glacier, in the Nepal Himalaya.
Teun van Woerkom, Jakob F. Steiner, Philip D. A. Kraaijenbrink, Evan S. Miles, and Walter W. Immerzeel
Earth Surf. Dynam., 7, 411–427, https://doi.org/10.5194/esurf-7-411-2019, https://doi.org/10.5194/esurf-7-411-2019, 2019
Short summary
Short summary
Using data obtained from multiple UAV flights over a debris-covered glacier in the Himalaya between 2013 and 2018, we show that the adjacent moraines erode at rates of up to 16 cm per year, contributing to this debris cover. With retreating ice and resulting instability of moraines, this causes the glacier to cover a narrow zone along the lateral moraines in ever-thicker layers of rocks, resulting in a possible future decrease of local melt.
Martina Botter, Paolo Burlando, and Simone Fatichi
Hydrol. Earth Syst. Sci., 23, 1885–1904, https://doi.org/10.5194/hess-23-1885-2019, https://doi.org/10.5194/hess-23-1885-2019, 2019
Short summary
Short summary
The study focuses on the solute export from rivers with the purpose of discerning the impacts of anthropic activities and catchment characteristics on water quality. The results revealed a more detectable impact of the anthropic activities than of the catchment characteristics. The solute export follows different dynamics depending on catchment characteristics and mainly on solute-specific properties. The export modality is consistent across different catchments only for a minority of solutes.
Evan S. Miles, C. Scott Watson, Fanny Brun, Etienne Berthier, Michel Esteves, Duncan J. Quincey, Katie E. Miles, Bryn Hubbard, and Patrick Wagnon
The Cryosphere, 12, 3891–3905, https://doi.org/10.5194/tc-12-3891-2018, https://doi.org/10.5194/tc-12-3891-2018, 2018
Short summary
Short summary
We use high-resolution satellite imagery and field visits to assess the growth and drainage of a lake on Changri Shar Glacier in the Everest region, and its impact. The lake filled and drained within 3 months, which is a shorter interval than would be detected by standard monitoring protocols, but forced re-routing of major trails in several locations. The water appears to have flowed beneath Changri Shar and Khumbu glaciers in an efficient manner, suggesting pre-existing developed flow paths.
René Reijer Wijngaard, Hester Biemans, Arthur Friedrich Lutz, Arun Bhakta Shrestha, Philippus Wester, and Walter Willem Immerzeel
Hydrol. Earth Syst. Sci., 22, 6297–6321, https://doi.org/10.5194/hess-22-6297-2018, https://doi.org/10.5194/hess-22-6297-2018, 2018
Short summary
Short summary
This study assesses the combined impacts of climate change and socio-economic developments on the future water gap for the Indus, Ganges, and Brahmaputra river basins until the end of the 21st century. The results show that despite projected increases in surface water availability, the strong socio-economic development and associated increase in water demand will likely lead to an increase in the water gap, indicating that socio-economic changes will be the key driver in the evolving water gap.
Fanny Brun, Patrick Wagnon, Etienne Berthier, Joseph M. Shea, Walter W. Immerzeel, Philip D. A. Kraaijenbrink, Christian Vincent, Camille Reverchon, Dibas Shrestha, and Yves Arnaud
The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, https://doi.org/10.5194/tc-12-3439-2018, 2018
Short summary
Short summary
On debris-covered glaciers, steep ice cliffs experience dramatically enhanced melt compared with the surrounding debris-covered ice. Using field measurements, UAV data and submetre satellite imagery, we estimate the cliff contribution to 2 years of ablation on a debris-covered tongue in Nepal, carefully taking into account ice dynamics. While they occupy only 7 to 8 % of the tongue surface, ice cliffs contributed to 23 to 24 % of the total tongue ablation.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Sam Herreid and Francesca Pellicciotti
The Cryosphere, 12, 1811–1829, https://doi.org/10.5194/tc-12-1811-2018, https://doi.org/10.5194/tc-12-1811-2018, 2018
Short summary
Short summary
Ice cliffs are steep, bare ice features that can develop on the lower reaches of a glacier where the surface is covered by a layer of rock debris. Debris cover generally slows the rate of glacier melt, but ice cliffs act as small windows of higher rates of melt. It is therefore important to map these features, a process which we have automated. On a global scale, ice cliffs have variable geometries and characteristics. The method we have developed can accommodate this variability automatically.
Jakob F. Steiner, Philip D. A. Kraaijenbrink, Sergiu G. Jiduc, and Walter W. Immerzeel
The Cryosphere, 12, 95–101, https://doi.org/10.5194/tc-12-95-2018, https://doi.org/10.5194/tc-12-95-2018, 2018
Short summary
Short summary
Glaciers that once every few years or decades suddenly advance in length – also known as surging glaciers – are found in many glaciated regions in the world. In the Karakoram glacier tongues are additionally located at low altitudes and relatively close to human settlements. We investigate a very recent and extremely rapid surge in the region that has caused a lake to form in the main valley with possible risks for downstream communities.
Ann V. Rowan, Lindsey Nicholson, Emily Collier, Duncan J. Quincey, Morgan J. Gibson, Patrick Wagnon, David R. Rounce, Sarah S. Thompson, Owen King, C. Scott Watson, Tristram D. L. Irvine-Fynn, and Neil F. Glasser
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-239, https://doi.org/10.5194/tc-2017-239, 2017
Revised manuscript not accepted
Short summary
Short summary
Many glaciers in the Himalaya are covered with thick layers of rock debris that acts as an insulating blanket and so reduces melting of the underlying ice. Little is known about how melt beneath supraglacial debris varies across glaciers and through the monsoon season. We measured debris temperatures across three glaciers and several years to investigate seasonal trends, and found that sub-debris ice melt can be predicted using a temperature–depth relationship with surface temperature data.
Katie E. Miles, Bryn Hubbard, Tristam D. L. Irvine-Fynn, Evan S. Miles, Duncan J. Quincey, and Ann V. Rowan
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-210, https://doi.org/10.5194/tc-2017-210, 2017
Preprint withdrawn
Short summary
Short summary
The production and routing of meltwater through glaciers is important because that water influences glacier sliding, and represents a resource in some instances and a hazard in others. Despite this importance, very little is known about the hydrology of debris-covered glaciers, which are commonly located at high altitudes. Here, we present a review of the hydrology of debris-covered glaciers, summarizing the current state of knowledge and identify potential future research priorities.
Emmy E. Stigter, Niko Wanders, Tuomo M. Saloranta, Joseph M. Shea, Marc F. P. Bierkens, and Walter W. Immerzeel
The Cryosphere, 11, 1647–1664, https://doi.org/10.5194/tc-11-1647-2017, https://doi.org/10.5194/tc-11-1647-2017, 2017
Koji Fujita, Hiroshi Inoue, Takeki Izumi, Satoru Yamaguchi, Ayako Sadakane, Sojiro Sunako, Kouichi Nishimura, Walter W. Immerzeel, Joseph M. Shea, Rijan B. Kayastha, Takanobu Sawagaki, David F. Breashears, Hiroshi Yagi, and Akiko Sakai
Nat. Hazards Earth Syst. Sci., 17, 749–764, https://doi.org/10.5194/nhess-17-749-2017, https://doi.org/10.5194/nhess-17-749-2017, 2017
Short summary
Short summary
We create multiple DEMs from photographs taken by helicopter and UAV and reveal the deposit volumes over the Langtang village, which was destroyed by avalanches induced by the Gorkha earthquake. Estimated snow depth in the source area is consistent with anomalously large snow depths observed at a neighboring glacier. Comparing with a long-term observational data, we conclude that this anomalous winter snow amplified the disaster induced by the 2015 Gorkha earthquake in Nepal.
Nadav Peleg, Frank Blumensaat, Peter Molnar, Simone Fatichi, and Paolo Burlando
Hydrol. Earth Syst. Sci., 21, 1559–1572, https://doi.org/10.5194/hess-21-1559-2017, https://doi.org/10.5194/hess-21-1559-2017, 2017
Short summary
Short summary
We investigated the relative contribution of the spatial versus climatic rainfall variability for flow peaks by applying an advanced stochastic rainfall generator to simulate rainfall for a small urban catchment and simulate flow dynamics in the sewer system. We found that the main contribution to the total flow variability originates from the natural climate variability. The contribution of spatial rainfall variability to the total flow variability was found to increase with return periods.
Walter Immerzeel, Philip Kraaijenbrink, and Liss Andreassen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2016-292, https://doi.org/10.5194/tc-2016-292, 2017
Revised manuscript not accepted
Short summary
Short summary
Unmanned Aerial Vehicles (UAV) have become increasingly popular in environmental monitoring. In this study we use a UAV to derive a very detailed digital elevation model (DEM) of Storbreen in Norway. We compare our results with a past DEM to derive the mass balance of this glacier. Our results confirm strong mass loss and retreat of continental glaciers in southern Norway and we conclude that UAVs are effective tools in stuyding mountain glaciers at a high level of detail.
Bahareh Kianfar, Simone Fatichi, Athansios Paschalis, Max Maurer, and Peter Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-536, https://doi.org/10.5194/hess-2016-536, 2016
Revised manuscript has not been submitted
Short summary
Short summary
Raingauge observations show a large variability in extreme rainfall depths in the current climate. Climate model predictions of extreme rainfall in the future have to be compared with this natural variability. Our work shows that predictions of future extreme rainfall often lie within the range of natural variability of present-day climate, and therefore predictions of change are highly uncertain. We demonstrate this by using stochastic rainfall models and 10-min rainfall data in Switzerland.
Christian Vincent, Patrick Wagnon, Joseph M. Shea, Walter W. Immerzeel, Philip Kraaijenbrink, Dibas Shrestha, Alvaro Soruco, Yves Arnaud, Fanny Brun, Etienne Berthier, and Sonam Futi Sherpa
The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, https://doi.org/10.5194/tc-10-1845-2016, 2016
Short summary
Short summary
Approximately 25 % of the glacierized area in the Everest region is covered by debris, yet the surface mass balance of these glaciers has not been measured directly. From terrestrial photogrammetry and unmanned aerial vehicle (UAV) methods, this study shows that the ablation is strongly reduced by the debris cover. The insulating effect of the debris cover has a larger effect on total mass loss than the enhanced ice ablation due to supraglacial ponds and exposed ice cliffs.
W. W. Immerzeel, N. Wanders, A. F. Lutz, J. M. Shea, and M. F. P. Bierkens
Hydrol. Earth Syst. Sci., 19, 4673–4687, https://doi.org/10.5194/hess-19-4673-2015, https://doi.org/10.5194/hess-19-4673-2015, 2015
Short summary
Short summary
The water resources of the upper Indus river basin (UIB) are important for millions of people, yet little is known about the rain and snow fall in the high-altitude regions because of the inaccessibility, the climatic complexity and the lack of observations. In this study we use mass balance of glaciers to reconstruct the amount of precipitation in the UIB and we conclude that this amount is much higher than previously thought.
C. L. Fyffe, B. W. Brock, M. P. Kirkbride, D. W. F. Mair, N. S. Arnold, C. Smiraglia, G. Diolaiuti, and F. Diotri
The Cryosphere Discuss., https://doi.org/10.5194/tcd-9-5373-2015, https://doi.org/10.5194/tcd-9-5373-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Dye-tracing of a debris-covered glacier revealed that its hydrological system was not similar to that of a debris-free glacier. Beneath the thick debris covering the lower glacier the drainage system was mainly inefficient, probably due lower sub-debris melt rates causing a lack of the large inputs required to open efficient channels. However, efficient channels opened by the large melt inputs from the debris-free areas did route water from the moulins above the thick debris.
E. Collier, F. Maussion, L. I. Nicholson, T. Mölg, W. W. Immerzeel, and A. B. G. Bush
The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015, https://doi.org/10.5194/tc-9-1617-2015, 2015
Short summary
Short summary
We investigate the impact of surface debris on glacier energy and mass fluxes and on atmosphere-glacier feedbacks in the Karakoram range, by including debris in an interactively coupled atmosphere-glacier model. The model is run from 1 May to 1 October 2004, with a simple specification of debris thickness. We find an appreciable reduction in ablation that exceeds 5m w.e. on glacier tongues, as well as significant alterations to near-surface air temperatures and boundary layer dynamics.
W. Terink, A. F. Lutz, G. W. H. Simons, W. W. Immerzeel, and P. Droogers
Geosci. Model Dev., 8, 2009–2034, https://doi.org/10.5194/gmd-8-2009-2015, https://doi.org/10.5194/gmd-8-2009-2015, 2015
Short summary
Short summary
This paper introduces the Spatial Processes in HYdrology (SPHY) model (v2.0), its underlying concepts, and some example applications. SPHY has the flexibility to be applied in a wide range of hydrologic applications, on various scales, and can easily be implemented. The most relevant hydrologic processes integrated in the SPHY model are rainfall--runoff, cryosphere processes, evapotranspiration processes, the dynamic evolution of evolution of vegetation cover, and lake/reservoir outflow.
P. Molnar, S. Fatichi, L. Gaál, J. Szolgay, and P. Burlando
Hydrol. Earth Syst. Sci., 19, 1753–1766, https://doi.org/10.5194/hess-19-1753-2015, https://doi.org/10.5194/hess-19-1753-2015, 2015
Short summary
Short summary
We present an empirical study of the rates of increase in precipitation intensity with air temperature using high-resolution 10 min precipitation records in Switzerland. We estimated the scaling rates for lightning (convective) and non-lightning event subsets and show that scaling rates are between 7 and 14%/C for convective rain and that mixing of storm types exaggerates the relations to air temperature. Doubled CC rates reported by other studies are an exception in our data set.
M. F. Azam, P. Wagnon, C. Vincent, AL. Ramanathan, V. Favier, A. Mandal, and J. G. Pottakkal
The Cryosphere, 8, 2195–2217, https://doi.org/10.5194/tc-8-2195-2014, https://doi.org/10.5194/tc-8-2195-2014, 2014
Short summary
Short summary
This paper presents point-scale surface energy balance on Chhota Shigri Glacier, Western Himalaya, India. Energy is available for melting only in summer-monsoon. Net all-wave radiation is the main heat flux towards the glacier surface accounting for 80% of the total melting energy followed by sensible (13%), latent (5%) turbulent and conductive (2%) heat fluxes. The intensity of summer-monsoon snowfalls is found among the most important drivers controlling the mass balance of this glacier.
P. Wagnon, C. Vincent, Y. Arnaud, E. Berthier, E. Vuillermoz, S. Gruber, M. Ménégoz, A. Gilbert, M. Dumont, J. M. Shea, D. Stumm, and B. K. Pokhrel
The Cryosphere, 7, 1769–1786, https://doi.org/10.5194/tc-7-1769-2013, https://doi.org/10.5194/tc-7-1769-2013, 2013
Q. Liu, C. Mayer, and S. Liu
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-4545-2013, https://doi.org/10.5194/tcd-7-4545-2013, 2013
Revised manuscript not accepted
Y. Zhang, Y. Hirabayashi, K. Fujita, S. Liu, and Q. Liu
The Cryosphere Discuss., https://doi.org/10.5194/tcd-7-2413-2013, https://doi.org/10.5194/tcd-7-2413-2013, 2013
Revised manuscript not accepted
C. Vincent, Al. Ramanathan, P. Wagnon, D. P. Dobhal, A. Linda, E. Berthier, P. Sharma, Y. Arnaud, M. F. Azam, P. G. Jose, and J. Gardelle
The Cryosphere, 7, 569–582, https://doi.org/10.5194/tc-7-569-2013, https://doi.org/10.5194/tc-7-569-2013, 2013
S. Fatichi, S. Rimkus, P. Burlando, R. Bordoy, and P. Molnar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-3743-2013, https://doi.org/10.5194/hessd-10-3743-2013, 2013
Revised manuscript not accepted
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, https://doi.org/10.5194/tc-7-81-2013, 2013
Related subject area
Discipline: Glaciers | Subject: Energy Balance Obs/Modelling
SNICAR-ADv4: a physically based radiative transfer model to represent the spectral albedo of glacier ice
Cloud forcing of surface energy balance from in-situ measurements in diverse mountain glacier environments
Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach
Mass balance modelling and climate sensitivity of Saskatchewan Glacier, western Canada
Seasonal and interannual variability of melt-season albedo at Haig Glacier, Canadian Rocky Mountains
Surface energy fluxes on Chilean glaciers: measurements and models
Using 3D turbulence-resolving simulations to understand the impact of surface properties on the energy balance of a debris-covered glacier
Incorporating moisture content in surface energy balance modeling of a debris-covered glacier
Surface melt and the importance of water flow – an analysis based on high-resolution unmanned aerial vehicle (UAV) data for an Arctic glacier
Glacio-hydrological melt and run-off modelling: application of a limits of acceptability framework for model comparison and selection
Chloe A. Whicker, Mark G. Flanner, Cheng Dang, Charles S. Zender, Joseph M. Cook, and Alex S. Gardner
The Cryosphere, 16, 1197–1220, https://doi.org/10.5194/tc-16-1197-2022, https://doi.org/10.5194/tc-16-1197-2022, 2022
Short summary
Short summary
Snow and ice surfaces are important to the global climate. Current climate models use measurements to determine the reflectivity of ice. This model uses physical properties to determine the reflectivity of snow, ice, and darkly pigmented impurities that reside within the snow and ice. Therefore, the modeled reflectivity is more accurate for snow/ice columns under varying climate conditions. This model paves the way for improvements in the portrayal of snow and ice within global climate models.
Jonathan P. Conway, Jakob Abermann, Liss M. Andreassen, M. Farooq Azam, Nicolas J. Cullen, Noel Fitzpatrick, Rianne Giesen, Kirsty Langley, Shelley MacDonell, Thomas Mölg, Valentina Radic, Carleen H. Reijmer, and Jean-Emmanuel Sicart
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-24, https://doi.org/10.5194/tc-2022-24, 2022
Revised manuscript accepted for TC
Short summary
Short summary
We used data from automatic weather stations on 16 glaciers to show how clouds influence glacier melt in different climates around the world. We found surface melt was always more frequent when it was cloudy but was not universally faster or slower than when there were clear-skies. Also, clouds were related to air temperature in opposite ways in different climates – warmer during cloud in cold climates and vice versa. These results will help us improve how we model past and future glacier melt.
Enrico Mattea, Horst Machguth, Marlene Kronenberg, Ward van Pelt, Manuela Bassi, and Martin Hoelzle
The Cryosphere, 15, 3181–3205, https://doi.org/10.5194/tc-15-3181-2021, https://doi.org/10.5194/tc-15-3181-2021, 2021
Short summary
Short summary
In our study we find that climate change is affecting the high-alpine Colle Gnifetti glacier (Swiss–Italian Alps) with an increase in melt amounts and ice temperatures.
In the near future this trend could threaten the viability of the oldest ice core record in the Alps.
To reach our conclusions, for the first time we used the meteorological data of the highest permanent weather station in Europe (Capanna Margherita, 4560 m), together with an advanced numeric simulation of the glacier.
Christophe Kinnard, Olivier Larouche, Michael N. Demuth, and Brian Menounos
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-109, https://doi.org/10.5194/tc-2021-109, 2021
Revised manuscript accepted for TC
Short summary
Short summary
This study implements a physically based, distributed glacier mass balance model in a context of sparse direct observations. Carefully constraining model parameters with ancillary data allowed to accurately reconstructing the mass balance of Saskatchewan Glacier over a 37-year period. We show that the mass balance sensitivity to warming is dominated by increased melting and that changes in glacier albedo and air humidity are the leading causes of increased glacier melt under warming scenarios.
Shawn J. Marshall and Kristina Miller
The Cryosphere, 14, 3249–3267, https://doi.org/10.5194/tc-14-3249-2020, https://doi.org/10.5194/tc-14-3249-2020, 2020
Short summary
Short summary
Surface-albedo measurements from 2002 to 2017 from Haig Glacier in the Canadian Rockies provide no evidence of long-term trends (i.e., the glacier does not appear to be darkening), but there are large variations in albedo over the melt season and from year to year. The glacier ice is exceptionally dark in association with forest fire fallout but is effectively cleansed by meltwater or rainfall. Summer snowfall plays an important role in refreshing the glacier surface and reducing summer melt.
Marius Schaefer, Duilio Fonseca-Gallardo, David Farías-Barahona, and Gino Casassa
The Cryosphere, 14, 2545–2565, https://doi.org/10.5194/tc-14-2545-2020, https://doi.org/10.5194/tc-14-2545-2020, 2020
Short summary
Short summary
Chile hosts glaciers in a large range of latitudes and climates. To project future ice extent, a sound quantification of the energy exchange between atmosphere and glaciers is needed. We present new data for six Chilean glaciers belonging to three glaciological zones. In the Central Andes, the main energy source for glacier melt is the incoming solar radiation, while in southern Patagonia heat provided by the mild and humid air is also important. Total melt rates are higher in Patagonia.
Pleun N. J. Bonekamp, Chiel C. van Heerwaarden, Jakob F. Steiner, and Walter W. Immerzeel
The Cryosphere, 14, 1611–1632, https://doi.org/10.5194/tc-14-1611-2020, https://doi.org/10.5194/tc-14-1611-2020, 2020
Short summary
Short summary
Drivers controlling melt of debris-covered glaciers are largely unknown. With a 3D turbulence-resolving model the impact of surface properties of debris on micrometeorological variables and the conductive heat flux is shown. Also, we show ice cliffs are local melt hot spots and that turbulent fluxes and local heat advection amplify spatial heterogeneity on the surface.This work is important for glacier mass balance modelling and for the understanding of the evolution of debris-covered glaciers.
Alexandra Giese, Aaron Boone, Patrick Wagnon, and Robert Hawley
The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, https://doi.org/10.5194/tc-14-1555-2020, 2020
Short summary
Short summary
Rocky debris on glacier surfaces is known to affect the melt of mountain glaciers. Debris can be dry or filled to varying extents with liquid water and ice; whether debris is dry, wet, and/or icy affects how efficiently heat is conducted through debris from its surface to the ice interface. Our paper presents a new energy balance model that simulates moisture phase, evolution, and location in debris. ISBA-DEB is applied to West Changri Nup glacier in Nepal to reveal important physical processes.
Eleanor A. Bash and Brian J. Moorman
The Cryosphere, 14, 549–563, https://doi.org/10.5194/tc-14-549-2020, https://doi.org/10.5194/tc-14-549-2020, 2020
Short summary
Short summary
High-resolution measurements from unmanned aerial vehicle (UAV) imagery allowed for examination of glacier melt model performance in detail at Fountain Glacier. This work capitalized on distributed measurements at 10 cm resolution to look at the spatial distribution of model errors in the ablation zone. Although the model agreed with measurements on average, strong correlation was found with surface water. The results highlight the contribution of surface water flow to melt at this location.
Jonathan D. Mackay, Nicholas E. Barrand, David M. Hannah, Stefan Krause, Christopher R. Jackson, Jez Everest, and Guðfinna Aðalgeirsdóttir
The Cryosphere, 12, 2175–2210, https://doi.org/10.5194/tc-12-2175-2018, https://doi.org/10.5194/tc-12-2175-2018, 2018
Short summary
Short summary
We apply a framework to compare and objectively accept or reject competing melt and run-off process models. We found no acceptable models. Furthermore, increasing model complexity does not guarantee better predictions. The results highlight model selection uncertainty and the need for rigorous frameworks to identify deficiencies in competing models. The application of this approach in the future will help to better quantify model prediction uncertainty and develop improved process models.
Cited articles
Aizen, V., Aizen, E., and Nikitin, S.: Glacier regime on the northern slope of
the Himalaya (Xixibangma glaciers), Quatern. Int., 97, 27–39,
2002. a
Anderson, B. and Mackintosh, A.: Controls on mass balance sensitivity of
maritime glaciers in the Southern Alps, New Zealand: the role of debris
cover, J. Geophys. Res.-Earth, 117, https://doi.org/10.1029/2011JF002064, 2012. a
Azam, M. F., Wagnon, P., Vincent, C., Ramanathan, AL., Favier, V., Mandal, A., and Pottakkal, J. G.: Processes governing the mass balance of Chhota Shigri Glacier (western Himalaya, India) assessed by point-scale surface energy balance measurements, The Cryosphere, 8, 2195–2217, https://doi.org/10.5194/tc-8-2195-2014, 2014. a
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological
budget: Spatiotemporal distribution of snowmelt and rainfall and their impact
on river discharge, J. Geophys. Res.-Earth, 115,
https://doi.org/10.1029/2009JF001426, 2010. a
Botter, M., Zeeman, M., Burlando, P., and Fatichi, S.: Impacts of fertilization on grassland productivity and water quality across the European Alps under current and warming climate: insights from a mechanistic model, Biogeosciences, 18, 1917–1939, https://doi.org/10.5194/bg-18-1917-2021, 2021. a
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization
of albedo variations at Haut Glacier d’Arolla, Switzerland, J.
Glaciol., 46, 675–688, 2000. a
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, 2017. a
Collier, E., Nicholson, L. I., Brock, B. W., Maussion, F., Essery, R., and Bush, A. B. G.: Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach, The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, 2014. a, b, c
Collier, E., Maussion, F., Nicholson, L. I., Mölg, T., Immerzeel, W. W., and Bush, A. B. G.: Impact of debris cover on glacier ablation and atmosphere–glacier feedbacks in the Karakoram, The Cryosphere, 9, 1617–1632, https://doi.org/10.5194/tc-9-1617-2015, 2015. a, b
Cuffey, K. M. and Paterson, W. S. B.: The physics of glaciers, Academic Press, 4th Edition,
ISBN 9780123694614,
2010. a
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H.,
Maussion, F., and Pandit, A.: A consensus estimate for the ice thickness
distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173, 2019. a
Farinotti, D., Immerzeel, W. W., de Kok, R. J., Quincey, D. J., and Dehecq, A.:
Manifestations and mechanisms of the Karakoram glacier Anomaly, Nat.
Geosci., 13, 8–16, 2020. a
Fatichi, S., Ivanov, V. Y., and Caporali, E.: A mechanistic ecohydrological
model to investigate complex interactions in cold and warm water-controlled
environments: 1. Theoretical framework and plot-scale analysis, J.
Adv. Model. Earth Sys., 4, https://doi.org/10.1029/2011MS000086, 2012. a
Fugger, S., Fyffe, C., Fatichi, S., Miles, E., McCarthy, M., Shaw, T. E., Ding, B., Yang, W., Wagnon, P., Immerzee, W., and Liu, Q.: Understanding monsoon controls on the energy and mass balance of glaciers in the Central and Eastern Himalaya, Zenodo [data set and code], https://doi.org/10.5281/zenodo.6280986, 2022. a
Fujita, K. and Sakai, A.: Modelling runoff from a Himalayan debris-covered glacier, Hydrol. Earth Syst. Sci., 18, 2679–2694, https://doi.org/10.5194/hess-18-2679-2014, 2014. a
Fyffe, C. L., Woodget, A. S., Kirkbride, M. P., Deline, P., Westoby, M. J., and
Brock, B. W.: Processes at the margins of supraglacial debris cover:
quantifying dirty ice ablation and debris redistribution, Earth Surf.
Proc. Land., 45, 2272–2290, https://doi.org/10.1002/esp.4879, 2020. a
Gardelle, J., Berthier, E., and Arnaud, Y.: Slight mass gain of Karakoram
glaciers in the early twenty-first century, Nat. Geosci., 5, 322–325,
2012. a
Giese, A., Boone, A., Wagnon, P., and Hawley, R.: Incorporating moisture content in surface energy balance modeling of a debris-covered glacier, The Cryosphere, 14, 1555–1577, https://doi.org/10.5194/tc-14-1555-2020, 2020. a, b
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth’s
glaciers, Nat. Geosci., 13, 621–627, https://doi.org/10.1038/s41561-020-0615-0, 2020. a, b
Heynen, M., Miles, E., Ragettli, S., Buri, P., Immerzeel, W. W., and
Pellicciotti, F.: Air temperature variability in a high-elevation Himalayan
catchment, Ann. Glaciol., 57, 212–222, 2016. a
ICIMOD RDS database: AWS Yala Glacier, ICIMOD [data set], https://doi.org/10.26066/RDS.1972507, 2021. a
Immerzeel, W. W., Van Beek, L., Konz, M., Shrestha, A., and Bierkens, M.:
Hydrological response to climate change in a glacierized catchment in the
Himalayas, Climatic Change, 110, 721–736, 2012. a
Immerzeel, W. W., Kraaijenbrink, P. D., Shea, J., Shrestha, A. B.,
Pellicciotti, F., Bierkens, M. F., and de Jong, S. M.: High-resolution
monitoring of Himalayan glacier dynamics using unmanned aerial vehicles,
Remote Sens. Environ., 150, 93–103, 2014. a
IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A.,
Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in
press, 2021. a, b, c
Kadel, I., Yamazaki, T., Iwasaki, T., and Abdillah, M. R.: Projection of future
monsoon precipitation over the central Himalayas by CMIP5 models under
warming scenarios, Clim. Res., 75, 1–21, 2018. a
Kaser, G., Großhauser, M., and Marzeion, B.: Contribution potential of
glaciers to water availability in different climate regimes, P.
Natl. Acad. Sci. USA, 107, 20223–20227, 2010. a
Kayastha, R. B., Ohata, T., and Ageta, Y.: Application of a mass-balance model
to a Himalayan glacier, J. Glaciol., 45, 559–567, 1999. a
Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., and Cane, M.:
Unraveling the mystery of Indian monsoon failure during El Niño, Science,
314, 115–119, 2006. a
Liao, H., Liu, Q., Zhong, Y., and Lu, X.: Landsat-based estimation of the
glacier surface temperature of Hailuogou glacier, Southeastern Tibetan
Plateau, between 1990 and 2018, Remote Sensing, 12, 2105, https://doi.org/10.3390/rs12132105, 2020. a
Luo, L.: Basic meteorological data of glacier moraine area at 24K in Galongla, Southeast Tibet station, Chinese Academy of Sciences (2018–2019), National Tibetan Plateau Data Center [data set], https://doi.org/18406.11.Meteoro.tpdc.271131, 2020. a, b
Mascart, P., Noilhan, J., and Giordani, H.: A modified parameterization of
flux-profile relationships in the surface layer using different roughness
length values for heat and momentum, Bound.-Lay. Meteorol., 72,
331–344, 1995. a
Mastrotheodoros, T., Pappas, C., Molnar, P., Burlando, P., Manoli, G., Parajka, J., Rigon, R., Szeles, B., Bottazzi, M., Hadjidoukas, P., and Fatichi, S.: More green
and less blue water in the Alps during warmer summers, Nat. Clim. Change,
10, 155–161, 2020. a
Mattson, L. E.: The influence of a debris cover on the mid-summer discharge of
Dome Glacier, Canadian Rocky Mountains, IAHS-AISH Publication, 25–34, 2000. a
Muñoz Sabater, J.: ERA5-Land monthly averaged data from 1981 to
present Copernicus Climate Change Service (C3S) Climate Data Store (CDS),
https://doi.org/10.24381/cds.68d2bb30, 2019. a
Noilhan, J. and Mahfouf, J.-F.: The ISBA land surface parameterisation scheme,
Global Planet. Change, 13, 145–159, 1996. a
Palazzi, E., Filippi, L., and von Hardenberg, J.: Insights into
elevation-dependent warming in the Tibetan Plateau-Himalayas from CMIP5 model
simulations, Clim. Dynam., 48, 3991–4008, 2017. a
Paschalis, A., Fatichi, S., Pappas, C., and Or, D.: Covariation of vegetation
and climate constrains present and future T/ET variability, Environ.
Res. Lett., 13, 104012, https://doi.org/10.1088/1748-9326/aae267, 2018. a
Pratap, B., Dobhal, D., Mehta, M., and Bhambri, R.: Influence of debris cover
and altitude on glacier surface melting: a case study on Dokriani Glacier,
central Himalaya, India, Ann. Glaciol., 56, 9–16, 2015. a
Ragettli, S., Pellicciotti, F., Immerzeel, W. W., Miles, E. S., Petersen, L.,
Heynen, M., Shea, J. M., Stumm, D., Joshi, S., and Shrestha, A.: Unraveling
the hydrology of a Himalayan catchment through integration of high resolution
in situ data and remote sensing with an advanced simulation model, Adv.
Water Resour., 78, 94–111, 2015. a, b
Rounce, D. R., Quincey, D. J., and McKinney, D. C.: Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal, The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015, 2015. a, b, c, d
Rowan, A. V., Nicholson, L. I., Quincey, D. J., Gibson, M. J., Irvine-Fynn,
T. D., Watson, C. S., Wagnon, P., Rounce, D. R., Thompson, S. S., Porter,
P. R., and Glasser, N. F.: Seasonally stable temperature gradients through supraglacial
debris in the Everest region of Nepal, Central Himalaya, J.
Glaciol., 67, 170–181,
https://doi.org/10.1017/jog.2020.100, 2020. a, b
Sakai, A. and Fujita, K.: Contrasting glacier responses to recent climate
change in high-mountain Asia, Sci. Rep., 7, 1–8, 2017. a
Scherler, D., Bookhagen, B., and Strecker, M. R.: Hillslope-glacier coupling:
The interplay of topography and glacial dynamics in High Asia, J.
Geophys. Res.-Earth, 116, https://doi.org/10.1029/2010JF001751, 2011a. a
Shah, S. S., Banerjee, A., Nainwal, H. C., and Shankar, R.: Estimation of the
total sub-debris ablation from point-scale ablation data on a debris-covered
glacier, J. Glaciol., 65, 759–769, 2019. a
Shean, D., Bhushan, S., Montesano, P., Rounce, D., Arendt, A., and Osmanoglu,
B.: A systematic, regional assessment of High Mountain Asia Glacier mass
balance, Front. Earth Sci., 7, 363, https://doi.org/10.3389/feart.2019.00363, 2020. a
Shrestha, R., Kayastha, R., and Kayastha, R.: Effect of debris on seasonal ice
melt (2016–2018) on Ponkar Glacier, Manang, Nepal, Sci. Cold Arid
Reg., 12, 261–271, 2020. a
Steiner, J. F. and Pellicciotti, F.: Variability of air temperature over a
debris-covered glacier in the Nepalese Himalaya, Ann. Glaciol., 57,
295–307, 2016. a
Stumm, D., Joshi, S. P., Gurung, T. R., and Silwal, G.: Mass balances of Yala and Rikha Samba glaciers, Nepal, from 2000 to 2017, Earth Syst. Sci. Data, 13, 3791–3818, https://doi.org/10.5194/essd-13-3791-2021, 2021. a
van den Broeke, M., van As, D., Reijmer, C., and van de Wal, R.: Assessing and
improving the quality of unattended radiation observations in Antarctica,
J. Atmos. Ocean. Tech., 21, 1417–1431, 2004. a
Verseghy, D. L.: CLASS – A Canadian land surface scheme for GCMs. I. Soil
model, Int. J. Climatol., 11, 111–133, 1991. a
Vincent, C., Wagnon, P., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P., Shrestha, D., Soruco, A., Arnaud, Y., Brun, F., Berthier, E., and Sherpa, S. F.: Reduced melt on debris-covered glaciers: investigations from Changri Nup Glacier, Nepal, The Cryosphere, 10, 1845–1858, https://doi.org/10.5194/tc-10-1845-2016, 2016. a
Wagnon, P.: IACS working group on debris-covered glaciers, AWS North Changri
Nup Glacier [data set], https://glacioclim.osug.fr/IACS-working-group-on-debris-covered-glaciers-Data (last access: 1 April 2022), 2021. a
Wijngaard, R. R., Steiner, J. F., Kraaijenbrink, P. D., Klug, C., Adhikari, S.,
Banerjee, A., Pellicciotti, F., Van Beek, L. P., Bierkens, M. F., Lutz,
A. F., and Immerzeel, W. W.: Modeling the Response of the Langtang Glacier and the
Hintereisferner to a Changing Climate Since the Little Ice Age, Front.
Earth Sci., 7, https://doi.org/10.3389/feart.2019.00143, 2019. a
Yang, W., Guo, X., Yao, T., Yang, K., Zhao, L., Li, S., and Zhu, M.: Summertime
surface energy budget and ablation modeling in the ablation zone of a
maritime Tibetan glacier, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD015183,
2011. a, b
Zhang, Y., Fujita, K., Liu, S., Liu, Q., and Nuimura, T.: Distribution of
debris thickness and its effect on ice melt at Hailuogou glacier,
southeastern Tibetan Plateau, using in situ surveys and ASTER imagery,
J. Glaciol., 57, 1147–1157, 2011. a
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during...