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The Supplementary Material includes additional descriptions of data sets, extended figures, tables, methods and analysis, and

is structured into these topics:
S1. Climatic and meteorological conditions
S2. Data selection and monsoon definition
S3. Aerodynamic resistance and aerodynamic roughness
S4. Extended results
S5. Sensitivity of seasonal flux changes to elevation and debris thickness

S6. Controls on turbulent fluxes



S1. Climatic and meteorological conditions

Average mean monthly 2 m air temperatures have a similar pattern at all study sites (Figure S1a), with a slow increase from
January to a peak between July and August, just after peak monsoon, and a steeper decline from post-monsoon into winter.
Incoming shortwave radiation (Figure S1b) shows a clear peak before monsoon onset at all sites. A smaller secondary peak is
reached just after the monsoon in October at the Central Himalayan sites, but not at the Eastern Himalayan sites. Interruptions in
monsoonal overcast conditions (break periods) seem to be more common at the eastern sites, leading to occasional secondary
peaks in incoming shortwave radiation during monsoon. LW follows a similar regime as T'a, with highest values reached
during the core monsoon (Figure Slc). The yearly cycle of wind speeds (Figure S1d) varies considerably between sites.
Common characteristics for most sites (except for Changri Nup) are that wind speeds are highest around December/January and
that monsoonal wind speeds are generally higher than during the shoulder seasons. There is a clear difference in the seasonal
evolution of precipitation between the Central (Lirung, Lantang, Yala, Changri Nup) and the Eastern Himalayan sites (24K,
Parlung No.4, Hailuogou) (Figure Sle): relatively high mean monthly precipitation during the monsoon period is contrasted
by comparably low precipitation outside of this period. The eastern sites have less pronounced monsoonal precipitation peaks,
and more gradual changes in precipitation intensities over the annual cycle. The Parlung sites (24K and Parlung No.4) have
two precipitation peaks: during spring and monsoon. Hailuogou exhibits the smoothest evolution over the annual cycle with a
clear maximum in July. A simple monsoon index (MI) is calculated for each year including the study year as the ratio between
monsoon precipitation and annual average precipitation (Figure Sle). This value tends to be higher in the Central Himalaya

compared to the sites on the South-Eastern Tibetan Plateau.



(a) Ta['C] (b) SWdown [W m2) (c) LWdown [W mZ) (d)Ws [ms™] (e) Pr [mmw.e.], MI[-]

10[LIR 300 300 I 200 08
_;g_/"\%/\_,\_m,_/’\gi\ oL SN
10[LAN 300 300 ) 200 T lors
- _/"\%/\ \.q\m./’\}w\m/m , ,/\\513 i
TofyaL 00 00 N zg.g T |08
ﬁ,/#\ %/\\—v\m/f\\1\m/1ﬁz ,Nﬁ{} o7
To/oND ‘ ®: Bie
1§/—-\\:%ﬂwi\x/ﬁ\:r_&vhu1m % gé‘:
-20 150 o 0 -
024K =~ 200 ] | 200 T los
Blo
ﬁ/ \%/\__\M—Hm/ \1\ﬁ mz/__/...___\ig:s
10[NO# 200 . ~ o ool =05
—~ .
:;g/ \%/—\&xzm_/ \1?\_____//'_\/102/-\_#—_.._‘?_2:
OMHAL e | 300 00 "\ “l 200 06
R AN SO

1]
Jan  Apr Jul Oct Jan  Apr Jul Oct Jan  Apr  Jul Oct ,‘i’an Apr Jul  Oct Jan  Apr  Jul
] 0 1] ]

o8

Figure S1. Monthly climatology derived from ERA5-Land for 1981-2019 (grey background lines), along with the monthly averages (black
lines) and the study year at each glacier (colored lines). Plotted meteorological variables are (a) mean air temperature (7'a), (b) incoming
shortwave radiation (SW)), (¢) incoming longwave radiation (LW)), (d) wind speed (W s) and (e) monthly precipitation sums (Pr). Black
vertical lines indicate the average region-wide monsoon season. Boxplots show the monsoon index (M I) over ERAS-Land period as the

fraction of monsoonal (June-September) to annual precipitation, with the colored dot indicating the value for the study year.



S2. Data selection and monsoon definition

The records and periods were chosen under considering the following criteria:

Data availability

Completeness of records (few or no data gaps)

Auvailability of complete forcing data for modelling, including precipitation records

Auvailability of ablation stake measurements or other recordings of surface lowering (e.g. Ultrasonic Depth Gauge)

Highest quality and reliability of records (No unrealistic/erroneous/disagreeing records)

Possibility to substitute from other stations when criteria 1.-4. were not met

At each site, we define the onset and recession date of monsoon based on visual inspection of the AWS records (Figures SS2

to SS8) following this procedure:

—_—

. Inspect SW | to identify a period with sustained cloud overcast and with few interruptions therein, lowering SW |

N

. Inspect LW | and compare the timing of constantly higher LW | with the above

I

. Identify the period of increased rainfall frequency and intensity

N

. Inspect the relative humidity to see whether the timing of sustained humid conditions would agree with the above

5. Identify a plateau in average air temperature and dampening of the daily air temperature amplitude

@)}

. Inspect wind speed to identify a regime change (mean and amplitude)

This was the general procedure followed, but the order was varied, when one or the other variable provided a clearer indication.
We note, that in some cases, where heavy cloud cover and rainy conditions dominate the local weather from spring to autumn
(e.g. Hailuogou, 24K) this distinction was less clear than in others, and some uncertainty remains around the exact monsoon

onset and cessation dates at those study sites.
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Figure S3. Meteoroligical observations on Langtang during the ablation season recorded by AWS; Red vertical lines indicate monsoon onset

and end; cyan indicates time steps with snow cover at the AWS location, as determined from a (>0.5)
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Figure S4. Meteoroligical observations on Yala during the ablation season recorded by AWS; Red vertical lines indicate monsoon onset and

end; cyan indicates time steps with snow cover at the AWS location, as determined from o (>0.5)
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Figure S5. Meteoroligical observations on Changri Nup during the ablation season recorded by AWS; Red vertical lines indicate monsoon

onset and end; cyan indicates time steps with snow cover at the AWS location, as determined from a (>0.5)
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Figure S6. Meteoroligical observations on 24K during the ablation season recorded by AWS; Red vertical lines indicate monsoon onset and

end; cyan indicates time steps with snow cover at the AWS location, as determined from o (>0.5)
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Figure S7. Meteoroligical observations on Parlung No.4 during the ablation season recorded by AWS; Red vertical lines indicate monsoon

onset and end; cyan indicates time steps with snow cover at the AWS location, as determined from a (>0.5)
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Figure S8. Meteoroligical observations on Hailuogou during the ablation season recorded by AWS; Red vertical lines indicate monsoon

onset and end; cyan indicates time steps with snow cover at the AWS location, as determined from a (>0.5)
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S3. Aerodynamic resistance and aerodynamic roughness

The aerodynamic resistance quantifies the ability of the surface boundary layer to resist or intensify turbulent transport of
momentum, heat and water vapor. We calculate the aerodynamic resistances to heat flux r,;, and water vapor r,,, using the
simplified solution of the Monin-Obukhov similarity theory, introduced by Mascart et al. (1995) and implemented into the
ISBA landsurface model Noilhan and Mahfouf (1996). This parameterization of the full Monin-Obukhov similarity theory
(Monin and Obukhov, 1954) is computationally less demanding, while providing concurring results (Fatichi, 2010). In T&C,
the common assumption is of a single aerodynamic resistance (e.g. Viterbo and Beljaars, 1995; Ivanov et al., 2008), is used,

such that 7,5, = 74.,. To gain r4p, in the simplified solution, a bulk transfer coefficient C, can be expressed as:

Tah
Ch = 15 = CuFi(Riy) (17)

where the neutral transport coefficient C,, is:

k2

Cn= (13)
ln[(zatm - d)/ZOW]Q
and the empirical function of the bulk Richardson number R;;, is:
_ __15Rig ln[(zatmfd)/zom]} if Rin <
Fy(Rig) = { Tten \/\RiBJ { TnlGatm—d) z0n] |7 1 1B <0 (19)
1 ln[(zatmfd)/z m] : ;
[1+15Ri3\/1+5RiB] |:ln[(zat,m_d)/z?)h] ]’ if Rip >0
wherein
ln[(zatm - d)/ZOm]
cn, = 15¢;.C, zam—d”h[ } (20)
e ™ Py
¢} = 3.2165 +4.3431 + 0.5360p° — 0.0781° (21)
prn = 0.5892 — 01571 + 0.032712 — 0.0026° (22)
w=1n(zom/zon) (23)

To prevent a full inhibition of turbulent transport under wind-still conditions (r,;, would become infinite), when Ws <

0.05m s~ 1, we calculate C}, following Beljaars (1995):

1 qv 1/3 1
Cp=—=015]—— 9" 1" _1,)/3 2
" ran 0.5(T3+Ta)Pr2} ( ) 24)
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where v = 1.51107%[m?s~!] and the Prandtl number Pr = 0.71.

As a consequence of the assumption explained above r,;, = 744,), also the aerodynamic roughnesses of heat and water vapour
are used as equal (20, = 20n) and zop = 20w = 0.120,,. For the ratio r between the roughness lengths of water vapour, heat
and momentum, 7 = 0.1 is a value based on (Brutsaert, 1982), often implemented in land surface models (e.g. Noilhan and
Mahfouf, 1996), and is also used in TC. This ratio remains poorly constrained, not least due to the difficulties in measuring
or deriving surface roughnesses (Miles et al., 2017; Quincey et al., 2017). Three values have been suggested in the literature:
r =1 (e.g. Reid and Brock, 2010), » = 0.1 (e.g. Giese et al., 2020) r = 0.05 (Steiner et al. 2018), who derived this value for
Lirung from flux tower experiments. Since here, zg,, 20 and zg,, were effectively optimised together at the debris-covered

glaciers, the turbulent fluxes remain insensitive to the choice of this ratio.
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S4. Extended Results

Table S2. RMSE values for modelled vs. measured 7 at all sites. Measured T were derived from LW, and LW, measurements considering

the entire modelling period at all sites

Lirung Langtang Yala ChangriNup 24K Parlung No.4 Hailuogou
RMSE [°C] | 23 22 299 26 1.8  2.89 1.0

All sites (debris and debris free)
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S5. Sensitivity of seasonal flux changes to elevation and debris thickness

Assuming that the strongest changes in meteorological forcing with elevation would be the T'a, which in turns controls the
precipitation partition and the albedo, we re-run the model varying 7'a under applying a temperature lapse rate of 0.6 °C'/100m
and, for the debris-covered sites, by varying also the debris thickness in the range 10-80 cm (for ranges and steps see Table S4).
Using the station-measured, accumulated albedo is not appropriate during this experiment, due to changing snow conditions
with varying elevation. We therefore include the parameterisation introduced by Ding et al. (2017) for modelling «. From the
resulting range of EB flux outputs, we calculate the range of expected changes for the entire ablation zone when moving from
pre-monsoon to monsoon (A-range). This allows us to place our results in the context of the changes that can be expected over
the entire ablation zone, given its elevation span and debris thickness variability. Figure 8 shows that even accounting for the
range of conditions across each glacier ablation area, the pattern of pre-monsoon to monsoon difference in flux components,
and importantly M, remain similar for debris-covered sites: The A-range of M stays within the uncertainty range, with the
exception of Langtang, where the unrealistic combination of relatively thin debris and low elevation causes high M A-range.
This lends confidence to the results obtained at the individual AWS locations. Although we adjusted forcing data for elevation
in this exercise, we could not represent the effects of variable debris thicknesses in modifying 2m meteorological variables
(Steiner and Pellicciotti, 2016; Shaw et al., 2016). This comes with the assumption that surface-atmosphere interactions are
negligible compared to the altitudinal patterns and temporal changes. While this might be acceptable at thicker debris sites, it is
more questionable at Hailuogou, where the observations were taken above thin and cold debris. However, also at this site, the

A-range ends up to be small ( 5 W m~2) and close to zero when debris between 10 and 80 cm thickness is applied artificially.

Table S4. Ranges of elevations and debris thicknesses used for the sensitivity runs, including the glacier terminus elevation (min), the AWS
elevation (AWS) and the upper debris limit on debris-covered glaciers or to the approximated ELA elevation on clean-ice glaciers (max). We

also show the range of debris thicknesses hq modelled for debris-covered glacier sites. All combinations of elevations and debris thicknesses

were used.
Glacier Lirung Langtang Yala ChangriNup 24K Parlung No.4 Hailuogou
min [m.asl] 3990 4500 5170 5270 3910 4620 2980
AWS [m.asl] 4076 4557 5350 5471 3900 4800 3550
max [m.asl] 4400 5600 5400 5600 4200 5400 3700
h_d [em] ‘ 10, 20, 30, 40, 50, 60, 70, 80

17



S6. Controls on turbulent fluxes

To understand which climatic variables of the boundary layer control the turbulent fluxes on debris-covered glaciers, regression
models were fitted to the modelled values of the energy fluxes H and LE at the hourly timescale, and for pre-monsoon and
monsoon separately. A summary figure is given in the main text (Figure 4.5). Values of 0WW m? were removed from LE,
which appear at timesteps when no water is available at the debris surface. The predictive power of three variables and their

combination was determined and evaluated with adjusted R?: (i) The temperature gradient between surface and air o7 [°C ~1]:
dr(t) =Ts(t) — Tal(t) (25)
(i) the vapour pressure deficit vpd [Pal:

vpd(t) = esat(t) — eq(t) (26)

where ¢, [Pa] is the vapor pressure and e, [Pa] is the saturated vapor pressure, and (iii) the wind speed W s. Univariate

quadratic regression models fitted for single predictors had the form:
y(t) = a+ bx(t) + cx(t)? 27
and multivariate linear regression models fitted for multiple predictors had the form:

y(t) = a+ bz (t) + bxa(t) + bxs(t) (28)
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Figure S10. (a) Regression plots for temperature gradient between surface and air 67 against H and vapor pressure deficit vpd against LE

for the debris cover sites, seperately for pre-monsoon and monsoon. Fitted model (red line), adj.R? and model equation.
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Figure S11. (a) Regression plots for wind speed W's against H and L E for the debris cover sites, seperately for pre-monsoon and monsoon.

Fitted model (red line), adj.R> and model equation.
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