Articles | Volume 16, issue 3
The Cryosphere, 16, 1107–1123, 2022
The Cryosphere, 16, 1107–1123, 2022
Research article
31 Mar 2022
Research article | 31 Mar 2022

Contribution of warm and moist atmospheric flow to a record minimum July sea ice extent of the Arctic in 2020

Yu Liang et al.

Related authors

Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model
Yunhe Wang, Xiaojun Yuan, Haibo Bi, Mitchell Bushuk, Yu Liang, Cuihua Li, and Haijun Huang
The Cryosphere, 16, 1141–1156,,, 2022
Short summary
Contributions of advection and melting processes to the decline in sea ice in the Pacific sector of the Arctic Ocean
Haibo Bi, Qinghua Yang, Xi Liang, Liang Zhang, Yunhe Wang, Yu Liang, and Haijun Huang
The Cryosphere, 13, 1423–1439,,, 2019
Short summary
Baffin Bay sea ice inflow and outflow: 1978–1979 to 2016–2017
Haibo Bi, Zehua Zhang, Yunhe Wang, Xiuli Xu, Yu Liang, Jue Huang, Yilin Liu, and Min Fu
The Cryosphere, 13, 1025–1042,,, 2019
Short summary

Related subject area

Discipline: Sea ice | Subject: Arctic (e.g. Greenland)
Sea ice breakup and freeze-up indicators for users of the Arctic coastal environment
John E. Walsh, Hajo Eicken, Kyle Redilla, and Mark Johnson
The Cryosphere, 16, 4617–4635,,, 2022
Short summary
Improving model-satellite comparisons of sea ice melt onset with a satellite simulator
Abigail Smith, Alexandra Jahn, Clara Burgard, and Dirk Notz
The Cryosphere, 16, 3235–3248,,, 2022
Short summary
Kara and Barents sea ice thickness estimation based on CryoSat-2 radar altimeter and Sentinel-1 dual-polarized synthetic aperture radar
Juha Karvonen, Eero Rinne, Heidi Sallila, Petteri Uotila, and Marko Mäkynen
The Cryosphere, 16, 1821–1844,,, 2022
Short summary
Perspectives on future sea ice and navigability in the Arctic
Jinlei Chen, Shichang Kang, Wentao Du, Junming Guo, Min Xu, Yulan Zhang, Xinyue Zhong, Wei Zhang, and Jizu Chen
The Cryosphere, 15, 5473–5482,,, 2021
Short summary
Lasting impact of winds on Arctic sea ice through the ocean's memory
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725,,, 2021
Short summary

Cited articles

Årthun, M. and Eldevik, T.: On anomalous ocean heat transport toward the Arctic and associated climate predictability, J. Climate, 29, 689–704, 2016. 
Årthun, M., Eldevik, T., Smedsrud, L., Skagseth, Ø., and Ingvaldsen, R.: Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat, J. Climate, 25, 4736–4743, 2012. 
Babar, B., Graversen, R., and Boström, T.: Solar radiation estimation at high latitudes: Assessment of the CMSAF databases, ASR and ERA5, Sol. Energy, 182, 397–411, 2019. 
Ballinger, T. J., Overland, J. E., Wang, M., Bhatt, U. S., Hanna, E., Hanssen-Bauer, I., Kim, S. J., Thoman, R. L., and Walsh, J. E.: Arctic Report Card 2020: Surface Air Temperature, National Oceanic and Atmospheric Administration,, 2020. 
Baxter, I., Ding, Q., Schweiger, A., L'Heureux, M., Baxter, S., Wang, T., Zhang, Q., Harnos, K., Markle, B., and Topal, D.: How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing, J. Climate, 32, 8583–8602, 2019. 
Short summary
A record minimum July sea ice extent, since 1979, was observed in 2020. Our results reveal that an anomalously high advection of energy and water vapor prevailed during spring (April to June) 2020 over regions with noticeable sea ice retreat. The large-scale atmospheric circulation and cyclones act in concert to trigger the exceptionally warm and moist flow. The convergence of the transport changed the atmospheric characteristics and the surface energy budget, thus causing a severe sea ice melt.