Articles | Volume 15, issue 12
https://doi.org/10.5194/tc-15-5659-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-5659-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Automated detection and analysis of surface calving waves with a terrestrial radar interferometer at the front of Eqip Sermia, Greenland
Institute of Geography, University of Zurich, Zurich, Switzerland
Martin P. Lüthi
Institute of Geography, University of Zurich, Zurich, Switzerland
Andrea Walter
Institute of Geography, University of Zurich, Zurich, Switzerland
Guillaume Jouvet
Institute of Geography, University of Zurich, Zurich, Switzerland
Andreas Vieli
Institute of Geography, University of Zurich, Zurich, Switzerland
Related authors
Antoine Paul Zaninetti, Martin P. Lüthi, Adrien Justin Wehrlé, Janneke van Ginkel, and Ana Nap
EGUsphere, https://doi.org/10.5194/egusphere-2025-2963, https://doi.org/10.5194/egusphere-2025-2963, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigate the spectral and thermal properties of the strikingly blue ice present on freshly calved icebergs from polar ice streams using satellite multispectral imaging and on-site thermal imaging. Blue ice has intriguing properties. Whether it is cold or temperate is an important question for the understanding of the fast, complex dynamics of ice streams.
Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Norbert Pirk, Liane G. Benning, Alexandre M. Anesio, and Martyn Tranter
The Cryosphere, 19, 1527–1538, https://doi.org/10.5194/tc-19-1527-2025, https://doi.org/10.5194/tc-19-1527-2025, 2025
Short summary
Short summary
Light-absorbing particles (LAPs) are often present as a mixture on snow surfaces and are important to disentangle because their darkening effects vary but also because the processes governing their presence and accumulation on snow surfaces are different. This study presents a novel method to retrieve the concentration and albedo-reducing effect of different LAPs present at the snow surface from surface spectral albedo. The method is then successfully applied to ground observations on seasonal snow.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Giulio Saibene, Isabelle Gärtner-Roer, Jan Beutel, and Andreas Vieli
EGUsphere, https://doi.org/10.5194/egusphere-2025-3029, https://doi.org/10.5194/egusphere-2025-3029, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Rock glaciers are bodies of frozen ground found in mountain regions. They move downslope and are mainly studied at the surface. Here, we analyze deformation data from a rock glacier borehole, providing continuous data for almost eight years. The data shows that the acceleration in the summer movement happens in the uppermost layer, while long-term movement is mostly occurring in a deeper layer. This is important for the interpretation of surface movements, which are used as climate indicators.
Antoine Paul Zaninetti, Martin P. Lüthi, Adrien Justin Wehrlé, Janneke van Ginkel, and Ana Nap
EGUsphere, https://doi.org/10.5194/egusphere-2025-2963, https://doi.org/10.5194/egusphere-2025-2963, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We investigate the spectral and thermal properties of the strikingly blue ice present on freshly calved icebergs from polar ice streams using satellite multispectral imaging and on-site thermal imaging. Blue ice has intriguing properties. Whether it is cold or temperate is an important question for the understanding of the fast, complex dynamics of ice streams.
Andreas Henz, Johannes Reinthaler, Samuel U. Nussbaumer, Tancrède P. M. Leger, Sarah Kamleitner, Guillaume Jouvet, and Andreas Vieli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2353, https://doi.org/10.5194/egusphere-2025-2353, 2025
Short summary
Short summary
Glaciers are key to understanding climate change, reflecting historical variability. Using glacier models on the computer, we reconstructed European Alps glaciers during the Little Ice Age, with a total ice volume of 283 ± 42 cubic kilometres. Also, the study determines equilibrium line altitudes (ELAs) for over 4000 glaciers, showing patterns influenced by temperature, precipitation, and solar radiation. After all, we introduce a new ELA correction approach based on solar incidence.
Josep Bonsoms, Marc Oliva, Juan Ignacio López-Moreno, and Guillaume Jouvet
The Cryosphere, 19, 1973–1993, https://doi.org/10.5194/tc-19-1973-2025, https://doi.org/10.5194/tc-19-1973-2025, 2025
Short summary
Short summary
The extent to which Greenland's peripheral glaciers and ice caps current and future ice loss rates are unprecedented within the Holocene is poorly understood. This study connects the maximum ice extent of the Late Holocene with present and future glacier evolution in the Nuussuaq Peninsula (central western Greenland). By > 2050 glacier mass loss may have doubled in rate compared to the Late Holocene to the present, highlighting significant impacts of anthropogenic climate change.
Lou-Anne Chevrollier, Adrien Wehrlé, Joseph M. Cook, Norbert Pirk, Liane G. Benning, Alexandre M. Anesio, and Martyn Tranter
The Cryosphere, 19, 1527–1538, https://doi.org/10.5194/tc-19-1527-2025, https://doi.org/10.5194/tc-19-1527-2025, 2025
Short summary
Short summary
Light-absorbing particles (LAPs) are often present as a mixture on snow surfaces and are important to disentangle because their darkening effects vary but also because the processes governing their presence and accumulation on snow surfaces are different. This study presents a novel method to retrieve the concentration and albedo-reducing effect of different LAPs present at the snow surface from surface spectral albedo. The method is then successfully applied to ground observations on seasonal snow.
Martin Peter Lüthi, Diego Wasser, and Luc Moreau
EGUsphere, https://doi.org/10.5194/egusphere-2025-832, https://doi.org/10.5194/egusphere-2025-832, 2025
Short summary
Short summary
Glacier ice often contains liquid water. How much exactly depends on the history of ice formation, the internal heat sources, and on the drainage pathways between ice crystals. The liquid water content strongly influences many properties of the ice, such as its softness. We measured in two glacier caves the water content directly in the ice walls by cooling the ice. Water contents of 1–2 % were found, which agrees with previous measurements.
Shin Sugiyama, Shun Tsutaki, Daiki Sakakibara, Izumi Asaji, Ken Kondo, Yefan Wang, Evgeny Podolskiy, Guillaume Jouvet, and Martin Funk
The Cryosphere, 19, 525–540, https://doi.org/10.5194/tc-19-525-2025, https://doi.org/10.5194/tc-19-525-2025, 2025
Short summary
Short summary
We report flow speed variations near the front of a tidewater glacier in Greenland. Ice flow near the glacier front is crucial for the mass loss of the Greenland ice sheet, but in situ data are hard to obtain. Our unique in situ GPS data revealed fine details of short-term speed variations associated with melting, ocean tides, and rain. The results are important for understanding the response of tidewater glaciers to changing environments, such as warming, more frequent rain, and ice thinning.
Marin Kneib, Amaury Dehecq, Adrien Gilbert, Auguste Basset, Evan S. Miles, Guillaume Jouvet, Bruno Jourdain, Etienne Ducasse, Luc Beraud, Antoine Rabatel, Jérémie Mouginot, Guillem Carcanade, Olivier Laarman, Fanny Brun, and Delphine Six
The Cryosphere, 18, 5965–5983, https://doi.org/10.5194/tc-18-5965-2024, https://doi.org/10.5194/tc-18-5965-2024, 2024
Short summary
Short summary
Avalanches contribute to increasing the accumulation on mountain glaciers by redistributing snow from surrounding mountains slopes. Here we quantified the contribution of avalanches to the mass balance of Argentière Glacier in the French Alps, by combining satellite and field observations to model the glacier dynamics. We show that the contribution of avalanches locally increases the accumulation by 60–70 % and that accounting for this effect results in less ice loss by the end of the century.
Emmanuele Russo, Jonathan Buzan, Sebastian Lienert, Guillaume Jouvet, Patricio Velasquez Alvarez, Basil Davis, Patrick Ludwig, Fortunat Joos, and Christoph C. Raible
Clim. Past, 20, 449–465, https://doi.org/10.5194/cp-20-449-2024, https://doi.org/10.5194/cp-20-449-2024, 2024
Short summary
Short summary
We present a series of experiments conducted for the Last Glacial Maximum (~21 ka) over Europe using the regional climate Weather Research and Forecasting model (WRF) at convection-permitting resolutions. The model, with new developments better suited to paleo-studies, agrees well with pollen-based climate reconstructions. This agreement is improved when considering different sources of uncertainty. The effect of convection-permitting resolutions is also assessed.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
Denis Cohen, Guillaume Jouvet, Thomas Zwinger, Angela Landgraf, and Urs H. Fischer
E&G Quaternary Sci. J., 72, 189–201, https://doi.org/10.5194/egqsj-72-189-2023, https://doi.org/10.5194/egqsj-72-189-2023, 2023
Short summary
Short summary
During glacial times in Switzerland, glaciers of the Alps excavated valleys in low-lying regions that were later filled with sediment or water. How glaciers eroded these valleys is not well understood because erosion occurred near ice margins where ice moved slowly and was present for short times. Erosion is linked to the speed of ice and to water flowing under it. Here we present a model that estimates the location of water channels beneath the ice and links these locations to zones of erosion.
Adrien Wehrlé, Martin P. Lüthi, and Andreas Vieli
The Cryosphere, 17, 309–326, https://doi.org/10.5194/tc-17-309-2023, https://doi.org/10.5194/tc-17-309-2023, 2023
Short summary
Short summary
We characterized short-lived episodes of ice mélange weakening (IMW) at the front of three major Greenland outlet glaciers. Through a continuous detection at the front of Kangerdlugssuaq Glacier during the June-to-September period from 2018 to 2021, we found that 87 % of the IMW episodes occurred prior to a large-scale calving event. Using a simple model for ice mélange motion, we further characterized the IMW process as self-sustained through the existence of an IMW–calving feedback.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
James C. Ferguson and Andreas Vieli
The Cryosphere, 15, 3377–3399, https://doi.org/10.5194/tc-15-3377-2021, https://doi.org/10.5194/tc-15-3377-2021, 2021
Short summary
Short summary
Debris-covered glaciers have a greater extent than their debris-free counterparts due to insulation from the debris cover. However, the transient response to climate change remains poorly understood. We use a numerical model that couples ice dynamics and debris transport and varies the climate signal. We find that debris cover delays the transient response, especially for the extent. However, adding cryokarst features near the terminus greatly enhances the response.
Sebastian Hellmann, Johanna Kerch, Ilka Weikusat, Andreas Bauder, Melchior Grab, Guillaume Jouvet, Margit Schwikowski, and Hansruedi Maurer
The Cryosphere, 15, 677–694, https://doi.org/10.5194/tc-15-677-2021, https://doi.org/10.5194/tc-15-677-2021, 2021
Short summary
Short summary
We analyse the orientation of ice crystals in an Alpine glacier and compare this orientation with the ice flow direction. We found that the crystals orient in the direction of the largest stress which is in the flow direction in the upper parts of the glacier and in the vertical direction for deeper zones of the glacier. The grains cluster around this maximum stress direction, in particular four-point maxima, most likely as a result of recrystallisation under relatively warm conditions.
Eef C. H. van Dongen, Guillaume Jouvet, Shin Sugiyama, Evgeny A. Podolskiy, Martin Funk, Douglas I. Benn, Fabian Lindner, Andreas Bauder, Julien Seguinot, Silvan Leinss, and Fabian Walter
The Cryosphere, 15, 485–500, https://doi.org/10.5194/tc-15-485-2021, https://doi.org/10.5194/tc-15-485-2021, 2021
Short summary
Short summary
The dynamic mass loss of tidewater glaciers is strongly linked to glacier calving. We study calving mechanisms under a thinning regime, based on 5 years of field and remote-sensing data of Bowdoin Glacier. Our data suggest that Bowdoin Glacier ungrounded recently, and its calving behaviour changed from calving due to surface crevasses to buoyancy-induced calving resulting from basal crevasses. This change may be a precursor to glacier retreat.
Guillaume Jouvet, Stefan Röllin, Hans Sahli, José Corcho, Lars Gnägi, Loris Compagno, Dominik Sidler, Margit Schwikowski, Andreas Bauder, and Martin Funk
The Cryosphere, 14, 4233–4251, https://doi.org/10.5194/tc-14-4233-2020, https://doi.org/10.5194/tc-14-4233-2020, 2020
Short summary
Short summary
We show that plutonium is an effective tracer to identify ice originating from the early 1960s at the surface of a mountain glacier after a long time within the ice flow, giving unique information on the long-term former ice motion. Combined with ice flow modelling, the dating can be extended to the entire glacier, and we show that an airplane which crash-landed on the Gauligletscher in 1946 will likely soon be released from the ice close to the place where pieces have emerged in recent years.
Cited articles
Amundson, J., Truffer, M., Lüthi, M. P., Fahnestock, M., Motyka, R. J., and West, M.: Glacier, fjord, and seismic response to recent large calving
events, Jakobshavn Isbræ, Greenland, Geophys. Res. Lett., 35, L22501, https://doi.org/10.1029/2008GL035281, 2008. a, b
Amundson, J., Fahnestock, M., Truffer, M., Brown, J., Lüthi, M., and
Motyka, R.: Ice mélange dynamics and implications for terminus stability,
Jakobshavn Isbræ, Greenland, J. Geophys. Res, 115, F01005,
https://doi.org/10.1029/2009JF001405, 2010. a, b
Amundson, J. M., Clinton, J. F., Fahnestock, M., Truffer, M., Lüthi, M. P., and Motyka, R. J.: Observing calving-generated ocean waves with coastal
broadband seismometers, Jakobshavn Isbræ, Greenland, Ann. Glaciol., 60, 79–84, https://doi.org/10.3189/2012/AoG60A200, 2012. a
Bartholomaus, T. C., Larsen, C. F., and O'Neel, S.: Does calving matter?
Evidence for significant submarine melt, Earth Planet. Sc. Lett., 380, 21–30, 2013. a
Benn, D. I., Åström, J., Zwinger, T., Todd, J., Nick, F. M., Cook, S., Hulton, N. R., and Luckman, A.: Melt-Under-Cutting and Buoyancy-Driven
Calving From Tidewater Glaciers: New Insights From Discrete Element and
Continuum Model Simulations, J. Glaciol., 63, 691–702, https://doi.org/10.1017/jog.2017.41, 2017. a
Caduff, R., Schlunegger, F., Kos, A., and Wiesmann, A.: A review of terrestrial radar interferometry for measuring surface change in the geosciences, Earth Surf. Proc. Land., 40, 208–228, https://doi.org/10.1002/esp.3656, 2014.
a
Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M., Boettcher, M. S.,
de la Peña, S., and Howat, I.: Non-Linear Glacier Response To Calving
Events, Jakobshavn Isbræ, Greenland, J. Glaciol., 65, 39–54, https://doi.org/10.1017/jog.2018.90, 2019. a, b
Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., and Jackson, R. H.: Future Evolution of Greenland's Marine‐terminating Outlet Glaciers, J. Geophys. Res.-Earth, 125, e2020GL088524, https://doi.org/10.1029/2018jf004873, 2020. a
Cook, S., Christoffersen, P., Truffer, M., Chudley, T. R., and Abellan, A.:
Calving of a large Greenlandic tidewater glacier has complex links to
meltwater plumes and mélange, J. Geophys. Res.-Earth, 126,
e2020JF006051, https://doi.org/10.1029/2020JF006051, 2021. a, b
Dietrich, R., Maas, H.-G., Baessler, M., Rülke, A., Richter, A., Schwalbe, E., and Westfeld, P.: Jakobshavn Isbræ, West Greenland: Flow
Velocities and Tidal Interaction of the Front Area From 2004 Field
Observations, J. Geophys. Res., 112, F03S21, https://doi.org/10.1029/2006jf000601, 2007. a
Enderlin, E. M., Howat, I. M., Jeong, S., Noh, M.-J., van Angelen, J. H., and
van den Broeke, M. R.: An improved mass budget for the Greenland ice sheet, Geophys. Res. Lett., 41, 866–872, https://doi.org/10.1002/2013GL059010, 2014. a
Fried, M., Catania, G., Bartholomaus, T., Duncan, D., Davis, M., Stearns, L.,
Nash, J., Shroyer, E., and Sutherland, D.: Distributed subglacial discharge
drives significant submarine melt at a Greenland tidewater glacier, Geophys. Res. Lett., 42, 9328–9336, https://doi.org/10.1002/2015GL065806, 2015. a
Glowacki, O. and Deane, G. B.: Quantifying iceberg calving fluxes with underwater noise, The Cryosphere, 14, 1025–1042, https://doi.org/10.5194/tc-14-1025-2020, 2020. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
IPCC: Climate Change 2013: The Physical Science Basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Tech. rep., edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., WMO/UNEP, Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013. a
Joughin, I. R., Abdalati, W., and Fahnestock, M. A.: Large fluctuations in
speed on Greenland's Jakobshavn Isbræ glacier, Nature, 432, 608–610, 2004. a
Jouvet, G., Weidmann, Y., Kneib, M., Detert, M., Seguinot, J., Sakakibara, D., and Sugiyama, S.: Short-lived ice speed-up and plume water flow captured by a VTOL UAV give insights into subglacial hydrological system of Bowdoin
Glacier, Remote Sens. Environ., 217, 389–399, 2018. a
Jouvet, G., Weidmann, Y., van Dongen, E., Lüthi, M. P., Vieli, A., and
Ryan, J. C.: High-endurance UAV for monitoring calving glaciers: Application to the Inglefield Bredning and Eqip Sermia, Greenland, Front. Earth Sci., 7,
206, https://doi.org/10.3389/feart.2019.00206, 2019. a
Kane, E., Rignot, E., Mouginot, J., Millan, R., Li, X., Scheuchl, B., and
Fahnestock, M.: Impact of Calving Dynamics on Kangilernata Sermia, Greenland,
Geophys. Res. Lett., 47, e2020GL088524, https://doi.org/10.1029/2020GL088524, 2020. a
King, M. D., Howat, I. M., Candela, S. G., Noh, M. J., Jeong, S., Noël,
B. P., van den Broeke, M. R., Wouters, B., and Negrete, A.: Dynamic ice loss
from the Greenland Ice Sheet driven by sustained glacier retreat, Commun. Earth Environ., 1, 1–7, 2020. a
Luckman, A., Murray, T., de Lange, R., and Hanna, E.: Rapid and synchronous
ice-dynamic changes in East Greenland, Geophys. Res. Lett., 33, L03503, https://doi.org/10.1029/2005GL025428, 2006. a
Luckman, A., Benn, D. I., Cottier, F., Bevan, S., Nilsen, F., and Inall, M.:
Calving rates at tidewater glaciers vary strongly with ocean temperature,
Nat. Commun., 6, 8566, https://doi.org/10.1038/ncomms9566, 2015. a
Lüthi, M. P. and Vieli, A.: Multi-method observation and analysis of a
tsunami caused by glacier calving, The Cyrosphere, 10, 995–1002,
https://doi.org/10.5194/tc-10-995-2016, 2016. a, b, c
Lüthi, M. P., Fahnestock, M., and Truffer, M.: Calving icebergs indicate a thick layer of temperate ice at the base of Jakobshavn Isbræ, Greenland, J. Glaciol., 55, 563–566, https://doi.org/10.3189/002214309788816650, 2009. a, b
Lüthi, M. P., Vieli, A., Moreau, L., Joughin, I., Reisser, M., Small, D.,
and Stober, M.: A century of geometry and velocity evolution at Eqip Sermia, West Greenland, J. Glaciol., 62, 640–654, https://doi.org/10.1017/jog.2016.38, 2016. a, b
Mercenier, R., Lüthi, M., and Vieli, A.: How Oceanic Melt Controls
Tidewater Glacier Evolution, Geophys. Res. Lett., 47, 2019GL086769, https://doi.org/10.1029/2019gl086769, 2020. a
Minowa, M., Podolskiy, E. A., Sugiyama, S., Sakakibara, D., and Skvarca, P.:
Glacier calving observed with time-lapse imagery and tsunami waves at Glaciar Perito Moreno, Patagonia, J. Glaciol., 64, 362–376, https://doi.org/10.1017/jog.2018.28, 2018. a, b, c, d
Moon, T. and Joughin, I.: Changes in ice front position on Greenland's outlet glaciers from 1992 to 2007, J. Geophys. Res.-Earth, 113, F02022, https://doi.org/10.1029/2007JF000927, 2008. a
Moon, T., Joughin, I., Smith, B., and Howat, I.: 21st-century evolution of
Greenland outlet glacier velocities, Science, 336, 576–578, https://doi.org/10.1126/science.1219985, 2012. a
Nettles, M., Larsen, T. B., Elosegui, P., Hamilton, G. S., Stearns, L. A.,
Ahlstrøm, A. P., Davis, J. L., Andersen, M. L., de Juan, J., Khan, S. A.,
Stenseng, L., Ekstrøm, G., and Forsberg, R.: Step-wise changes in glacier
flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland, Geophys. Res. Lett., 35, L24503, https://doi.org/10.1029/2008GL036127, 2008. a
Penna, N. T., Morales Maqueda, M. A., Martin, I., Guo, J., and Foden, P. R.:
Sea surface height measurement using a GNSS wave glider, Geophys. Res. Lett., 45, 5609–5616, 2018. a
Reeh, N.: Long calving waves, in: vol. 3, Proceedings, 8th international Conference on Port and Ocean Engineering under Arctic Conditions, Narssarssuaq, 1310–1327, 1985. a
Rignot, E., Koppes, M., and Velicogna, I.: Rapid submarine melting of the
calving faces of West Greenland glaciers, Nat. Geosci., 3, 187–191,
https://doi.org/10.1038/NGEO765, 2010. a
Rignot, E., Fenty, I., Xu, Y., Cai, C., and Kemp, C.: Undercutting of
marine-terminating glaciers in West Greenland, Geophys. Res. Lett., 42, 5909–5917, https://doi.org/10.1002/2015GL064236, 2015. a
Satopaa, V., Albrecht, J., Irwin, D., and Raghavan, B.: Finding a
“Kneedle” in a Haystack: Detecting Knee Points in System Behavior, in: 2011 31st International Conference on Distributed Computing Systems Workshops, June 2011, Minneapolis, Minnesota, USA, https://doi.org/10.1109/icdcsw.2011.20, 2011. a
Sergeant, A., Mangeney, A., Yastrebov, V. A., Walter, F., Montagner, J.-P.,
Castelnau, O., Stutzmann, E., Bonnet, P., Ralaiarisoa, V. J.-L., Bevan, S.,
and Luckman, A.: Monitoring Greenland Ice Sheet Buoyancy-Driven Calving
Discharge Using Glacial Earthquakes, Ann. Glaciol., 60, 75–95,
https://doi.org/10.1017/aog.2019.7, 2019. a, b
Shepherd, A., Ivins, E. R. A. G., Barletta, V. R., Bentley, M. J., Bettadpur,
S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M.,
Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg,
S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G.,
Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard,
H., Rignot, E., Rott, H., Sørensen, L. S., Scambos, T. A., Scheuchl, B.,
Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg,
W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J.,
Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A
Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012. a
Straneo, F. and Heimbach, P.: North Atlantic warming and the retreat of
Greenland's outlet glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854, 2013. a
Vieli, A. and Nick, F.: Understanding and modelling rapid dynamic changes of
tidewater outlet glaciers: issues and implications, Surv. Geophys., 32, 437–458, https://doi.org/10.1007/s10712-011-9132-4, 2011. a
Virtanen, P., , Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N.,
Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J.,
Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., and van Mulbregt, P.: Scipy 1.0: Fundamental
Algorithms for Scientific Computing in Python, Nat. Meth., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Walter, A., Lüthi, M. P., Moreau, L., and Vieli, A.: Drivers of recurring
seasonal cycle of glacier calving styles and patterns, Front. Earth Sci., 9, 359, https://doi.org/10.3389/feart.2021.667717, 2021. a, b, c, d
Walter, F., Amundson, J., O'Neel, S., Truffer, M., Fahnestock, M., and Fricker, H.: Analysis of low-frequency seismic signals generated during a
multiple-iceberg calving event at Jakobshavn Isbræ, Greenland, J. Geophys. Res., 117, F01036, https://doi.org/10.1029/2011JF002132, 2012. a, b
Wehrlé, A.: TeRACWA, Zenodo [code], https://doi.org/10.5281/zenodo.5770016, 2021a. a
Wehrlé, A.: Animation of consecutive TRI intensity images at the front of Eqip Sermia, Greenland, Zenodo [movie], https://doi.org/10.5281/zenodo.5602842, 2021b.
a
Werner, C., Strozzi, T., Wiesmann, A., and Wegmuller, U.: A Real-Aperture Radar for Ground-Based Differential Interferometry, in: vol. 3, IEEE International Geoscience and Remote Sensing Symposium, 2008, IGARSS 2008, June 2008, Boston, Massachusetts, USA, III-210–III-213, https://doi.org/10.1109/IGARSS.2008.4779320, 2008. a, b
Winberry, J. P., Huerta, A. D., Anandakrishnan, S., Aster, R. C., Nyblade, A. A., and Wiens, D. A.: Glacial Earthquakes and Precursory Seismicity Associated With Thwaites Glacier Calving, Geophys. Res. Lett., 47, 312–315, https://doi.org/10.1029/2019gl086178, 2020. a
Xie, S., Dixon, T. H., Holland, D. M., Voytenko, D., and Vaňková, I.:
Rapid Iceberg Calving Following Removal of Tightly Packed Pro-Glacial
mélange, Nat. Commun., 10, 3250, https://doi.org/10.1038/s41467-019-10908-4, 2019. a, b
Short summary
We developed a novel automated method for the detection and the quantification of ocean waves generated by glacier calving. This method was applied to data recorded with a terrestrial radar interferometer at Eqip Sermia, Greenland. Results show a high calving activity at the glacier front sector ending in deep water linked with more frequent meltwater plumes. This suggests that rising subglacial meltwater plumes strongly affect glacier calving in deep water, but weakly in shallow water.
We developed a novel automated method for the detection and the quantification of ocean waves...