Articles | Volume 15, issue 9
https://doi.org/10.5194/tc-15-4557-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/tc-15-4557-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface composition of debris-covered glaciers across the Himalaya using linear spectral unmixing of Landsat 8 OLI imagery
Adina E. Racoviteanu
CORRESPONDING AUTHOR
Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth,
UK
Lindsey Nicholson
Department of Atmospheric and Cryospheric Sciences, University
of Innsbruck, Innsbruck, Austria
Neil F. Glasser
Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth,
UK
Related authors
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Bramha Dutt Vishwakarma, Jeffrey S. Kargel, Dan Shugar, Umesh Haritashya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
The Cryosphere, 19, 4113–4124, https://doi.org/10.5194/tc-19-4113-2025, https://doi.org/10.5194/tc-19-4113-2025, 2025
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the rapid disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock–ice mixtures called rock glaciers. This paper explores these scenarios.
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Stephan Harrison, Adina Racoviteanu, Sarah Shannon, Darren Jones, Karen Anderson, Neil Glasser, Jasper Knight, Anna Ranger, Arindan Mandal, Bramha Dutt Vishwakarma, Jeffrey S. Kargel, Dan Shugar, Umesh Haritashya, Dongfeng Li, Aristeidis Koutroulis, Klaus Wyser, and Sam Inglis
The Cryosphere, 19, 4113–4124, https://doi.org/10.5194/tc-19-4113-2025, https://doi.org/10.5194/tc-19-4113-2025, 2025
Short summary
Short summary
Climate change is leading to a global recession of mountain glaciers, and numerical modelling suggests that this will result in the rapid disappearance of many glaciers, impacting water supplies. However, an alternative scenario suggests that increased rock fall and debris flows to valley bottoms will cover glaciers with thick rock debris, slowing melting and transforming glaciers into rock–ice mixtures called rock glaciers. This paper explores these scenarios.
Calvin Beck and Lindsey Nicholson
The Cryosphere, 19, 2715–2731, https://doi.org/10.5194/tc-19-2715-2025, https://doi.org/10.5194/tc-19-2715-2025, 2025
Short summary
Short summary
A glacier's debris cover strongly modifies its mass balance in contrast to a clean-ice glacier. A key parameter for calculating sub-debris melt is the thermal diffusivity of the debris layer. Conway and Rasmussen (2000) present a method to estimate this value based on simple heat diffusion principles. Our analysis shows that the selected temporal and spatial sampling intervals affect the estimated value of thermal diffusivity, resulting in glacier melt being systematically underestimated.
Brigitta Goger, Ivana Stiperski, Matthis Ouy, and Lindsey Nicholson
Weather Clim. Dynam., 6, 345–367, https://doi.org/10.5194/wcd-6-345-2025, https://doi.org/10.5194/wcd-6-345-2025, 2025
Short summary
Short summary
We study with numerical simulations whether changing glacier ice surfaces impacts the atmospheric boundary layer structure over a glacier. Under north-westerly flow, a gravity wave forms over the glacier valley. When the surrounding upstream glaciers are removed, the gravity wave is weakened and breaks earlier. This leads to stronger turbulent mixing over the remaining glacier and to higher temperatures. We suggest that glaciers influence each other and should be studied as a connected system.
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Rebecca Mott, Ivana Stiperski, and Lindsey Nicholson
The Cryosphere, 14, 4699–4718, https://doi.org/10.5194/tc-14-4699-2020, https://doi.org/10.5194/tc-14-4699-2020, 2020
Short summary
Short summary
The Hintereisferner Experiment (HEFEX) investigated spatial and temporal dynamics of the near-surface boundary layer and associated heat exchange processes close to the glacier surface during the melting season. Turbulence data suggest that strong changes in the local thermodynamic characteristics occur when westerly flows disturbed prevailing katabatic flow, forming across-glacier flows and facilitating warm-air advection from the surrounding ice-free areas, which potentially promote ice melt.
Cited articles
Alifu, H., Johnson, B., and Tateishi, R.: Delineation of Debris-Covered
Glaciers Based on a Combination of Geomorphometric Parameters and a
TIR/NIR/SWIR Band Ratio, IEEE J. Sel. Top. Appl., 9, 781–792,
https://doi.org/10.1109/JSTARS.2015.2500906, 2016.
Anderson, L. S., Armstrong, W. H., Anderson, R. S., and Buri, P.: Debris cover and the thinning of Kennicott Glacier, Alaska: in situ measurements, automated ice cliff delineation and distributed melt estimates, The Cryosphere, 15, 265–282, https://doi.org/10.5194/tc-15-265-2021, 2021.
Atkinson, P. M.: Mapping sub-pixel boundaries from remotely sensed images, in: Innovations in GIS4, edited by: Zemp, Z., Taylor & Francis, London, 166–180, 1997.
Atkinson, P. M.: Resolution Manipulation and Sub-Pixel Mapping, in: Remote Sensing Image Analysis: Including The Spatial Domain, edited by: Jong, S. M. D. and Meer, F. D. V. D., Springer, 2004.
Barros, A. P. and Lang, T. J.: Monitoring the Monsoon in the Himalayas:
Observations in Central Nepal, June 2001, Mon. Weather Rev., 1408–1427, 2003.
Benn, D. I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.
I., Quincey, D., Thompson, S., Toumi, R., and Wiseman, S.: Response of
debris-covered glaciers in the Mount Everest region to recent warming, and
implications for outburst flood hazards, Earth Sci. Rev., 114, 156–174,
https://doi.org/10.1016/j.earscirev.2012.03.008, 2012.
Bhambri, R., Bolch, T., and Chaujar, R. K.: Mapping of Debris-covered
Glaciers in the Garhwal Himalayas using ASTER DEMs and Thermal Data, Int. J.
Rem. Sens., 32, 8095–8119, https://doi.org/10.1080/01431161.2010.532821, 2011a.
Bhambri, R., Bolch, T., Chaujar, R. K., and Kulshreshtha, S. C.: Glacier
changes in the Garhwal Himalaya, India, from 1968 to 2006 based on remote
sensing, J. Glaciol., 57, 543–556, 2011b.
Bishop, M. P., Bonk, R., Kamp, U., and Shroder, J.: Terrain analysis
and data modeling for alpine glacier mapping, Polar Geogr., 25, 182–201,
2001.
Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E.,
Queiroz Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F.,
and Tiede, D.: Geographic Object-Based Image Analysis – Towards a new
paradigm, ISPRS J. Photogram. Rem. Sens., 87, 180–191, https://doi.org/10.1016/j.isprsjprs.2013.09.014, 2014.
Bolch, T., Buchroithner, M. F., Kunert, A., and Kamp, U.: Automated
delineation of debris-covered glaciers based on ASTER data, Geoinformation
in Europe, in: Proc. of 27th EARSel Symposium, 4–7 June 2007, Bozen, Italy,
403–410, 2007.
Bolch, T., Buchroithner, M. F., Pieczonka, T., and Kunert, A.: Planimetric
and Volumetric Glacier Changes in the Khumbu Himalaya since 1962 Using
Corona, Landsat TM and ASTER Data, J. Glaciol., 54, 592–600, 2008.
Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery, The Cryosphere, 5, 349–358, https://doi.org/10.5194/tc-5-349-2011, 2011.
Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S.,
Immerzeel, W. W., Kulkarni, A., Li, H., Tahir, A. A., Zhang, G., and Zhang,
Y.: Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya
Region, in: The Hindu Kush Himalaya Assessment: Mountains, Climate Change,
Sustainability and People, edited by: Wester, P., Mishra, A., Mukherji, A.,
and Shrestha, A. B., Springer International Publishing, Cham, 209–255, 2019.
Bookhagen, B. and Burbank, D. W.: Topography, relief and TRMM-derived
rainfall variations along the Himalaya, Geophys. Res. Lett., 33, L08405,
https://doi.org/10.1029/2006gl026037, 2006.
Bookhagen, B. and Burbank, D. W.: Toward a complete Himalyan hydrological
budget: spatiotemporal distribution of snowmlet ad rainfall and their impact
on river discharge, J. Geophys. Res., 115, F03019, https://doi.org/10.1029/2009JF001426, 2010.
Brun, F., Buri, P., Miles, E. S., Wagnon, P., Steiner, J., Berthier, E.,
Ragettli, S., Kraaijenbrink, P., Immerzeel, W. W., and Pellicciotti, F.:
Quantifying volume loss from ice cliffs on debris-covered glaciers using
high-resolution terrestrial and aerial photogrammetry, J. Glaciol., 62,
684–695, https://doi.org/10.1017/jog.2016.54, 2016.
Brun, F., Berthier, E., Wagnon, P., Kääb, A., and Treichler, D.: A
spatially resolved estimate of High Mountain Asia glacier mass balances from
2000 to 2016, Nat. Geosci., 10, 668–673, https://doi.org/10.1038/ngeo2999, 2017.
Brun, F., Wagnon, P., Berthier, E., Shea, J. M., Immerzeel, W. W., Kraaijenbrink, P. D. A., Vincent, C., Reverchon, C., Shrestha, D., and Arnaud, Y.: Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya, The Cryosphere, 12, 3439–3457, https://doi.org/10.5194/tc-12-3439-2018, 2018.
Brun, F., Wagnon, P., Berthier, E., Jomelli, V., Maharjan, S. B., Shrestha,
F., and Kraaijenbrink, P. D. A.: Heterogeneous Influence of Glacier
Morphology on the Mass Balance Variability in High Mountain Asia, J. Geophys.
Res.-Earth Surf., 124, 1331–1345, https://doi.org/10.1029/2018JF004838, 2019.
Bunting, P., Clewley, D., Lucas, R., and Gillingham, S.: The Remote Sensing
and GIS Software Library (RSGISLib), Comput. Geosci., 62, 216–226, 2014.
Buri, P., Miles, E. S., Steiner, J. F., Immerzeel, W. W., Wagnon, P., and
Pellicciotti, F.: A physically based 3-D model of ice cliff evolution over
debris-covered glaciers, J. Geophys. Res.-Earth Surf., 121, 2471–2493,
https://doi.org/10.1002/2016JF004039, 2016.
Casey, K. and Kääb, A.: Estimation of Supraglacial Dust and Debris
Geochemical Composition via Satellite Reflectance and Emissivity, Remote Sens.,
4, 2554–2575, https://doi.org/10.3390/rs4092554, 2012.
Casey, K. A., Kääb, A., and Benn, D. I.: Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal, The Cryosphere, 6, 85–100, https://doi.org/10.5194/tc-6-85-2012, 2012.
Chand, B. M. and Watanabe, T.: Development of Supraglacial Ponds in the
Everest Region, Nepal, between 1989 and 2018, Remote Sens., 11, 9,
https://doi.org/10.3390/rs11091058, 2019.
Chen, F., Zhang, M., Guo, H., Allen, S., Kargel, J. S., Haritashya, U. K., and Watson, C. S.: Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017, Earth Syst. Sci. Data, 13, 741–766, https://doi.org/10.5194/essd-13-741-2021, 2021.
Collier, E., Nicholson, L. I., Brock, B. W., Maussion, F., Essery, R., and Bush, A. B. G.: Representing moisture fluxes and phase changes in glacier debris cover using a reservoir approach, The Cryosphere, 8, 1429–1444, https://doi.org/10.5194/tc-8-1429-2014, 2014.
Cortés, G., Girotto, M., and Margulis, S. A.: Analysis of sub-pixel snow
and ice extent over the extratropical Andes using spectral unmixing of
historical Landsat imagery, Remote Sens. Environ., 141, 64–78, https://doi.org/10.1016/j.rse.2013.10.023, 2014.
Dehecq, A., Gourmelen, N., and Trouve, E.: Deriving large-scale glacier
velocities from a complete satellite archive: Application to the
Pamir-Karakoram-Himalaya, Remote Sens. Environ., 162, 55–66,
https://doi.org/10.1016/j.rse.2015.01.031, 2015.
Dehecq, A., Gourmelen, N., Gardner, A. S., Brun, F., Goldberg, D., Nienow,
P. W., Berthier, E., Vincent, C., Wagnon, P., and Trouvé, E.:
Twenty-first century glacier slowdown driven by mass loss in High Mountain
Asia, Nat. Geosci., 12, 22–27, https://doi.org/10.1038/s41561-018-0271-9, 2019.
Delafontaine, M., Nolf, G., van de Weghe, N., Antrop, M., and de Maeyer, P.:
Assessment of sliver polygons in geographical vector data, Int. J. Geogr. Inf.
Sci., 23, 719–735, https://doi.org/10.1080/13658810701694838, 2009.
Dixit, A. and Agarwal, S.: Non-linear spectral unmixing of hyperspectral
data using Modified PPNMM, Appl. Comput. Geosci., 9, 100053,
https://doi.org/10.1016/j.acags.2021.100053, 2021.
ERDAS: LPS Project Manager User's Guide, Norcross, GA, USA, 2010.
Ettritch, G., Bunting, P., Jones, G., and Hardy, A.: Monitoring the coastal
zone using earth observation: application of linear spectral unmixing to
coastal dune systems in Wales, Remote Sens. Ecol. Cons., 4, 303–319,
https://doi.org/10.1002/rse2.79, 2018.
Evatt, G. W., Abrahams, D., Heil, M., Mayer, C., Kingslake, J., Mitchell, S.
L., Fowler, A. C., and Clark, C. D.: Glacial melt under a porous debris
layer, J. Glaciol., 61, 229, https://doi.org/10.3189/2015JoG14J235, 2015.
Evatt, G. W., Mayer, C., Mallinson, A. M. Y., Abrahams, I. D., Heil, M., and
Nicholson, L.: The secret life of ice sails, J. Glaciol., 63, 1049–1062,
https://doi.org/10.1017/jog.2017.72, 2017.
Fickert, T., Friend, D., Grüninger, F., Molnia, B., and Richter, M.: Did
Debris-Covered Glaciers Serve as Pleistocene Refugia for Plants? A New
Hypothesis Derived from Observations of Recent Plant Growth on Glacier
Surfaces, AAAR, 39, 245–257, https://doi.org/10.1657/1523-0430(2007)39[245:DDGSAP]2.0.CO;2,
2007.
Foody, G. M.: Sub-pixel methods in remote sensing, in:Remote sensing image analysis: including the spatial domain, edited by: de Jong, S. M. and van der Meer, F. D., Kluwer, Dordrecht, the Netherlands, 37–49, 2004.
Foster, L. A., Brock, B. W., Cutler, M. E. J., and Diotri, F.: A physically
based method for estimating supraglacial debris thickness from thermal band
remote-sensing data, J. Glaciol., 58, 677–690, 2012.
GAPHAZ: Assessment of Glacier and Permafrost Hazards in Mountain Regions –
Technical Guidance Document, Zurich, Switzerland/Lima, Peru, 72, 2017.
Gardelle, J., Arnaud, Y., and Berthier, E.: Contrasted evolution of glacial
lakes along the Hindu Kush Himalaya mountain range between 1990 and 2009,
Global Planet. Change, 75, 1–2, https://doi.org/10.1016/j.gloplacha.2010.10.003, 2011.
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013.
Giardino, C., Oggioni, A., Bresciani, M., and Yan, H.: Remote Sensing of
Suspended Particulate Matter in Himalayan Lakes, Mt. Res. Dev., 30, 157–168,
https://doi.org/10.1659/MRD-JOURNAL-D-09-00042.1, 2010.
Giles, D. M., Sinyuk, A., Sorokin, M. G., Schafer, J. S., Smirnov, A., Slutsker, I., Eck, T. F., Holben, B. N., Lewis, J. R., Campbell, J. R., Welton, E. J., Korkin, S. V., and Lyapustin, A. I.: Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements, Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, 2019.
Gillespie, A. R., Smith, M. O., Adams, J. B., Willis, S. C., Fischer, A. F.,
III,, and Sabol, D. E.: Interpretation of residual images: spectral mixture
analysis of AVIRIS images, Owens Valley, California, Proceedings of the
Second Air- borne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, 243–270,
1990.
Gillingham, S. S., Flood, N., and Gill, T. K.: On determining appropriate
aerosol optical depth values for atmospheric correction of satellite imagery
for biophysical parameter retrieval: requirements and limitations under
Australian conditions, Int. J. Remote Sens., 34, 2089–2100,
https://doi.org/10.1080/01431161.2012.738945, 2013.
Green, A. A., Berman, M., Switzer, P., and Craig, M. D.: A transformation
for ordering multispectral data in terms of image quality with implications
for noise removal, IEEE T. Geosci. Remote, 26, 65–74, https://doi.org/10.1109/36.3001,
1988.
Hall, D. K. R., George, A., Salomonson, V. V., DiGirolamo, N. E.,
and Bayr, K. J.: MODIS Snow-Cover Products, Remote Sens. Env, 83, 88–89,
2002.
Harris Geospatial: ENVI Feature Extraction module, available at: https://www.l3harrisgeospatial.com/Portals/0/pdfs/HG_ENVI_FX_module_data-sheet_WEB.pdf, last access: 25 April 2017.
Herreid, S. and Pellicciotti, F.: Automated detection of ice cliffs within supraglacial debris cover, The Cryosphere, 12, 1811–1829, https://doi.org/10.5194/tc-12-1811-2018, 2018.
Herreid, S. and Pellicciotti, F.: The state of rock debris covering Earth's
glaciers, Nat. Geosci., 13, 621–627, https://doi.org/10.1038/s41561-020-0615-0, 2020.
Irons, J. R., Dwyer, J. L., and Barsi, J. A.: The next Landsat satellite:
The Landsat Data Continuity Mission, Remote Sens. Environ., 122, 11–21,
https://doi.org/10.1016/j.rse.2011.08.026, 2012.
Irvine-Fynn, T. D. L., Porter, P. R., Rowan, A. V., Quincey, D. J., Gibson,
M. J., Bridge, J. W., Watson, C. S., Hubbard, A., and Glasser, N. F.:
Supraglacial ponds regulate runoff from Himalayan debris-covered glaciers,
Geophys. Res. Lett., 44, 11894–11904, https://doi.org/10.1002/2017GL075398, 2017.
Iwata, S., Watanabe, O., and Fushimi, H.: Surface morphology in the ablation
area of the Khumbu glacier, J. Japan Soc. Snow Ice (Seppyo), 41, 9–17,
1980.
Iwata, S., Aoki, T., Kadota, T., Seko, K., and Yamaguchi, S.: Morphological
evolution of the debris cover on Khumbu Glacier, Nepal, between 1978 and
1995, in: Debris-covered glaciers, edited by: Nakawo, M., Raymond, C. F.,
and Fountain, A., IAHS, IAHS Publication no. 264, Wallingford, 2000.
JAXA: ALOS Global Digital Surface Model “ALOS World 3D – 30m”, available at: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm (last access: 20 September 2021), 2019.
Jones, D. B., Harrison, S., and Anderson, K.: Mountain glacier-to-rock glacier transition, Global Planet. Change, 181, 102999, https://doi.org/10.1016/j.gloplacha.2019.102999, 2019.
Juen, M., Mayer, C., Lambrecht, A., Wirbel, A., and Kueppers, U.: Thermal
properties of a supraglacial debris layer with respect to lithology and
grain size, Geogr. Ann. Phys. Geogr., 95, 197–209, https://doi.org/10.1111/geoa.12011, 2013.
Kääb, A., Berthier, E., Nuth, C., Gardelle, J., and Arnaud, Y.:
Contrasting patterns of early twenty-first-century glacier mass change in
the Himalayas, Nature, 488, 495–498, https://doi.org/10.1038/nature11324, 2012.
Kamp, U., Byrne, M., and Bolch, T.: Glacier fluctuations between 1975 and
2008 in the Greater Himalaya Range of Zanskar, southern Ladakh, J. Mt. Sci., 8,
374–389, 2011.
Kayastha, R. B., Takeuchi, Y., Nakawo, M., and Ageta, Y.: Practical
prediction of ice melting beneath various thickness of debris cover on
Khumbu Glacier, Nepal, using a positive degree-day factor, in:
Debris-Covered Glaciers, edited by: Raymond, C. F., Nakawo, M., Fountain,
A., IAHS, Wallingford, UK, 71–81, 2000.
Keshava, N. and Mustard, J. F.: Spectral unmixing, IEEE Signal Processing
Magazine, 19, 44–57, https://doi.org/10.1109/79.974727, 2002.
Kirkbride, M.: About the concepts of continuum and age, Boreas, 18, 87–88,
https://doi.org/10.1111/j.1502-3885.1989.tb00376.x, 1989.
Kirkbride, M. P.: Debris-Covered Glaciers, in: Encyclopedia of Snow, Ice and
Glaciers, edited by: Singh, V. P., Singh, P., and Haritashya, U. K.,
Springer Netherlands, Dordrecht, 180–182, 2011.
Klein, A. G. and Isacks, B. L.: Spectral mixture analysis of Landsat
thematic mapper images applied to the detection of the transient snowline on
tropical Andean glaciers, Global Planet. Change, 22, 139–154, https://doi.org/10.1016/S0921-8181(99)00032-6, 1999.
Kneib, M., Miles, E. S., Jola, S., Buri, P., Herreid, S., Bhattacharya, A.,
Watson, C. S., Bolch, T., Quincey, D., and Pellicciotti, F.: Mapping ice
cliffs on debris-covered glaciers using multispectral satellite images, Remote Sens. Environ., 253, 112201, https://doi.org/10.1016/j.rse.2020.112201, 2020.
Knight, J., Harrison, S., and Jones, D. B.: Rock glaciers and the
geomorphological evolution of deglacierizing mountains, Geomorphology, 324,
14–24, 2019.
Komori, J.: Recent expansions of glacial lakes in the Bhutan Himalayas,
Quaternary Int., 184, 177–186, https://doi.org/10.1016/j.quaint.2007.09.012, 2008.
Kraaijenbrink, P. D. A., Shea, J. M., Pellicciotti, F., Jong, S. M. D., and
Immerzeel, W. W.: Object-based analysis of unmanned aerial vehicle imagery
to map and characterise surface features on a debris-covered glacier, Remote Sens. Environ., 186, 581–595, https://doi.org/10.1016/j.rse.2016.09.013, 2016.
Leprince, S., Ayoub, F., Klinger, Y., and Avouac, J.: Co-Registration of
Optically Sensed Images and Correlation (COSI-Corr): an operational
methodology for ground deformation measurements, IEEE Int. Geosci. Remote Sens.
Symposium, Barcelona, Spain, 1943–1946, 2007.
Liu, Q., Mayer, C., and Liu, S.: Distribution and interannual variability of
supraglacial lakes on debris-covered glaciers in the Khan Tengri-Tumor
Mountains, Central Asia, Environ. Res. Lett., 10, 014014,
https://doi.org/10.1088/1748-9326/10/1/014014, 2015.
Matta, E., Giardino, C., Boggero, A., and Bresciani, M.: Use of Satellite
and In Situ Reflectance Data for Lake Water Color Characterization in the
Everest Himalayan Region, Mt. Res. Dev., 37, 16–23,
https://doi.org/10.1659/MRD-JOURNAL-D-15-00052.1, 2017.
Maurer, J. M., Schaefer, J. M., Rupper, S., and Corley, A.: Acceleration of
ice loss across the Himalayas over the past 40 years, Sci. Adv., 5, eaav7266,
https://doi.org/10.1126/sciadv.aav7266, 2019.
Miles, E. S., Pellicciotti, F., Willis, I. C., Steiner, J. F., Buri, P., and
Arnold, N. S.: Refined energy-balance modelling of a supraglacial pond,
Langtang Khola, Nepal, Ann. Glaciol., 57, 29–40, https://doi.org/10.3189/2016AoG71A421, 2016.
Miles, E. S., Steiner, J., Willis, I., Buri, P., Immerzeel, W. W.,
Chesnokova, A., and Pellicciotti, F.: Pond Dynamics and
Supraglacial-Englacial Connectivity on Debris-Covered Lirung Glacier, Nepal,
Front. Earth Sci., 5, 69, https://doi.org/10.3389/feart.2017.00069, 2017a.
Miles, E. S., Willis, I. C., Arnold, N. S., Steiner, J., and Pellicciotti,
F.: Spatial, seasonal and interannual variability of supraglacial ponds in
the Langtang Valley of Nepal, 1999–2013, J. Glaciol., 63, 88–105, 2017b.
Miles, E. S., Willis, I., Buri, P., Steiner, J. F., Arnold, N. S., and
Pellicciotti, F.: Surface Pond Energy Absorption Across Four Himalayan
Glaciers Accounts for 1/8 of Total Catchment Ice Loss, Geophys. Res. Lett., 45,
10464–10473, https://doi.org/10.1029/2018GL079678, 2018.
Mölg, N., Bolch, T., Walter, A., and Vieli, A.: Unravelling the evolution of Zmuttgletscher and its debris cover since the end of the Little Ice Age, The Cryosphere, 13, 1889–1909, https://doi.org/10.5194/tc-13-1889-2019, 2019.
Monnier, S. and Kinnard, C.: Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33∘ S), Earth Surf. Dynam., 5, 493–509, https://doi.org/10.5194/esurf-5-493-2017, 2017.
Mukul, M., Srivastava, V., Jade, S., and Mukul, M.: Uncertainties in the
Shuttle Radar Topography Mission (SRTM) Heights: Insights from the Indian
Himalaya and Peninsula, Sci. Rep.-UK, 7, 41672, https://doi.org/10.1038/srep41672,
2017.
Muñoz-Sabater, J.: ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.68d2bb3, 2019.
Naegeli, K., Damm, A., Huss, M., Schaepman, M., and Hoelzle, M.: Imaging
spectroscopy to assess the composition of ice surface materials and their
impact on glacier mass balance, Remote Sens. Environ., 168, 388–402, https://doi.org/10.1016/j.rse.2015.07.006, 2015.
Naegeli, K., Damm, A., Huss, M., Wulf, H., Schaepman, M., and Hoelzle, M.:
Cross-Comparison of Albedo Products for Glacier Surfaces Derived from
Airborne and Satellite (Sentinel-2 and Landsat 8) Optical Data, Remote Sens., 9, 2,
https://doi.org/10.3390/rs9020110, 2017.
Nakawo, M., Yabuki, H., and Sakai, A.: Characteristics of Khumbu Glacier,
Nepal Himalaya: recent change in the debris-covered area,
Ann. Glaciol., 28, 118–122, 1999.
Narama, C., Daiyrov, M., Tadono, T., Yamamoto, M., Kääb, A., Morita,
R., and Ukita, J.: Seasonal drainage of supraglacial lakes on debris-covered
glaciers in the Tien Shan Mountains, Central Asia, Geomorphology, 286,
133–142, https://doi.org/10.1016/j.geomorph.2017.03.002, 2017.
Nicholson, L. and Benn, D. I.: Calculating ice melt beneath a debris layer
using meteorological data, J. Glaciol., 52, 463–470,
https://doi.org/10.3189/172756506781828584, 2006.
Nicholson, L. I., McCarthy, M., Pritchard, H. D., and Willis, I.: Supraglacial debris thickness variability: impact on ablation and relation to terrain properties, The Cryosphere, 12, 3719–3734, https://doi.org/10.5194/tc-12-3719-2018, 2018.
Nie, Y., Sheng, Y., Liu, Q., Liu, L., Liu, S., Zhang, Y., and Song, C.: A
regional-scale assessment of Himalayan glacial lake changes using satellite
observations from 1990 to 2015, Remote Sens. Environ., 189, 1–13, https://doi.org/10.1016/j.rse.2016.11.008, 2017.
Nuimura, T., Fujita, K., Yamaguchi, S., and Sharma, R. R.: Elevation changes
of glaciers revealed by multitemporal digital elevation models calibrated by
GPS survey in the Khumbu region, Nepal Himalaya, 1992–2008, J. Glaciol., 58,
648–656, 2012.
Østrem, G.: Ice Melting under a Thin Layer of Moraine, and the Existence
of Ice Cores in Moraine Ridges, Geografiska Annaler, 41, 228–230, 1959.
Painter, T. H., Dozier, J., Roberts, D. A., Davis, R. E.,
and Green, R. O.: Retrieval of subpixel snow-covered area and grain size from imaging
spectrometer data, Remote Sens. Environ., 85, 64–77, 2003.
Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E., and
Dozier, J.: Retrieval of subpixel snow covered area, grain size, and albedo
from MODIS, Remote Sens. Environ., 113, 868–879, https://doi.org/10.1016/j.rse.2009.01.001, 2009.
Painter, T. H., Brodzik, M. J., Racoviteanu, A., and Armstrong, R.:
Automated mapping of Earth's annual minimum exposed snow and ice with MODIS,
Geophys. Res. Lett., 39, L20501, https://doi.org/10.1029/2012GL053340, 2012.
Panday, P., Bulley, H., Haritashya, U., and Ghimire, B.: Supraglacial Lake
Classification in the Everest Region of Nepal Himalaya, in: Geospatial
Techniques for Managing Environmental Resources, edited by: Thakur, J. K., Singh, S. K., Ramanathan, A., Prasad, M. B. K., and Gossel, W., Capital Publishing Company, New Delhi, India, 2011.
Paul, F., Huggel, C., and Kääb, A.: Combining satellite
multispectral image data and a digital elevation model for mapping
debris-covered glaciers, Remote Sens. Environ., 89, 510–518, 2004.
Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A. S.: High-resolution
mapping of global surface water and its long-term changes, Nature, 540,
418–422, https://doi.org/10.1038/nature20584, 2016.
Pfeffer, W. T., Arendt, A. A., Bliss, A., Bolch, T., Cogley, J. G., Gardner,
A. S., Hagen, J. O., Hock, R., Kaser, G., Kienholz, C., Miles, E. S.,
Moholdt, G., Mölg, N., Paul, F., Radić, V., Rastner, P., Raup, B.
H., Rich, J., Sharp, M. J., and Randolph_Consortium: The
Randolph Glacier Inventory: a globally complete inventory of glaciers, J.
Glaciol., 60, 221, https://doi.org/10.3189/2014JoG13J176, 2014.
Planet Labs: Planet imagery product specifications, available at: https://assets.planet.com/docs/Planet_Combined_Imagery_Product_Specs_letter_screen.pdf, last access: 20 September 2021.
Planet Team: Planet Application Program Interface: In Space for Life on Earth. San Francisco, CA, available at: https://api.planet.com (last access: 20 September 2021), 2017.
Quincey, D. J., Richardson, S. D., Luckman, A., Lucas, R. M., Reynolds, J.
M., Hambrey, M. J., and Glasser, N. F.: Early recognition of glacial lake
hazards in the Himalaya using remote sensing datasets, Global Planet. Change, 56,
137–152, 2007.
Quincey, D. J., Luckman, A., and Benn, D.: Quantification of Everest region
glacier velocities between 1992 and 2002, using satellite radar
interferometry and feature tracking, J. Glaciol., 55, 596–606, 2009.
Quintano, C., Fernández-Manso, A., Shimabukuro, Y. E., and Pereira, G.:
Spectral unmixing, Int. J. Remote Sens., 33, 5307–5340,
https://doi.org/10.1080/01431161.2012.661095, 2012.
Racoviteanu, A. E. and Arnaud, Y.: Spectrometer tests on Mer de Glace, France, Laboratoire de Glaciologie et Géophysique de l'Environnement, France, unpublished report, 2013.
Racoviteanu, A. E. and Williams, M. W.: Decision tree and texture analysis
for mapping debris-covered glaciers: a case study from Kangchenjunga,
eastern Himalaya, Remote Sens. Special Issue, 4, 3078–3109,
https://doi.org/10.3390/rs4103078, 2012.
Racoviteanu, A. E., Arnaud, Y., Williams, M. W., and Manley, W. F.: Spatial patterns in glacier characteristics and area changes from 1962 to 2006 in the Kanchenjunga–Sikkim area, eastern Himalaya, The Cryosphere, 9, 505–523, https://doi.org/10.5194/tc-9-505-2015, 2015.
Racoviteanu, A. E., Nicholson,, L., and Glasser, N.: Supraglacial features of debris covered glaciers in the Himalaya from Landsat-8 spectral umixing and Pleiades, Zenodo [data set], https://doi.org/10.5281/zenodo.4421857, 2021.
Ragettli, S., Bolch, T., and Pellicciotti, F.: Heterogeneous glacier thinning patterns over the last 40 years in Langtang Himal, Nepal, The Cryosphere, 10, 2075–2097, https://doi.org/10.5194/tc-10-2075-2016, 2016.
Reid, T. D. and Brock, B. W.: An energy-balance model for debris-covered
glaciers including heat conduction through the debris layer, J. Glaciol.,
56, 903–916, https://doi.org/10.3189/002214310794457218, 2010.
Reynolds, J.: On the formation of supraglacial lakes on debris-covered
glaciers, in: Debris-covered glaciers, edited by: Nakawo, M., Raymond, C. F., and Fountain,
A., IAHS, Wallingsford, 153–161, 2000.
Reynolds, J. M.: Assessing glacial hazards for hydropower development in the
Himalayas, Hindu Kush and Karakoram, Int J. Hydropower Dams, 21, 60–65,
2014.
RGI Consortium: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA, Digital Media, https://doi.org/10.7265/N5-RGI-60, 2017.
Richards, J.: Remote Sensing Digital Image Analysis, Springer-Verlag,
Berlin, 2013.
Richardson, S. and Reynolds, J.: An overview of glacial hazards in the
Himalayas, Quaternary Int., 65–66, 31–47,
https://doi.org/10.1016/S1040-6182(99)00035-X, 2000.
Rieg, L., Klug, C., Nicholson, L., and Sailer, R.: Pléiades Tri-Stereo
Data for Glacier Investigations – Examples from the European Alps and the
Khumbu Himal, Remote Sens., 10, 10, https://doi.org/10.3390/rs10101563, 2018.
Rittger, K., Painter, T. H., and Dozier, J.: Assessment of methods for
mapping snow cover from MODIS, Adv. Water Resour., 51, 367–380, https://doi.org/10.1016/j.advwatres.2012.03.002, 2013.
Roberts, D. A., Smith, M. O., and Adams, J. B.: Green vegetation,
nonphotosynthetic vegetation, and soils in AVIRIS data, Remote Sens. Environ.,
44, 255–269, https://doi.org/10.1016/0034-4257(93)90020-X,
1993.
Rosenthal, W. and Dozier, J.: Automated Mapping of Montane Snow Cover at
Subpixel Resolution From the Landsat Thematic Mapper, Water Resour. Res., 32,
115–130, https://doi.org/10.1029/95WR02718, 1996.
Rounce, D. R. and McKinney, D. C.: Debris thickness of glaciers in the Everest area (Nepal Himalaya) derived from satellite imagery using a nonlinear energy balance model, The Cryosphere, 8, 1317–1329, https://doi.org/10.5194/tc-8-1317-2014, 2014.
Rounce, D. R., Quincey, D. J., and McKinney, D. C.: Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal, The Cryosphere, 9, 2295–2310, https://doi.org/10.5194/tc-9-2295-2015, 2015.
Rounce, D. R., King, O., McCarthy, M., Shean, D. E., and Salerno, F.:
Quantifying Debris Thickness of Debris-Covered Glaciers in the Everest
Region of Nepal Through Inversion of a Subdebris Melt Model, J. Geophys. Res.-Earth Surf., 123, 1094–1115, https://doi.org/10.1029/2017JF004395, 2018.
Sakai, A.: Glacial lakes in the Himalayas: a review on formation and
expansion processes, Global Environ. Res., 16, 23–30, 2012.
Sakai, A. and Fujita, K.: Correspondence: Formation conditions of
supraglacial lakes on debris covered glaciers in the Himalaya, J. Glaciol.,
56, 177–181, 2010.
Sakai, A., Nakawo, M., and Fujita, K.: Distribution Characteristics and
Energy Balance of Ice Cliffs on Debris-Covered Glaciers, Nepal Himalaya,
AAAR, 34, 12–19, 2002.
Salerno, F., Thakuri, S., D'Agata, C., Smiraglia, C., Manfredi, E. C.,
Viviano, G., and Tartari, G.: Glacial lake distribution in the Mount Everest
region: Uncertainty of measurement and conditions of formation, Global Planet.
Change, 92–93, 30–39, https://doi.org/10.1016/j.gloplacha.2012.04.001, 2012.
Salerno, F., Thakuri, S., Tartari, G., Nuimura, T., Sunako, S., Sakai, A.,
and Fujita, K.: Debris-covered glacier anomaly? Morphological factors
controlling changes in the mass balance, surface area, terminus position,
and snow line altitude of Himalayan glaciers, Earth Planet. Sci. Lett., 471,
19–31, https://doi.org/10.1016/j.epsl.2017.04.039, 2017.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable
response of Himalayan glaciers to climate change affected by debris cover,
Nat. Geosci., 4, 156, https://doi.org/10.1038/ngeo1068, 2011.
Scherler, D., Wulf, H., and Gorelick, N.: Global Assessment of Supraglacial
Debris-Cover Extents, Geophys. Res. Lett., 45, 11798–11805,
https://doi.org/10.1029/2018GL080158, 2018.
Searle, M. P., Windley, B. F., Coward, M. P., Cooper, D. J. W., Rex, A. J.,
Rex, D., Tingdong, L. I., Xuchang, X., Jan, M. Q., Thakur, V. C., and Kumar,
S.: The closing of Tethys and the tectonics of the Himalaya, GSA Bulletin,
98, 678–701, https://doi.org/10.1130/0016-7606(1987)98<678:TCOTAT>2.0.CO;2, 1987.
Sevestre, H. and Benn, D.: Climatic and geometric controls on the global
distribution of surge-type glaciers: Implications for a unifying model of
surging, J. Glaciol., 61, 646–662, https://doi.org/10.3189/2015JoG14J136, 2015.
Shean, D. E., Bhushan, S., Montesano, P., Rounce, D. R., Arendt, A., and
Osmanoglu, B.: A Systematic, Regional Assessment of High Mountain Asia
Glacier Mass Balance, Front. Earth Sci., 7, 363,
https://doi.org/10.3389/feart.2019.00363, 2020.
Shepherd, J. D. and Dymond, J. R.: Correcting satellite imagery for the
variance of reflectance and illumination with topography, Int. J. Remote Sens.,
24, 3503–3514, https://doi.org/10.1080/01431160210154029, 2003.
Shroder, J. F., Bishop, M. P., Copland, L., and Sloan, V. F.: Debris-covered
Glaciers and Rock Glaciers in the Nanga Parbat Himalaya, Pakistan, Geogr. Ann.
Phys. Geogr., 82, 17–31, https://doi.org/10.1111/j.0435-3676.2000.00108.x, 2000.
Shugar, D. H., Burr, A., Haritashya, U. K., Kargel, J. S., Watson, C. S.,
Kennedy, M. C., Bevington, A. R., Betts, R. A., Harrison, S., and Strattman,
K.: Rapid worldwide growth of glacial lakes since 1990, Nat. Clim. Change, 10,
939–945, https://doi.org/10.1038/s41558-020-0855-4, 2020.
Shukla, A., Arora, M. K., and Gupta, R. P.: Synergistic approach for mapping
debris-covered glaciers using optical-thermal remote sensing data with
inputs from geomorphometric parameters, Remote Sens. Environ., 114, 1378–1387,
2010.
Shukla, A., Garg, P. K., and Srivastava, S.: Evolution of Glacial and
High-Altitude Lakes in the Sikkim, Eastern Himalaya Over the Past Four
Decades (1975–2017), Front. Env. Science, 6, 81, https://doi.org/10.3389/fenvs.2018.00081, 2018.
Sirguey, P., Mathieu, R., and Arnaud, Y.: Subpixel monitoring of the
seasonal snow cover with MODIS at 250 m spatial
resolution in the Southern Alps of New Zealand: Methodology and accuracy
assessment, Remote Sens. Environ., 113, 160–181, https://doi.org/10.1016/j.rse.2008.09.008, 2009.
Smith, T., Bookhagen, B., and Cannon, F.: Improving semi-automated glacier mapping with a multi-method approach: applications in central Asia, The Cryosphere, 9, 1747–1759, https://doi.org/10.5194/tc-9-1747-2015, 2015.
Sokolova, M. and Lapalme, G.: A systematic analysis of performance measures
for classification tasks, Inform. Process. Manage., 45,
427–437, https://doi.org/10.1016/j.ipm.2009.03.002, 2009.
Song, C.: Spectral mixture analysis for subpixel vegetation fractions in the
urban environment: How to incorporate endmember variability?, Remote Sens. Environ., 95, 248–263, https://doi.org/10.1016/j.rse.2005.01.002, 2005.
Steiner, J., Pellicciotti, F., Buri, P., Miles, E., Immerzeel, W. W., and
Reid, T.: Modelling ice-cliff backwasting on a debris-covered glacier in the
Nepalese Himalaya, J. Glaciol., 61, 889–907, https://doi.org/10.3189/2015JoG14J194, 2015.
Steiner, J. F., Buri, P., Miles, E. S., Ragettli, S., and Pellicciotti, F.:
Supraglacial ice cliffs and ponds on debris-covered glaciers:
spatio-temporal distribution and characteristics, J. Glaciol., 65, 617–632,
https://doi.org/10.1017/jog.2019.40, 2019.
Stillinger, T., Roberts, D. A., Collar, N. M., and Dozier, J.: Cloud Masking
for Landsat 8 and MODIS Terra Over Snow-Covered Terrain: Error Analysis and
Spectral Similarity Between Snow and Cloud, Water Resour. Res., 55, 6169–6184,
https://doi.org/10.1029/2019WR024932, 2019.
Strozzi, T., Wiesmann, A., Kääb, A., Joshi, S., and Mool, P.: Glacial lake mapping with very high resolution satellite SAR data, Nat. Hazards Earth Syst. Sci., 12, 2487–2498, https://doi.org/10.5194/nhess-12-2487-2012, 2012.
Suzuki, R., Fujita, K., and Ageta, Y.: Spatial distribution of thermal
properties on debris-covered glaciers in the Himalayas derived from ASTER
data, Bull. Glacier Res., 24, 13–22, 2007.
Tadono, T., Ishida, H., Oda, F., Naito, S., Minakawa, K., and Iwamoto, H.:
Precise global DEM generation by ALOS PRISM, ISPRS Ann. Photogr. Remote Sens.,
II-4, 71–76, https://doi.org/10.5194/isprsannals-II-4-71-2014, 2014.
Takeuchi, Y.,
Kayastha, R., and Nakawo, M.: Characteristics of ablation and heat
balance in debris-free and debris-covered areas on Khumbu Glacier, Nepal
Himalayas, in the pre-monsoon season, in: Debris-covered glacier, edited by:
Nakawo, M., Raymond, C. F., and Fountain, A. G., IAHS Publication no. 264, Wellington, 2000.
Takeuchi, N., Kohshima, S., Fujita, K., and Nakawo, M.: Variation in
suspended sediment concentration of supraglacial lakes on debris-covered
area of Lirung Glacier in Nepali Himalayas, Glob. Environ. Res., 16, 95–104, 2012.
Tampucci, D., Citterio, C., Gobbi, M., and Caccianiga, M.: Vegetation
outlines of a debris-covered glacier descending below the treeline, Plant
Sociol., 53, 43–52, https://doi.org/10.7338/pls2016531/03, 2016.
Taschner, S. and Ranzi, R.: Landsat-TM and ASTER data for monitoring a
debris covered glacier in the Italian Alps within the GLIMS project, Proc.
IGARSS, 4, 1044–1046, 2002.
Thakuri, S., Salerno, F., Smiraglia, C., Bolch, T., D'Agata, C., Viviano, G., and Tartari, G.: Tracing glacier changes since the 1960s on the south slope of Mt. Everest (central Southern Himalaya) using optical satellite imagery, The Cryosphere, 8, 1297–1315, https://doi.org/10.5194/tc-8-1297-2014, 2014.
Thayyen, R. J. and Gergan, J. T.: Role of glaciers in watershed hydrology: a preliminary study of a “Himalayan catchment”, The Cryosphere, 4, 115–128, https://doi.org/10.5194/tc-4-115-2010, 2010.
Thompson, S., Benn, D., Mertes, J., and Luckman, A.: Stagnation and mass
loss on a Himalayan debris-covered glacier: Processes, patterns and rates,
J. Glaciol., 62, 1–19, https://doi.org/10.1017/jog.2016.37, 2016.
Thompson, S. S., Benn, D. I., Dennis, K., and Luckman, A.: A rapidly growing
moraine-dammed glacial lake on Ngozumpa Glacier, Nepal, Geomorphology, 145,
1–11, 2012.
USGS: Landsat processing details, available at: https://landsat.usgs.gov/Landsat-Processing-Details (last access: 28 March 2019),
2015.
Veganzones, M., Dalla Mura, M., Dumont, M., Zin, I., and Chanussot, J.:
Improved subpixel monitoring of seasonal snow cover: A case study in the
Alps, Int. Geosci. Remote Sens. Symposium (IGARSS), 3976–3979, https://doi.org/10.1109/IGARSS.2014.6947356,
2014.
Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., and Morcette, J.:
Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an
overview, IEEE T. Geosci. Remote, 35, 675–686, https://doi.org/10.1109/36.581987, 1997.
Vezzola, L. C., Diolaiuti, G. A., D'Agata, C., Smiraglia, C., and Pelfini,
M.: Assessing glacier features supporting supraglacial trees: A case study
of the Miage debris-covered Glacier (Italian Alps), The Holocene, 26,
1138–1148, https://doi.org/10.1177/0959683616632883, 2016.
Wagnon, P., Vincent, C., Arnaud, Y., Berthier, E., Vuillermoz, E., Gruber, S., Ménégoz, M., Gilbert, A., Dumont, M., Shea, J. M., Stumm, D., and Pokhrel, B. K.: Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007, The Cryosphere, 7, 1769–1786, https://doi.org/10.5194/tc-7-1769-2013, 2013.
Wang, X., Guo, X., Yang, C., Liu, Q., Wei, J., Zhang, Y., Liu, S., Zhang, Y., Jiang, Z., and Tang, Z.: Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images, Earth Syst. Sci. Data, 12, 2169–2182, https://doi.org/10.5194/essd-12-2169-2020, 2020.
Wangchuk, S. and Bolch, T.: Mapping of glacial lakes using Sentinel-1 and
Sentinel-2 data and a random forest classifier: Strengths and challenges,
Sci. Remote Sens., 2, 100008, https://doi.org/10.1016/j.srs.2020.100008, 2020.
Watanabe, O., Iwata, S., and Fushimi, H.: Topographic characteristics in the
ablation area of the Khumbu glacier, Nepal Himalaya, Ann. Glaciol., 8, 177–180, 1986.
Watson, C. S., Quincey, D. J., Carrivick, J. L., and Smith, M. W.: The
dynamics of supraglacial ponds in the Everest region, central Himalaya, Global
Planet. Change, 142, 14–27, https://doi.org/10.1016/j.gloplacha.2016.04.008, 2016.
Watson, C. S., Quincey, D. J., Carrivick, J. L., and Smith, M. W.: Ice cliff
dynamics in the Everest region of the Central Himalaya, Geomorph., 278,
238–251, https://doi.org/10.1016/j.geomorph.2016.11.017, 2017a.
Watson, C. S., Quincey, D. J., Smith, M. W., Carrivick, J. L., Rowan, A. V.,
and James, M. R.: Quantifying ice cliff evolution with multi-temporal point
clouds on the debris-covered Khumbu Glacier, Nepal, J. Glaciol., 63,
823–837, https://doi.org/10.1017/jog.2017.47, 2017b.
Watson, C. S., King, O., Miles, E. S., and Quincey, D. J.: Optimising NDWI
supraglacial pond classification on Himalayan debris-covered glaciers, Remote Sens. Environ., 217, 414–425, https://doi.org/10.1016/j.rse.2018.08.020, 2018.
Wehn, S., Lundemo, S., and Holten, J. I.: Alpine vegetation along multiple
environmental gradients and possible consequences of climate change, Alp.
Bot., 124, 155–164, https://doi.org/10.1007/s00035-014-0136-9, 2014.
Wessels, R. L., Kargel, J. S., and Kieffer, H. H.: ASTER measurement of
supraglacial lakes in the Mount Everest region of the Himalaya, Ann. Glaciol.,
34, 399–408, 2002.
Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M. J., Quincey, D.
J., and Reynolds, J. M.: Modelling outburst floods from moraine-dammed
glacial lakes, Earth-Sci. Rev., 134, 137–159, https://doi.org/10.1016/j.earscirev.2014.03.009, 2014.
Westoby, M. J., Rounce, D. R., Shaw, T. E., Fyffe, C. L., Moore, P. L.,
Stewart, R. L., and Brock, B. W.: Geomorphological evolution of a
debris-covered glacier surface, Earth Surf. Proc. Landf., 45,
3431–3448, https://doi.org/10.1002/esp.4973, 2020.
Wulder, M. A., Loveland, T. R., Roy, D. P., Crawford, C. J., Masek, J. G.,
Woodcock, C. E., Allen, R. G., Anderson, M. C., Belward, A. S., Cohen, W.
B., Dwyer, J., Erb, A., Gao, F., Griffiths, P., Helder, D., Hermosilla, T.,
Hipple, J. D., Hostert, P., Hughes, M. J., Huntington, J., Johnson, D. M.,
Kennedy, R., Kilic, A., Li, Z., Lymburner, L., McCorkel, J., Pahlevan, N.,
Scambos, T. A., Schaaf, C., Schott, J. R., Sheng, Y., Storey, J., Vermote,
E., Vogelmann, J., White, J. C., Wynne, R. H., and Zhu, Z.: Current status
of Landsat program, science, and applications, Remote Sens. Environ., 225,
127–147, https://doi.org/10.1016/j.rse.2019.02.015, 2019.
Xie, F., Liu, S., Wu, K., Zhu, Y., Gao, Y., Qi, M., Duan, S., Saifullah, M.,
and Tahir, A. A.: Upward Expansion of Supra-Glacial Debris Cover in the
Hunza Valley, Karakoram, during 1990–2019, Front. Earth
Sci., 8, 308, https://doi.org/10.3389/feart.2020.00308, 2020.
Xie, Y., Sha, Z., and Yu, M.: Remote sensing imagery in vegetation mapping:
a review, J. Plant Ecol., 1, 9–23, https://doi.org/10.1093/jpe/rtm005, 2008.
Zhang, B., Liu, G., Zhang, R., Fu, Y., Liu, Q., Cai, J., Wang, X., and Li,
Z.: Monitoring Dynamic Evolution of the Glacial Lakes by Using Time Series
of Sentinel-1A SAR Images, Remote Sens., 13, 10.3390/rs13071313, 2021.
Zhang, H., Suhong, L., Qizhong, L., and Jiacheng, S.: Sub-pixel lake mapping
in Tibetan Plateau, IEEE T. Geosci. Remote, 0-7803-8742-2/04, 3073–3076, 2004.
Zhu, Z., Wang, S., and Woodcock, C. E.: Improvement and expansion of the
Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7,
8, and Sentinel 2 images, Remote Sens. Environ., 159, 269–277, https://doi.org/10.1016/j.rse.2014.12.014, 2015.
Short summary
Supraglacial debris cover comprises ponds, exposed ice cliffs, debris material and vegetation. Understanding these features is important for glacier hydrology and related hazards. We use linear spectral unmixing of satellite data to assess the composition of map supraglacial debris across the Himalaya range in 2015. One of the highlights of this study is the automated mapping of supraglacial ponds, which complements and expands the existing supraglacial debris and lake databases.
Supraglacial debris cover comprises ponds, exposed ice cliffs, debris material and vegetation....